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Abstract The present authors have introduced polyno-
mial splines over T-meshes (PHT-splines) and provided
theories and applications for PHT-splines over hierarchi-
cal T-meshes. This paper generalizes PHT-splines to ar-
bitrary topology over general T-meshes with any struc-
tures (GPT-splines). GPT-spline surfaces can be constructed
through a unified scheme to interpolate the local geomet-
ric information at the basis vertices of the T-mesh. We also
discuss general edge insertion and removal algorithms for
GPT-splines. As applications, we present algorithms to con-
struct a GPT-spline surface from a quadrilateral mesh and to
simplify a tensor-product B-spline surface into a GPT-spline
surface with superfluous edges removal.

Keywords Splines · PHT-splines · T-meshes · Basis
function · Simplification

1 Introduction

Computer graphics and computer-aided design prefer para-
metric surfaces, especially tensor-product B-spline sur-
faces to represent free-form surfaces [5]. However, tensor-
product B-spline surfaces suffer from the major weakness
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that the control points must lie topologically in a rectangu-
lar grid which will induce many superfluous control points
in B-spline representations. Furthermore, local refinement
of B-spline surfaces by knot insertion will influence entire
rows or columns of the control grid. To overcome the prob-
lem, Forsey et al. introduced hierarchical B-splines [6–8].
Hierarchical B-splines were also studied by Kraft [9], who
constructed multilevel spline spaces which are a linear span
of tensor-product B-splines on different, hierarchically or-
dered grid levels. In order to eliminate most superfluous
control points and permit real local refinement, Sederberg
et al. [11, 12] invented the notions of T-splines. T-splines
support many valuable operations within a consistent frame-
work. The present authors introduced polynomial spline
spaces over T-meshes (PHT-splines) in [2], where the func-
tion on each cell is a bi-degree polynomial, and achieves
specified smoothness across the common edges. And we
further constructed basis functions for spline spaces over
hierarchical T-meshes and discussed their applications in
surface fitting and stitching in [3, 10].

The present paper generalizes the PHT-splines to arbi-
trary topology over general T-meshes with any structures
which have more flexibility in surface modeling and finite
element analysis. The main contributions of the present pa-
per include the following issues.

− Construct the basis functions for GPT-splines which
must be nest structures in former papers;

− Provide a general edge insertion and edge deletion al-
gorithm. In the former papers, we could only insert and
remove edges of the highest level directly;

− Define a unified interpolation scheme for arbitrary topol-
ogy T-mesh;

− Provide an algorithm to simplify a tensor-product
B-spline surface into a GPT-spline surface with super-
fluous edges removal.
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Although the bi-cubic spline surfaces have only C1

global continuity, they have excellent locality which makes
some operators, such as interpolation, approximation and
fairing, not involve a big linear system of constraints. Fur-
thermore, GPT-spline is always polynomial instead of ratio-
nal. Thus geometric computation with GPT-splines is sim-
pler and less costly. Furthermore, the local refinement does
not need a whole chain of additional refinement steps.

The remainder of the paper is organized as follows. Sec-
tion 2 recalls some preliminary knowledge about PHT-spline
surfaces. We construct the basis functions for GPT-splines
and describe the edge insertion and edge deletion oper-
ators in Sect. 3. Section 4 discusses a unified interpola-
tion scheme for GPT-splines. Section 5 provides a tensor-
product B-spline surface simplification algorithm, which ap-
proximates a given tensor-product B-spline surface with a
GPT-spline. In the end, Sect. 6 concludes the paper with
some summaries and future work.

2 Polynomial splines over T-meshes

In [2, 3], we provided the notions for spline over T-meshes
and the theory and application for the spline over special T-
meshes with nested structures. Given a T-mesh T ∈ R

2, let
F denote all the cells in T and Ω the region occupied by all
the cells in T . Define

S(m,n,α,β, T ) := {
s ∈ Cα,β(Ω)

∣∣ s|φ ∈ Pmn,∀φ ∈ F
}
,

where Pmn is the space of all the polynomials with bi-degree
(m,n), and Cα,β(Ω) is the space consisting of all the bivari-
ate functions which are continuous in Ω with order α along
s direction and with order β along t direction. It is obvious
that S(m,n,α,β, T ) is a linear space, which is called the
spline space over the given T-mesh T . According to Theo-
rem 4.2 in [2], it follows that

dim S(2α + 1,2β + 1, α,β, T )

= (α + 1)(β + 1)
(
V b + V +)

,

where V b and V + represent the number of the boundary ver-
tices and the interior crossing vertices, respectively. Here-
after, boundary vertices and interior crossing vertices are
called regular vertices.

