
Li X, Huang ZJ, Liu Z. A geometric approach for multi-degree spline. JOURNAL OF COMPUTER SCIENCE AND

TECHNOLOGY 27(4): 841–850 July 2012. DOI 10.1007/s11390-012-1268-2

A Geometric Approach for Multi-Degree Spline

Xin Li1 (� �), Zhang-Jin Huang2 (���), and Zhao Liu1 (� �)

1School of Mathematical Science, University of Science and Technology of China, Hefei 230026, China
2School of Computer Science, University of Science and Technology of China, Hefei 230026, China

E-mail: {lixustc; zhuang}@ustc.edu.cn; zhaoliu@mail.ustc.edu.cn

Received January 17, 2011; revised May 2, 2012.

Abstract Multi-degree spline (MD-spline for short) is a generalization of B-spline which comprises of polynomial segments
of various degrees. The present paper provides a new definition for MD-spline curves in a geometric intuitive way based on
an efficient and simple evaluation algorithm. MD-spline curves maintain various desirable properties of B-spline curves, such
as convex hull, local support and variation diminishing properties. They can also be refined exactly with knot insertion.
The continuity between two adjacent segments with different degrees is at least C1 and that between two adjacent segments
of same degrees d is Cd−1. Benefited by the exact refinement algorithm, we also provide several operators for MD-spline
curves, such as converting each curve segment into Bézier form, an efficient merging algorithm and a new curve subdivision

scheme which allows different degrees for each segment.

Keywords spline, B-spline, multi-degree spline, merging

1 Introduction

Non-uniform rational B-splines (NURBS) have been
used for modeling free-form curves or surfaces as an
industrial standard. In computer-aided design (CAD)
models, besides higher degree free-form patches, there
are also lots of lower degree primitives, such as planes,
spheres, cylinders and cones. In order to create a model
with both higher degree free-form patches and lower de-
gree primitives, one can represent the model with sepa-
rate patches of different degrees. However the model is
not mathematically watertight which will create gaps
if we modify any part of the model. One can also
represent each lower degree part with a higher degree.
However it needs more control points and any modifi-
cation to the primitives will make them no longer to
be primitives. A better approach is to define a new
spline which allows different degrees for each patch or
segment. We call it “multi-degree spline”, or “MD-
spline”. With MD-spline, it is possible to define a wa-
tertight arbitrary topology spline surface with different
degrees. For the purposes, several important require-
ments for MD-splines include:

NURBS Compatible. MD-splines should be generali-
zations of B-splines, i.e., MD-splines specialize to B-
splines in the case when all patches or segments are of

the same degree;
Locally Constructed. To construct an arbitrary

topology surface, one can use the subdivision surface[1]

or patching with piecewise polynomial patches[2]. Both
approaches locally construct the surface from a control
grid with knot intervals. Thus for MD-spline, it is desir-
able to construct the MD-spline basis functions directly
from the control grid using the local information (de-
grees and knot intervals);

Geometric Intuitive. MD-splines have a new para-
meter, degree, to modify the shape besides weights,
knot intervals, and control points. So we should have a
simple and intuitive way to assign and modify degrees.

The goal of this paper is to develop a simple ap-
proach to MD-spline curve, which is the first step for
our ultimate goal. Given a control polygon with de-
grees and knot intervals, our algorithm can construct a
smooth spline curve with the specified degrees.

In the following, we only focus on polynomial MD-
spline curves since it is straightforward to generalize
them to rational case. Note that when we consider ra-
tional form as its homogeneous one, there is not any
difference between polynomial form and rational form.
This is because polynomial curve is a curve with control
points in R

3, while rational form is with control points
in R

4.
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1.1 Prior Work

The splines with variable degrees were first con-
structed for shape-preserving interpolation in [3-5].
And later, a kind of two-degree-spline basis function
is constructed in the process of degree elevation of B-
spline curves in [6].

The very promising results for MD-splines were pre-
sented recently[7-8]. The authors constructed a set of
basis functions for MD-spline spaces where continuity
between two adjacent curve segments with degrees d1

and d2 could be Cmin(d1,d2)−1 or Cmin(d1,d2) respec-
tively.

Given a knot vector T = {ti} and the degree se-
quence G = {di} and let D be the maximal degree. For
n = 0; 1; . . . ; D, they use an iterative process to gene-
rate a function sequence {Ni,n(t)}i=+∞

i=−∞ over T and G.
The final sequence {Ni,n(t)}i=+∞

i=−∞ are the basis func-
tions over T and G.

Ni,n(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if di < D − n,{
1, if t ∈ [ti, ti+1),

0, otherwise,
if di = D − n,

∫ t

−∞
Ii,n−1(s)ds, if di > D − n.

(1)
Here

Ii,n−1(s) = δi,n−1Ni,n−1(s) − δi+1,n−1Ni+1,n−1(s),

and δi,n = (
∫ +∞
−∞ Ni,n(t)dt)−1.

Noticed that in the construction, there are two global
parameters D and δi,n. Here δi,n is extremely difficult
to compute with different degrees. Thus, one has to
compute the coefficients δi,n before the definition of
basis functions and any changes to the degrees need
recompute the coefficients.

Moreover, we cannot apply the approaches in [7-8]
to the input of a control polygon with degrees and knot
intervals. This is because we should first define a spline
space according to the degrees and knot intervals such
that the dimension of the spline space is the number
of control points. However, this is not always feasible.
For example in Fig.1, the periodic curve includes four
segments. However, the dimensions for the spline space
defined in [7-8] are 8 and 4 respectively which are dif-
ferent from the number of control points, 5.

[9] provides an approach to MD-spline which has
the same input as ours. It explicitly defines the Bézier
control points for each segment according to the con-
straints on continuity and degrees. Since there is no
general rule, the approach is restricted in degree one,
two and three. Thus, the authors in [9] left several
interesting questions for MD-splines on knot insertion

and evaluation with recurrence relations.

Fig.1. Knot interval for MD-spline curves.

For these reasons, we need find some new method
to define MD-splines in order to achieve our ultimate
goal.

1.2 Contribution

In the present paper, we provide a new definition
by a de Boor-like evaluation algorithm. We prove that
MD-spline defined in this way can be refined exactly
with knot insertion. We also prove that the continuity
between two adjacent segments with different degrees
is at least C1 and the continuity between two adjacent
segments of same degrees d is Cd−1. MD-splines main-
tain many desirable properties of B-spline curves, such
as convex hull, local support and variation diminish-
ing properties. Compared with the approach in [9], our
approach has several advantages.

• Our approach has an exact knot interval splitting
algorithm, i.e., we can refine the curve exactly by knot
insertion.

• Our approach is based on a de-Boor-like evaluation
algorithm, however [9] has to convert each segment into
Bézier form.

• Unlike the approach in [9], ours has no restriction
on the degrees.

A Chinese character “Tian” is represented with an
MD-spline of 29 control points in Fig.2 which includes
6 cubic curves segments, 22 quadratic curves segments
and 11 linear curves segments. However, if we repre-
sent the font with B-splines, we need 87 control points,
which is illustrated in Fig.2(b).

1.3 Overview

The remainder of the paper is constructed as follows.
Section 2 provides some preparations for our construc-
tion. The de Boor-like evaluation algorithm for MD-
spline is discussed in Section 3. And then we provide
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Fig.2. Chinese character “Tian”” with MD-splines (a) and B-

splines (b) respectively.

knot insertion algorithm and apply the algorithm for
Bézier extraction and knot removal. In Section 5, we
provide some applications, including merging and MD-
subdivision algorithm. The final section is the conclu-
sion and future work.

2 Preparations

A knot interval[9] is the difference between two ad-
jacent knots in a knot vector, which represents the pa-
rameter length of a curve segment. In conventional B-
splines, knot intervals are assigned to vertices for even
degree splines and assigned to edges of the control poly-
gon for odd degree splines. Knot intervals are basically
just an alternative notation for representing knot vec-
tors, but knot interval notation is more closely coupled
to the control polygon and has more geometric mean-
ing. Fig.3 shows two simple knot interval examples for a
quadratic curve and a cubic curve. As our ultimate goal
is to construct watertight arbitrary topological surface,
we use knot intervals instead of knot vectors.

Fig.3. Knot interval for B-spline curves. (a) Even degree. (b)

Odd degree.

Same as B-splines, each non-zero knot interval cor-
responds to a curve segment. But in MD-splines, curve
segments are not required to all that have the same
degree and so each knot interval carries a superscript
which specifies the degree of its corresponding curve
segment, see Fig.1.

Suppose T = {ki}m
i=0 is a non-negative real number

sequence for knot interval and D = {di}m
i=0 is a

bounded positive integer sequence for degrees. We as-
sume the vertices of the control polygon are Pi, i =
0, . . . , n and edges are Ei with two end points Pi and
Pi+1. Before stating the construction, we define some
terminology.