For any function b(u, v) defined on the T-mesh, geo-
metric information at some parametric position (u0, v0) is
the function value, the first order partial derivatives and the
mixed partial derivative of b(u, v) at (u0, v0). If all these val-
ues are zero, we say that the function b(u, v) has geometric
information vanished at (u0, v0).

A T-vertex is called a share T-vertex of two adjacent faces
if the T-vertex belongs to both faces and lies in the inte-
rior of an edge of one face. For example, in Fig. 1, v3 is a
share T-vertex of faces F1 and F3. It is also a share T-vertex
of faces F2 and F3 but is not a share T-vertex of faces F1

and F2. Share-vertex is very important for construction of
basis functions.

3 Construction of basis functions

In [3], the authors constructed the basis functions for the
coarse tensor-product mesh first and then modified the ba-
sis functions level by level according to the mesh’s nested
structures. In this section, we construct a set of basis func-
tions for GPT-splines. The algorithm has several advantages
compared with that in [3].

− The method suits for any type of T-mesh which must
have nested structure in [3];

− The basis functions are represented in B-spline form,
which in [3] are represented in Bézier form. Only we
have almost 1/4 of the terms in this representation for
each basis function.

Suppose we are given a T-mesh such as that in Fig. 1a,
we can get a new T-mesh by extending all the T-vertices to

Fig. 1 A possible T-mesh and
the notations for basis functions
construction of v0
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the opposite edge (the red dashed lines in Fig. 1a). In the
new T-mesh, we assume all the knots with multiplicity two
and, at the vertex Vi , we can define four B-spline functions
Ni(u, v) = (Ni1(u, v),Ni2(u, v),Ni3(u, v),Ni4(u, v)) by
the knots for the four nearest regular vertices in four di-
rections. For example, the four B-spline functions associ-
ated with v2 are the four B-spline basis functions defined by
the knot sequences [s3, s3, s4, s4, s5, s5]×[t2, t2, t3, t3, t4, t4]
and those for v10 are the B-spline basis functions defined by
the knot sequences [s1, s1, s3, s3, s5, s5]×[t0, t0, t1, t1, t2, t2].
We also define the four basis functions for the new cross-
vertices by the T-vertices extension.

One observation is that Ni have geometric information
vanished at other vertices in the original T-mesh. The other
observation is that every basis function in S 1,1(T ) can be
represented as the linear combination of Ni . So the four ba-
sis functions bj (u, v) associated with the j th regular vertex
vj can be represented in the form

bj (u, v) =
∑

i∈L(j)

Ni(u, v)ci
j . (1)

Here bj (u, v),Ni(u, v) both are 1 × 4 vectors and ci
j is a

4 × 4 matrix. L(j) is a set of indices of the T-vertices which
have non-zero ci

j .
We compute bj (u, v) in the following four steps.

1. Forming set L(j) for the j th vertex;
2. Computing the geometric information at the j th vertex;
3. Computing the geometric information at other vertices;
4. Computing ci

j .

Forming L(j) (Step 1) We illustrate the algorithm for
computing L(j) with an example in Fig. 1. The algorithm
will check the vertex itself and its neighbor vertices recur-
sively. Figure 1 shows a T-mesh from which we wish to
compute the L(0) for basis function associated with basis
vertex v0. First, we add v0 into the set and check the four
neighboring vertices v1, v2, v3 and v4. As vi, i = 1,2,3,
are share T-vertices of two adjacent faces of edge v0vi , so
we add v1, v2, v3 into the set. In the iterative of checking v1,
v2, v3, we will add v5 and v10 into the set according to the
same fashion. In the next iterative, we will add v9 into the
set when we check vertex v5. The algorithm will terminate
when no new vertices will be added into the set when we
check the vertices added in the last iterative. All vertices in
L(0) are marked with black in Fig. 1b.