Definition 1 The support edges of a degree di knot
interval ki are di connected edges. Denote the first in-
dex of the support edge as si for the i-th knot inter-
val, then the support edges are Esi , . . . , Esi+di−1. Here
si = j − �d

2�, if the knot interval is assigned for vertex
Pj (if di is even) or edge Ej (if di is odd). A knot in-
terval is contribution interval of an edge if the edge is
a support edge of the knot interval,

The degree assignment for the MD-spline in the
present paper is constrained by the following rules.

Rule for Degree Assignment. If kb and ke, (b < e)
are contribution intervals for edge Ei, then kj , j =
b + 1, . . . , e − 1 are also the contribution intervals for
the edge Ei.

The constraint may seem a little strange. In fact,
we can illustrate this by a simple example in Fig.4. For
two adjacent curve segments, the edge P0P1 is the sup-
port edge for the knot interval 24, and it should also be
the support edge for all the inner knot intervals, such
as 11. However, this is not the case for Fig.4(a). But
if we assign the knot interval 11 to edge P0P1 such as
that in Fig.4(b), then it is a valid one.

Fig.4. Explanation about the constraint. (a) Invalid assignment.

(b) Valid assignment.

More precise, for two knot intervals ki, ki+1,
1) If both di and di+1 are even and ki is assigned for

vertex Pj and ki+1 is assigned for vertex Pk, then

2(j − k) � di − di+1 � 2(k − j);

2) If di is even and di+1 is odd, and ki is assigned
for vertex Pj and ki+1 is assigned for edge Ek, then

2(j − k) − 1 � di − di+1 � 2(k − j) + 1;

3) If di is odd and di+1 is even and ki is assigned for
edge Ej and ki+1 is assigned for vertex Pk, then

2(j − k) + 1 � di − di+1 � 2(k − j) − 1;



844 J. Comput. Sci. & Technol., July 2012, Vol.27, No.4

4) If both di and di+1 are odd and ki is assigned for
edge Ej and ki+1 is assigned for edge Ek, then

2(j − k) � di − di+1 � 2(k − j).

In the rest of the paper, we assume the sequence T
will always be a knot interval sequence and the sequence
D will always be a degree sequence of T satisfying the
constraint above. Suppose si is the index of the first
support edge for the i-th knot interval, and the indices
of the contribution intervals for edge Ei are from bi to
ei (bi < ei), i.e., edge Ei is the support edge of the knot
intervals kj , j = bi + 1, . . . , ei. Besides, we define a set
of real parameters by t0 = 0 and tj =

∑j
i=0

ki

di
.

3 Evaluation Algorithm

An MD-spline curve in present paper is defined by
a de Boor-like evaluation algorithm (shown in Fig.5)
from the given control polygon with a specified degree
sequence D and a knot interval sequence T .

Require: An MD-spline control polygon with
degrees and knot intervals and a parameter
t, 0 � t � ki for the i-th curve segment

Ensure: Point on MD-splines at t

1: t←− ti +
t

di
2: for j = 0 to di do
3: R0

j ←− Psi+j

4: end for
5: for j = 1 to di do
6: for k = 0 to di − j do
7: beg = bsi+j+k−1

8: end = esi+k

9: δ =
t− tbeg

tend − tbeg
10: Rj

k = Rj−1
k+1 × δ + Rj−1

k × (1 − δ)

11: end for
12: end for

13: return R
di
0

Fig.5. Evaluation algorithm for MD-splines.

The key idea is that a degree di curve segment is
contributed by di + 1 control points. We can specify
these control points similar to B-splines. If the degree
is even and assigned for vertex Pj or the degree is odd
and assigned for edge Ej , then we specify the points
to be Psi , . . . , Psi+di , here si = j − �di

2 �. And then we
can compute the point on the curve segment at some
parameter with di-level affine combination of these con-
trol points. The challenge of the approach is how to set
the coefficients for affine combination such that we can
smoothly connect all the curve segments and refine exa-
ctly by knot insertion.

We can see that our algorithm is very similar to tra-
ditional de Boor algorithm for B-spline except two main
differences. First, the contribution intervals for each
edge are different from those for B-splines which have
fixed patterns. Second, the ratio for splitting each edge
segment is different from that for B-spline, which is also
considered with the degrees (tj is associated with the
degree for each curve segment).

Remark 1. For each knot interval ki, it is the con-
tribution interval for edge Ej , j = si, . . . , si + di − 1.
For any j = si, . . . , si + di − 1, bj < i � ej. Thus, in
lines 7 ∼ 10 in the algorithm, the indices beg is always
less than end.

Remark 2. If we let Pi be one and all the other
control points be 0 and then we can define a blending
function Bi which can be regarded as the i-th basis func-
tion for MD-spline (the linear independency of these
blending functions will be proved in the next section in
Theorem 2). According to the definition of MD-spline,
the basis functions satisfy all the basic properties of B-
spline, such as non-negative, partition of unity, local
support and convex hull.

In the following, we provide a simple example in
Fig.6 to calculate the point at t = 2

3 for the knot inter-
val 23. The support edges for the knot interval are e0,
e1 and e2. And for edge e0, the contribution intervals

Fig.6. Illustration of the de Boor-like algorithm for the first example in Fig.8. (b) shows the pyramid diagram for an evaluation of

cubic curve segment. CP: control point.
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are 12, 13 and 23. So in the first iterator,

R1
0 =

2
3
(1 − t)

1
2

+
1
3

+
2
3

P0 +

1
2

+
1
3

+
2
3
t

1
2

+
1
3

+
2
3

P1

=
8
27

P0 +
19
27

P1.

And we can compute R1
1 and R1

2 in the similar fas-
hion.

Then we can compute R2
0, R2

1 in the second itera-
tion. For example, for R2

0, the contribution intervals
for the edge are 13 and 23, so

R2
0 =

2
3
(1 − t)

1
3

+
2
3

R1
0 +

1
3

+
2
3
t

1
3

+
2
3

R1
1 =

2
9
R1

0 +
7
9
R1

1.

In the third and last iterations,

R3
0 = (1 − t)R2

0 + tR2
1 =

1
3
R2

0 +
2
3
R2

1,

which is the point of the MD-spline curve at the para-
meter. The process is illustrated in Fig.6 with different
colors on each level.

Fig.7 is one more font example of MD-spline with our
new de Boor-like algorithm. The font includes seven cu-
bic curve segments, nine quadratic curve segments and
six linear curve segments.

Fig.7. Font “G” is represented with MD-spline.

MD-splines have advantages of decreasing the num-
ber of control points for the same objects. Fig.8 shows
more examples with MD-splines. The first one in
Fig.8(a) is comprised of three cubic curve segments,
three quadratic curve segments and one linear segment.
The dots on the curves indicate junction points between
adjacent curve segments. The second one shows an MD-
spline comprised of three cubic segments and one linear
segment. In this case, the cubic segments are C1 with
the linear segment and C2 with the other cubic seg-
ments. The third one shows an MD-spline with four
cubic segments and one quadratic curve segment. All
pairs of neighboring curve segments are C1 while neigh-
boring cubic segments are C2. The second and third

rows show the corresponding representations with B-
splines and Bézier form.

Fig.8. (a) MD-splines curves with four control points, where knot

intervals are same as those in [9]. (b) Corresponding B-splines

representation with 14, 8, 10 control points. (c) Corresponding

Bézier representation.

4 Knot Insertion Algorithm

Knot insertion in terms of knot intervals can be
thought of as splitting a knot interval into two knot
intervals with the same degree. In this section, we pro-
vide the knot insertion algorithm (shown in Fig.9) for
MD-spline which is very similar to that for traditional
B-spline.

Require: An MD-spline control polygon with
degrees and knot intervals and a parameter
t, 0 � t � ki in the i-th curve segment

Ensure: A new MD-spline control polygon
1: Insert all the control points and assign the

knot intervals and degrees
2: t←− ti + t

di

3: for j = 0 to di − 1 do

4: Qsi+j = Psi+j ×
t−tbj

tej
−tbj

+ Psi+j−1 ×
tej

−t

tej
−tbj

5: end for

Fig.9. Knot insertion algorithm for MD-splines.

Suppose we have an MD-spline curve with a control
polygon Pj , j = 0, . . . , n, a knot interval sequence T
and a degree sequence D. We want to split knot inter-
val ki with degree di into two intervals t and ki − t for
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t ∈ [0, ki] with both degree di. The algorithm is listed
as below.

In line one, for each edge Ej , j = si, . . . , si + di − 1,
we insert new control points Qj. If di is odd and is as-
signed for edge Ek, then we assign edge Qk−1Qk knot
interval t and assign edge QkQk+1 knot interval ki − t.
If di is even and is assigned for edge Pk, then we as-
sign vertex Qk−1 knot interval t and assign vertex Qk

with knot interval ki − t. The other knot intervals and
degrees are replicated from the origin control polygon.