Computing the geometric information at the j th vertex
(Step 2) In this step, we first find a rectangle contain-
ing inside it all the vertices in L(j). Suppose the posi-
tion of the left-down and right-up points of the rectangle
are (u1, v1) and (u2, v2), the position for j th basis ver-
tex is (u0, v0); then the geometric information for bj (u, v)

Fig. 2 Two images of basis functions

at (u0, v0) is chosen to be that of the four B-spline func-
tions defined by knot sequences [u1, u1, u0, u0, u2, u2] ×
[v1, v1, v1, v1, v2, v2] at (u0, v0).

Computing the geometric information at other vertices
(Step 3) The other ci

j are computed by solving a linear
system which comes from the observation that two rows of
Bézier coefficients should be C3 along the edge if the mid-
dle point is a T-vertex. For example in Fig. 1, the geometric
information for v0, v3 and v10 should have four constraints.
This will give four linear functions for any T-vertex in Lj .
And the geometric information can be solved from this lin-
ear system by assigning the geometric information to be
vanished at other basis vertices.

Computing ci
j (Step 4) ci

j can be computed by interpolat-
ing the geometric information at each vertex according to
the given geometric information.

The above algorithm is very efficient since in general this
matrix of the linear system is almost diagonal. Figure 2 il-
lustrates an example for two basis functions over a T-mesh
without nested structure. So we cannot apply the method
given in [3] to construct the basis functions. The color lines
are the images of mapping the T-mesh to the surface with
moving a little in the normal direction.

The basis functions constructed have the following prop-
erties:

− Nonnegativity: This follows from the similar idea from
the Powell-Sabin splines [4].

− Partition of Unity: Notice that the sum of the four basis
functions bj (u, v) has the same geometric information as
identical function. From this follows that the basis func-
tions are a partition of unity.

− Local Support: The support of the basis functions is
the union of all the supports of the B-spline functions
Ni(u, v).

Given a T-mesh T , suppose the basis functions are
{bj (u, v)}, j = 1, . . . ,N , here N is the number of the ba-
sis vertices. Then a spline surface over T can be defined
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as

S(u, v) =
N∑

j=1

Cj bj (u, v), (2)

where Cj are control points associated with the j th basis
vertex.

3.1 Edge insertion and edge deletion

Local refinement is the most important operator for splines,
which is corresponding to the edge insertion operator for
splines over T-meshes. Edge deletion is the inverse operator
of the edge insertion. In this section, we will discuss the gen-
eral edge insertion and deletion algorithms for spline surface
S(u, v) in the form of (2).

Suppose we insert an edge into T-mesh T and get a new
T-mesh T 1. Edge insertion means how to define the surface
S(u, v) over the T-mesh T 1.

The first step of the operation is to construct the basis
functions for the new T-mesh. Without loss of generality,
suppose the edge insertion leads to one new basis vertex
vnew. First we can construct the basis functions for the new
basis vertex according to Sect. 3. Suppose the four new ba-
sis functions are ni(u, v), i = 0, . . . ,3. Then for any exist-
ing basis function bk

j (u, v), it will be replaced by b̂k
j (u, v) =

bk
j (u, v) − ∑3

i=0 λini(u, v). Here λi ’s satisfy the condition

that bk
j (u, v) and

∑3
i=0 λini(u, v) have the same geometric

information at vnew. So b̂k
j (u, v) will have geometric infor-

mation vanished at vnew. We show a modification of one ba-
sis function with some edge insertion in Fig. 3.

The second step is to modify the control points. Here we
just compute the new control points and keep the existing
control points unchanged. First, we compute the geometric
information of S(u, v) at the new basis vertices and then in-
terpolate this geometric information to get the new control
points.

Edge deletion is the inverse operator of the edge inser-
tion. Suppose the T-mesh after an edge removal is T 2 and
the corresponding spline space is S 2. Since edge deletion is
not an exact operator, there are many opinions how to define
the surface after edge being removed. The opinion we use
here is to keep the geometric information at all the existing
basis vertices unchanged.

Fig. 3 The modification of one basis function with general edge inser-
tion operator

As we have mentioned, some basis vertices will disap-
pear with an edge being removed. When an edge is removed,
three cases may appear according to the number of removed
basis vertices. In the first case, two T-junctions disappear
and in this case the spline surface is kept unchanged with the
edge removal. In the second or third case, respectively one
and two basis vertices disappear after the edge removed.