We illustrate the algorithm with the example in
Fig.10, in which we split the knot interval 23 into two
knot intervals t = 2

3 and 4
3 with the same degree. In the

example of Fig.10, the new control points are inserted
on the t = 2

3 of the way along each segment correspond-
ing to knot intervals 23, such as Q0, Q1 and Q2. Edges
Q0Q1 and Q1Q2 will be assigned knot intervals 2

3 and
4
3 respectively. Fig.10(b) is the MD-spline curve with
the new control polygon after knot insertion.

Fig.10. Illustration of exact refinement algorithm for the first

example in Fig.8.

The following theorem proves that the MD-spline
curves defined by the control polygons after and before
knot insertion are identical curves. We call it exact
refinement property.

Theorem 1 (Exact Refinement). The curve derived
from the control polygon after knot interval splitting al-
gorithm is identical as the curve from the initial control
polygon before refinement.

Proof. Referring to Fig.11, suppose we split the k-th
curve segment P (u), u ∈ [0, kk] into two curve segments
with knot interval Δ and kk −Δ. Without loss of gene-
ralization, we assume the contribution control points
for the curve segment are P 0

i , i = 0, 1, . . . , dk. Denote
the curve segment associated with knot interval Δ is
Q(u), u ∈ [0,Δ] and the associated control points are
Q0

i , i = 0, . . . , dk. Let P j
i and Qj

i , i = 0, 1, . . . , dk − j
be the control points generated from the de Boor-like
algorithm in the above section when we evaluate P (δ)
and Q(δ) (δ � Δ) for curve segments P (u) and Q(u)

respectively. Thus, what we need to prove is P dk
0 = Qdk

0 .

Fig.11. Notations for the control polygon evaluation algorithm

and knot insertion algorithm.

Let t = tk−1 + δ
dk

and tq = tk−1 + Δ
dk

. According to
the local refinement algorithm, we have

Q0
j = P 0

j × tq − tbj

tej − tbj

+ P 0
j−1 ×

tej − tq

tej − tbj

. (2)

According to the evaluation algorithm, for i > 0, the
support edges for P j−1

i P j−1
i+1 and Qj−1

i Qj−1
i+1 are identi-

cal, so

P j
i =P j−1

i+1 × t − tbj+i−1

tei − tbj+i−1

+ P j−1
i × tei − t

tei − tbj+i−1

,
(3)

Qj
i =Qj−1

i+1 × t − tbj+i−1

tei − tbj+i−1

+ Qj−1
i × tei − t

tei − tbj+i−1

.
(4)

For i = 0, we have

|P l−1
0 P l

0|
|P l

0P
l−1
1 | =

t − tbl−1

tk − t
, (5)

|Ql−1
0 Ql

0|
|Ql

0Q
l−1
1 | =

t − tbl−1

tq − t
. (6)

First we prove the following lemma.
Lemma 1 For any level j, j = 0, 1, . . . , dk − 1, P j

i ,
Qj

i+1, P j
i+1 and P j+1

i are collinear and the lengths for
edges P j

i P j+1
i , P j+1

i Qj
i+1 and Qj

i+1P
j
i+1 are propor-

tional to t − tbj+i : tq − t : tei − tq.
Proof. For j = 0, according to the evaluation algo-

rithm in Section 3, it is obvious that P 0
i , Q0

i+1, P 0
i+1

and P 1
i are collinear and the lengths for edges P 0

i P 1
i ,

P 1
i Q0

i+1 and Q0
i+1P

0
i+1 are proportional to t−tbi : tq−t :

tei − tq.
Suppose the lemma is satisfied for level j − 1, i.e.,

P j−1
i , Qj−1

i+1 , P j−1
i+1 are collinear and the length for edges

P j−1
i P j

i , P j
i Qj−1

i+1 and Qj−1
i+1 P j−1

i+1 are proportional to
t − tbj+i−1 : tq − t : tei − tq, as illustrated in Fig.12.
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Fig.12. Illustration for the relation of P j
i and Qj

i during the

evaluation process.