For any basis function B(u, v), suppose the modification
of B(u, v) in the new spline space is R(u, v).

If the deleted edge belongs to the first case, we apply
an inverse Bézier subdivision in [5] directly to compute the
Bézier ordinates for R(u, v) in T 2 from B(u, v).

If the deleted edge belongs to the second case, a basis ver-
tex v disappears when we delete the edge. Suppose the four
basis functions associated with v are bk(u, v), k = 0, . . . ,3.
For any other basis function B(u, v) ∈ S 1, since R(u, v) ∈
S 1, R(u, v) is a linear combination of all the basis functions
of S 1. Here we let all the coefficients be zero except those of
B(u, v) and bk(u, v). We also let the coefficient of B(u, v)

be one. So there exist constants λk , k = 0, . . . ,3, such that

R(u, v) = B(u, v) +
3∑

k=0

λkbk(u, v). (3)

As R(u, v) is C3 along the removed edge, so (3) is equiv-
alent to a system of linear equations with four unknowns
λk , k = 0, . . . ,3. It is evident that the linear system has a
solution. Now we will prove that the linear system has a
unique solution. In fact, suppose αk and βk are two solu-
tions for the linear system, R1(u, v) and R2(u, v) are cor-
responding basis functions; then according to the interpo-
lation theorem, we have R1(u, v) = R2(u, v). That means∑3

k=0(α
k − βk)bk(u, v) = 0. So αk = βk .

If the deleted edge belongs to the third case, two basis
vertices disappear when we delete the edge. Suppose the
eight basis functions associated with the two basis vertices
are bk(u, v), k = 0, . . . ,3 and ck(u, v), k = 0, . . . ,3, respec-
tively. Then there exist constants λk , k = 0, . . . ,3, and μk ,
k = 0, . . . ,3, such that

R(u, v) = B(u, v) +
3∑

k=0

λkbk(u, v) +
3∑

k=0

μkck(u, v). (4)

Similarly, (4) is equivalent to linear systems with λk and μk

being respectively unknowns. According to the dimension
formula, the solutions of these linear systems also exist and
are unique.

In both cases, we can compute the Bézier ordinates for
R(u, v) in T 1. It is easy to compute the Bézier ordinates
for R(u, v) in T 2 according to Bézier subdivision algorithm
in [5].

We show a modification of one basis function with some
edge removal in Fig. 4.
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Fig. 4 The modification of one basis functions with general edge re-
moval operator

Fig. 5 A possible T-mesh in R3

4 Arbitrary topology PHT-spline

However, the GPT-splines defined in the previous section
can only model objects with simple topology. In this sec-
tion, we will define an arbitrary topology G1 GPT-spline
by generalizing the interpolation algorithm to extraordinary
vertices.

A T-mesh T ∈ R
3 is a mesh with all faces to be quadrilat-

eral, which allows for T-junctions (T-vertex); see Fig. 5 for
an example. The basic elements for a T-mesh are vertices,
edges and faces. The grid point in a T-mesh is also called
vertex of the mesh. The number of edges incident to the ver-
tex is also referred to as the valence of the vertex. Each face
Fi corresponds to a rectangle domain ci in R

2 whose width
and length are assigned to the corresponding edges. We also
call them the knot interval for the edge. The knot intervals
on the opposite edges of a face should be the same. The ex-
traordinary vertex (the black vertices in Fig. 5) is ineluctable
for arbitrary topology spline surface. A face Fi is called ex-
traordinary face if the face has some extraordinary vertices:
F0 in Fig. 5 is an extraordinary face. In the present paper,
regular vertex and extraordinary vertex are called basis ver-
tices.

A G1 GPT-spline surface over the T-mesh T ∈ R
3 is a

collection of maps Φ|ci
= φi : ci �→ R

3, such that φi and φj

are in tangent plane continuity if Fi and Fj are adjacent.
Let gk and hk be two independent unit orthogonal vectors

lying in the tangent plane of Φ at vk, k = 0,1, . . . ,N ; then
the following interpolation problem can be considered for
GPT-splines. Given a set of values or vectors f j , f

j
u , f

j
v for

Fig. 6 Local refinement (red edge in the second picture) to make any
two extraordinary faces have no share T-junctions

extraordinary vertices Vj and f i, f i
u, f i

v , f i
uv for other basis

vertices Vi , find Φ|ci
= φi such that

1. Φ(Vi) = f i,Dgi
Φ(Vi) = f i

u,Dhi
Φ(Vi) = f i

v ,

Dgihi
Φ(Vi) = f i

uv for regular vertices Vi ,

2. Φ(Vj ) = f j ,Dgj
Φ(Vj ) = f

j
u ,Dhj

Φ(Vj ) = f
j
v for ex-

traordinary vertices Vj .

In the next section, we will express the maps Φ in Bézier
form according to the geometric information at all the ver-
tices.

4.1 Bézier forms

In this section, we will express the map Φ in Bézier form ac-
cording to the geometric information at all the vertices. We
do not need to separate the extraordinary vertices and all the
maps can be computed by a unified interpolation scheme. In
the scheme, φi are bi-cubic polynomial maps except those
for extraordinary faces, which are bi-quintic maps.

Because the maps have different degrees, not all T-
meshes are acceptable T-meshes for the scheme. A T-mesh
is acceptable T-mesh if any two extraordinary faces have no
share T-vertices. Any T-meshes can turn to be acceptable T-
meshes by local refinements. For example in Fig. 6, T-vertex
V2 is a share T-vertex of extraordinary faces F1 and F2, so it
is not an acceptable T-mesh. But we can make some refine-
ments such as those in the right picture, and turn it into an
acceptable T-mesh. In the following, we assume that all the
T-meshes are acceptable T-meshes.

The construction mainly contains two steps.

Step 1: Define a bi-cubic map for each face
The bi-cubic Bézier form for φi which corresponds to

the face without extraordinary vertices is very easy to com-
pute since we have known the local geometric information
for each corner and the basis functions for each regular ver-
tex. However, we should have different rules for the maps
corresponding to the extraordinary faces because we do not
have mixed partial derivatives. We will illustrate the equa-
tions for the initial bi-cubic maps according to Fig. 7. In the
figure, V is a valence n vertex with n neighboring vertices
Vi with the valence ni . The knot interval for edge V Vi is
respectively ai .
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Fig. 7 The notations for G1

smoothness of a map
corresponding to the
extraordinary face

According to the geometric information at the vertices,
we can determine the Bézier control points C, Ai and Di .
The only undermined Bézier control points for the initial bi-
cubic maps are those associated with the twist vector at the
extraordinary vertices such as Bi in Fig. 7.

Denote bi(t) =
{

2 cos 2π
n

(1 − t) − 2 cos 2π
ni

t, if ni �= 4;
2 cos 2π

n
(1 − t)2, else;

and

Ui = b
′
i (0)

Ai − C

ai

+ bi(0)
Di − 2Ai + C

a2
i

.

Here b
′
i (t) is the first derivative of bi(t). Then we can com-

pute Bi by the following equation:

Bi = Ai + Ai+1 − C + aiai+1

(
Ui

4
+ Ui+1

4

)
. (5)

We have computed all the bi-cubic Bézier control points
for the maps which interpolate all the geometric information
at the basis vertices. However, the maps corresponding to the
extraordinary faces are not in tangent continuity. So the next
step is to smooth the maps to be in tangent continuity by
perturbating the next two rows of Bézier control points.

Step 2: G1 smoothness for the extraordinary vertex
Suppose the next two rows of Bézier control points for

the maps adjacent to edge V Vi are labeled as in Fig. 7b.
The black control points are determined by the local geo-
metric information which will be kept unchanged. The main
process of G1 smoothness is listed below.

1. Compute P2 and P3 according to the following equa-
tions:

P2 = 2P1 − C + a2
i

bi(0)

(
Ui−1 + 2Ui + Ui+1

4

− b′
i (0)(P1 − P0)

ai

)
;

if ni = 4,

P3 = P2 + P4 − P1

2
− P5 − P0

10
.

Otherwise, P3 is computed by the similar equations,
as P2.

2. Denote P(t), Q(t) and R(t) three quintic Bézier curves
with control points Pi , Qi and Ri , respectively. Let V (t)

be a cubic Bézier curve with control points Q0 − R0,
5(Q1−R1)

3 − 2(Q0−R0)
3 , 5(Q4−R4)

3 − 2(Q5−R5)
3 and Q5 − R5.