For level j, denote the intersection of edge P j
i P j

i+1

and edge Qj−1
i+1 Qj−1

i+2 to be Sj
i , then we have the follow-

ing equation according to Menelaus theory:

|Qj−1
i+2 Sj

i |
|Sj

i Qj−1
i+1 |

|Qj−1
i+1 P j

i |
|P j

i P j−1
i+1 |

|P j−1
i+1 P j

i+1|
|P j

i+1Q
j−1
i+2 |

= 1. (7)

Here | ∗ | is the length of the associated edge. And
according to the assumption for level j − 1 and (4),

|Qj−1
i+2 Sj

i |
|Sj

i Qj−1
i+1 |

=
t − tbj+i

tei+1 − t
=

|Qj−1
i+2 Qj

i+1|
|Qj

i+1Q
j−1
i+1 |

, (8)

which leads to,
Sj

i = Qj
i+1.

For level j, P j
i , Qj

i+1, P j
i+1 and P j+1

i are also
collinear.

And according to Menelaus theory,

|P j
i Qj

i+1|
|Qj

i+1P
j
i+1|

=
|Qj−1

i+2 P j−1
i+1 |

|P j
i+1Q

j−1
i+2 |

|Qj−1
i+1 P j

i |
|P j−1

i+1 Qj−1
i+1 |

=
tq − tbi

tei − tq
.

Combining (3) for the computation of P j+1
i from P j

i

and P j
i+1, the lengths of edges P j

i P j+1
i , P j+1

i Qj
i+1 and

Qj
i+1P

j
i+1 are proportional to t − tbi : tq − t : tei − tq.

Thus, we complete the proof. �
Now we prove the theorem by the following lemma.
Lemma 2. For any level j, j = 0, 1, . . . , dk, P j

0 =
Qj

0.
Proof. For j = 0 and j = 1, it is evident that

P j
0 = Qj

0. Suppose P j
0 = Qj

0 for j < l. According
to Lemma 1, we have

|Ql
0P

l−1
0 |

|Ql
0P

l−1
1 | =

tq − tbl−1

tk − tq
. (9)

Combining (9), (5) and (6), we have Ql
0 = P l

0.
Let j = dk in Lemma 2, we have P dk

0 = Qdk
0 . �

4.1 Extracting Bézier Form

An important special case of knot interval splitting
algorithm involves inserting a zero knot interval. This
is the same as inserting a double knot into the knot vec-
tor because the process is the same as splitting a knot
interval into two intervals, one of which is zero, and the
other of which is the original knot interval. If we re-
peat this operation several times, we uncover the Bézier
control points for each curve segment. The reason for
this will be clear if you recall that a degree n Bézier
curve is a special case of B-Spline curve with knot vec-
tor (a, a, . . . , a, b, b, . . . , b) which involves n + 1 knot
vector a and n + 1 knot vector b.

Fig.13 illustrates the process of extracting Bézier
form for a cubic curve segment. Fig.13(a) shows the
control polygon after splitting knot interval 23 into 03,
23 and 03 using the knot split algorithm. And the green
points in Fig.13(b) are the Bézier control points for the
cubic curve segment.

Fig.13. Illustration of extracting Bézier form for the cubic seg-

ment.

Theorem 2 (Linear Independency). The blending
functions Bi defined in Remark 2 are linear indepen-
dent.

Proof. Suppose Bi, i = 1, . . . , n are n blending func-
tions defined for a control polygon with degrees and
knot intervals assignment and B̂j , j = 1, . . . , n + 1 are
n+1 functions defined for the control polygon with one
knot interval kt being split into two knot intervals us-
ing the knot insertion algorithm. First, we will prove
that if B̂j , j = 1, . . . , n+1 are linear independent, then
Bi, i = 1, . . . , n are linear independent.

Let B and B̂ to be two vectors contains all Bi and
B̂j respectively, then there exist a matrix M = [mj,i],
i = 1, . . . , n, j = 1, . . . , n + 1 such that B = MB̂. Ac-
cording to the knot insertion algorithm, all the elements
of matrix M are 0 except the following three cases.

1) If 1 � i � st, then only mi,i �= 1;
2) If st < i < st + dt, then only mi,i and mi+1,i are

not 0;
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3) If i � st + dt, then only mi+1,i = 1.
If there exist some constants λi such that λiBi = 0.

Denote Λ to be a vector contains all the λi, then we
have ΛMB̂ = 0. As B̂j are linear independent, so we
has been ΛM = 0. From the structure of matrix M
which has been discussed above, we can get that λi = 0.
Thus Bi are linear independent.

For any MD-spline curve, we can convert it into
Bézier form with multiple knots. After conversion, the
functions defined from the Bézer control polygon are
obvious linear independent because they are Bernstein
polynomials in each interval. Thus, we can conclude
that the blending functions derived from de Boor-like
algorithm are also linear independent. �

Theorem 3 (Continuity). The MD-spline defined
in the present paper is at least C1 between two adjacent
curve segments with different degrees and Cd−1 between
two adjacent degree d curve segments.

Proof. Referring to Fig.14, we first prove that two
adjacent curve segments are at least C1 between two
segments with knot interval km

1 and kn
2 , here m �= n.

As the knot insertion will not change the curve, we can
insert several zero knot intervals such that the contri-
bution knot intervals for edge P0Q0 are only km

1 and
kn
2 , such as that in Fig.14. Let R = mk2

nk1+mk2
P0 +

nk1
nk1+mk2

Q0 to be a point on edge P0Q0. Then P0, R
and R, Q0 are two Bézier end control points for the
two curve segments with knot interval km

1 and kn
2 re-

spectively. It is obvious that the two curves are at least
C1.

Fig.14. Illustration of continuity proof.

If two adjacent segments have same degree n, with-
out loss of generalization, suppose n = 2d + 1 and the
two knot intervals k1 and k2 are two adjacent knot in-
tervals. As the knot insertion will not change the curve,
we can extract all the curve segments into Bézier form
except the curve segments for knot intervals k1 and k2,
see Fig.14. Suppose after insertion, the control poly-
gon is P0P1 . . . PdRQd . . .Q1Q0. As the contribution
intervals for the two curve segments are all of the same
degrees, the definition for these curve segments are the
same as B-splines with the same control polygon. Thus,
they are Cn−1 continuity. �

4.2 Knot Removal Algorithm

Knot removal algorithm is the inverse procedure of
knot insertion algorithm. It is one of the key algorithms
for spline which has been widely used in fitting, fairing,
merging. Benefited by the exact refinement algorithm
in above subsection, the knot removal algorithm is sim-
ilar to that for B-spline.

Suppose we are given a control polygon Pi, i =
0, 1, . . . , n with the specified knot intervals T and de-
grees D. For knot interval, knot is removal means merg-
ing two adjacent knot intervals ki and ki+1 with same
degree into one knot interval ki + ki+1. After one knot
is removed, we have a new control polygon Qj, j =
0, 1, . . . , n − 1. Denote P and Q be two vectors which
contain Pi and Qj respectively. Using the algorithm
for knot insertion, there exists a matrix A such that
the control polygon R = [R1, R2, . . . , Rn]T = AQT

with the same knot intervals as Pi which defines the
same MD-spline curve as that with control polygon Qj .
Knot removal algorithm will change the shape in gene-
ral since the matrix A is over determined which pre-
serves the shape if and only if Pi are identical to the
control points Ri.

Now, there are lots of different possibilities to deter-
mine approximated solutions of the knot removal prob-
lem which is the same as knot removal algorithm for
traditional B-spline. For more details of knot removal
algorithm for B-spline, please refer [10]. What we use
here is Least squares knot removal. Qi are determined
by minimizing

∑n
i=0(Pi − Ri)2, which leads to a linear

system.

4.3 B-Spline Conversion

Using the Bézier extraction, we can easily to convert
an MD-spline into the corresponding B-spline represen-
tation with multiple knots. First, we convert an MD-
spline curve into Bézier form and the lower degree curve
segments into the highest degrees. And then we remove
unnecessary zero knot intervals using knot removal al-
gorithm for B-splines. The B-splines representations in
Fig.8 are the results of using the knot removal algorithm
in [10].

5 Application

In this section, we provide some basic applications
with MD-spline defined in Section 3, including an effi-
cient merging algorithm and a curve subdivision scheme
which allows different degrees to be assigned for the
control polygon.

5.1 Merging with MD-Spline

The key application of MD-spline is that it can
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merge two spline curves with different degrees into a
single spline curve without degree elevation. There are
two advantages for a single spline curve. One is that
any modification of the curve will not change the de-
gree for each segment and the other is that a single
MD-spline curve has less control points.

The algorithm for curve merging is straightforward
according to the knot removal algorithm. For example,
given two MD-spline curves with Bézer end condition
as Fig.15(a), for a C0 merging, one end control point of
two curves will be shared after merging. If the two end
control points are distinct, then we need to perturb one
of the curves or both curves.

For C1 merging, we should remove the zero knot in-
terval to make higher continuity. The perturbation is
based on the perturbation of knot removal algorithm.
Fig.15(b) is the result of C0 merging and the result of
C1 merging is shown in Fig.15(c).