Then Q(t) and R(t) be linear combination of P(t)

and V (t):

Q(t) = P(t) + ai+1ai−1bi(t)P
′
(t)

5(ai+1 + ai−1)ai

+ ai+1

ai+1 + ai−1
V (t),

R(t) = P(t) + ai+1ai−1bi(t)P
′
(t)

5(ai+1 + ai−1)ai

− ai−1

ai+1 + ai−1
V (t).

The two maps are G1 because

Q(t) − P(t)

ai+1
+ R(t) − P(t)

ai−1
= bi(t)P

′
(t)

5ai

. (6)

Why we use bi-quintic maps instead of bi-cubic maps
[10] is for the following two reasons. The first is that we
cannot control the geometric information at extraordinary
vertices if we use bi-cubic. And the second is that the bi-
cubic maps will give very bad result for higher-order saddle
points of an even valence (for example, the valence 6 extra-
ordinary vertex in Fig. 10b). However, it looks pretty good
for higher-order saddle points of an even valence if to use
the bi-quintic maps.

4.2 Spline surface from quadrilateral mesh

A direct application of GPT-spline is to construct a smooth
spline surface from a given 2-manifold mesh in R

3 with
quadrilateral faces of arbitrary topological genus. This can
be achieved by interpolating the local geometric informa-
tion at the basis vertices, which can be estimated from the
mesh.
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Fig. 8 The mask for local geometry estimator at regular vertex

Fig. 9 An extraordinary vertex

For a regular vertex, we can estimate the local geometric
information by traditional B-spline theory. The masks are
illustrated in Fig. 8. For a valence n, extraordinary vertex C

which is surrounded by Ai and Bi is illustrated in Fig. 9. The
position F of the surface at C is defined as the limit position
of Catmull–Clark subdivision

F = n

n + 5
C + 4

n(n + 5)

n−1∑

i=0

Ai + 1

n(n + 5)

n−1∑

i=0

Bi. (7)

Fu and Fv are defined to make the normal of the surface
to be the same as that of Catmull–Clark subdivision:

Fu = 2

n(2 + ωn)

n−1∑

i=0

(
ωn cos

(
2iπ

n

)
Ai

+
(

cos

(
2iπ

n

)
+ cos

(
2(i + 1)π

n

))
Bi

)
,

Fv = 2

n(2 + ωn)

n−1∑

i=0

(
ωn sin

(
2iπ

n

)
Ai

+
(

sin

(
2(i + 1)π

n

)
+ sin

(
2iπ

n

))
Bi

)
.

Here ωn = 1 + cos( 2π
n

) + cos(π
n

√
2(9 + cos( 2π

n
))).

Figure 10 illustrates several examples for constructing
spline over T-mesh form the given quadrilateral meshes.

5 B-spline surface simplification

Surface fitting with tensor-product B-spline surfaces might
have many superfluous control points or surface patches.
This section presents an algorithm for converting a tensor-
product B-spline surface into a PHT-spline surface within a
given tolerance according to the edges removal operator.

Cardon [1], Deng et al. [3] and Sederberg et al. [12] dis-
cussed the B-spline surface simplification with T-splines and
PHT-spline using iterative refinement. However, the iterative
refinement method has the following disadvantages. First,
it is dependent on the mesh topology. So it is not a triv-
ial task to extend the method for arbitrary topology surface.
Second, it is not general to simplify a rational B-spline sur-
face. Third, it is not easy to simplify the given region of
the given surface. In this section we will discuss the surface
simplification algorithm based on iterative edges removal al-
gorithm.

Simplification algorithm involves two non-trivial tasks:
how to estimate the error and how to select the candidate
edge removal. The solution presented here does not produce
the result with fewest surface patches that fall bellow the
given tolerance. Since in general the models may have sev-
eral thousands of surface patches, it is intractable to make
an exhaustive search. However, the surface will exactly fall
under the given tolerance and it works on rational surface
and arbitrary topology mesh.

The error estimator for edge removal is based on the dif-
ference between the control points of the surface before
and after edge removal. Suppose a spline surface S(u, v)

will become Ŝ(u, v) with the N th vertex being deleted, and
the basis functions for the j th basis vertex are b̂k

j (u, v).