Fig.15. Simple merging example. (a) Two original curves. (b)

C0 merging. (c) C1 merging.

5.2 MD-Subdivision

In this subsection, we provide a new type of curve
subdivision scheme called MD-subdivision, which al-
lows different degrees for curve segments based on the
exact refinement algorithm. Given a control poly-
gon with knot intervals and degrees assignment, MD-
subdivision is a recurrence procedure to create a new
control polygon with each knot interval being split into
half. MD-subdivision is also a new scheme to combine
the dual scheme (even degree) and primary scheme (odd
degree). In this subsection, we only focus on the MD-
subdivision algorithm for a polygon with degree 1, 2
and 3.

A subdivision scheme includes two phrases: the
topological rules and the geometric rules. The topo-
logical rules for MD-subdivision scheme are based on
the following two rules.

1) For each vertex with non-zero knot interval, split
the control point into two new control points with the
same knot interval and degree as the original control
point.

2) For each edge with non-zero knot interval, insert
one new control point into the edge and split the edge
into two edges with the same degree and knot interval

as the original edge;
The geometric rules for MD-subdivision have three

different cases.
1) Geometric rule for edge points.
The edge point is the middle point of the line seg-

ment which corresponds to the knot interval assigned
to the edge. Suppose edge Pi−1Pi is assigned with knot
interval kk and the contribution intervals for the edge
are kj , j = bi + 1, . . . , ei, then the edge point Qi for the
edge is

Qi =
tei − tmid

tei − tbi

Pi−1 +
tmid − tbi

tei − tbi

Pi,

here tmid = tk−1 + kk

2dk
.

2) Geometric rule for zero knot interval vertex.
Referring to Fig.16(a), the knot interval for vertex

P1 is zero, λi and μi are defined by the knot intervals
and degree. Suppose knot interval for edge P0P1 is kd,
then λ1 = k

d and

μ1 =

{ k

d
, if d = 3,

0, if d = 1.
(10)

We can define λ2 and μ2 similarly. The new point Ri

corresponding to the vertex is:

Ri =
c1Qi−1 + c1Pi + c2Qi

c1 + c2 + c3
. (11)

Here c1 = (μ1 + μ2)λ2, c2 = (λ1 + λ2)(μ1 + μ2) and
c3 = (λ1 + λ2)μ1.

Fig.16. Illustration of MD-subdivision.

3) Geometric rule for non-zero knot interval vertex.
Referring to Fig.16(b), the knot interval for Pi is not

zero. λj and μj are defined by the knot intervals simi-
larly except λ1 and μ1 are defined by knot interval for
control point Pi. Suppose Ti−1 and Ti are the middle
points of the segments which correspond to the knot
interval assigned to Pi, then the two new points Ri−1

and Ri corresponding to the vertex are:

Ri−1 = αTi−1 + (1 − α)Ti, (12)
Ri = βTi + (1 − β)Ti−1. (13)
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Here

α =
(λ0 + 2λ1 + 2λ2)(μ0 + μ1)

(λ0 + 2λ1 + 2λ2)(μ0 + μ1) + μ0(λ0 + λ1)
,

β =
(2μ0 + 2μ1 + μ2)(λ1 + λ2)

(2μ0 + 2μ1 + μ2)(λ1 + λ2) + λ2(μ1 + μ2)
.

Fig.17 is the result of the first six levels of subdivi-
sion for the first example in Fig.8.

Fig.17. First six levels subdivision for the first example in Fig.8.

6 Conclusions and Future Work

This paper provides a new way to define MD-spline
curves based on a de Boor-like evaluation algorithm for
a control polygon with specified knot intervals and de-
grees. MD-spline curves defined in this way maintain
many desirable properties of B-spline curves, such as
convex hull, local support and variation diminishing.
The MD-spline curves have less control points than B-
splines for a model with different degrees. And the
continuity between two adjacent segments with differ-
ent degrees is at least C1 and the continuity between
two adjacent segments of same degrees d is Cd−1. We
also apply MD-splines to merge B-spline curves with
different degrees to a single spline curve and provide a
new subdivision curve scheme which allows degree as-
signment with one, two and three.

The main weakness of the present paper is that the
continuity between two adjacent segments with differ-
ent degrees is C1. How to generalize the idea to achieve
higher continuity is one issue of our future work. Oth-
ers include to generalize the idea to surface with ar-
bitrary topology and to study general merging algo-
rithm for MD-spline surface. How to generalize the
MD-subdivision scheme to arbitrary degrees with unify
rules is also an interesting problem.
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