As Ŝ(u, v) = ∑N−1
j=1

∑3
k=0 Ck

j b̂
k
j (u, v), Ŝ(u, v) can be repre-

sented by basis functions {bk
j (u, v)}, j = 0, . . . ,N , as well.

Suppose it has the form

Ŝ(u, v) =
N−1∑

j=1

3∑

k=0

Ck
j b

k
j (u, v) + Dk

Nbk
N(u, v).
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Fig. 10 Several GPT-spline
surfaces from quadrilateral
meshes

So the difference between the surfaces is

∣∣S(u, v) − Ŝ(u, v)
∣∣ =

3∑

k=0

∥∥Ck
N − Dk

N

∥∥bk
N(u, v)

≤ max
0≤k≤3

∥∥Ck
N − Dk

N

∥∥.

This equation provides the approximation error estima-
tion between the original surface and the approximation
surface after the edge removal. In fact, the above equa-
tion demonstrates the smoothness between the polynomial
patches on the two adjacent cells of the removed edge. Since
the surface is polynomial in each cell, an edge can be re-
moved if and only if the surface is C3 or almost C3 along
the edge.

In considering the task for selecting the candidate edges
removal, we focus on two desirable properties for the sim-
plification T-meshes. First, the resultant mesh should have
a uniform structure that is more intuitive to human users.
Second, it will produce the simplest structure T-mesh if the
given tolerance is big enough. To meet these goals, we per-
form the following steps.

In the simplification algorithm, we have two basis opera-
tors, poly-edge removal and vertex removal. A poly-edge is a
set of edges which satisfy the following properties. Suppose
an edge belongs to a poly-edge with two end points A and
B; if A or B is a valence 4 vertex, then the opposite edge for
vertex A or B also belongs to the poly-edge. For example,
in the mesh of Fig. 11, the yellow, red and the dashed lines
are all poly-edges. A poly-edge removal operator is to check
the whole poly-edge and remove all the possible removable
edges from the poly-edge.

Since poly-edges in a mesh are very complicated, we pro-
vide a local simplification operator, vertex removal operator.
Vertex removal is a local operator to check the four edges
which contain the vertex and remove the removable edges.
This operator will modify the maps associated with the four
neighboring faces.

Fig. 11 The poly-edge for a mesh. The yellow, red and the dashed
lines are all poly-edges for the mesh, and the right picture is a possible
removal result for the dashed poly-edge

Table 1 Simplification data

Original Error (1.0%) Error (1.4%)

Fig. No. (Patch) No. (Patch) No. (Patch)

12.1 8280 713 387

12.3 648 49 35

B-spline surface simplification algorithm

1. Represent the B-spline surface with the polynomial
spline surface over T-mesh according to the interpolation
theorem. Set all the edges unchecked.

2. Remove poly-edges under the current tolerance one by
one.

3. Remove unchecked cross-vertices.

We present some examples to illustrate the effect of the al-
gorithm. Each of these examples can be computed within
twenty seconds on a personal computer with Pentium 4 CPU
3.20 GHz and 1.0 GB RAM. Table 1 give the numbers of
the bi-cubic patches for different errors. We also provide the
T-mesh structure of simplification result of the first example
in Fig. 13.
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Fig. 12 Several examples of B-spline surface simplification

Fig. 13 The mesh structure of the simplification of Fig. 12 example 1

6 Conclusions and future work

The paper generalizes the PHT-splines to arbitrary topology
over general T-meshes with any structure. GPT-spline sur-
faces can be constructed through a unified scheme to inter-
polate the local geometric information at the basis vertices.
We also discuss the general edge insertion and removal al-
gorithms for GPT-splines. As applications, we present al-
gorithms to construct a GPT-spline surface from a quadri-
lateral mesh and simplify a tensor-product B-spline surface
into a GPT-spline surface by edges removal algorithm. The
method is simple and straightforward for implementation.
It is evident that all the processes can be generalized to
GPT-spline of higher degrees.

There exist a number of problems for future research.
For example, how to compute the dimension of the spline
space S(3,3,2,2, T ) over general T-meshes or hierarchical
T-meshes T , and how to construct the basis functions for the
spline space? And what is the relationship between T-splines
and GPT-splines?
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