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We develop a local refinement algorithm for analysis-suitable T-splines which does not produce exces-
sive propagation of control points. We then demonstrate its use as an adaptive framework for isogeomet-
ric analysis. Analysis-suitable T-splines are a class of T-splines which are linearly independent and form a
partition of unity. These properties, coupled with local refinement, make this class of T-splines appealing
as a basis for isogeometric analysis.
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1. Introduction

Isogeometric analysis has emerged as an important alternative
to traditional engineering design and analysis methodologies. Iso-
geometric analysis was introduced in [1] and later described in de-
tail in [2]. In isogeometric analysis, the smooth geometric basis is
used as the basis for analysis. Most of the early developments in
isogeometric analysis focused on establishing the behavior of the
smooth NURBS basis in analysis. It was demonstrated that smooth-
ness offers important computational advantages over standard
finite elements [3,4]. Areas of application of NURBS-based isogeo-
metric analysis include turbulence [5–8], fluid–structure interac-
tion [9–12], incompressibility [13–15], structural analysis [16,3],
plates and shells [17–21], phase-field analysis [22,23], large defor-
mation with mesh distortion [24], shape optimization [25–28], and
electromagnetics [29]. This success has in turn stimulated efforts
within the Computer Aided Geometric Design (CAGD) community
to develop and integrate analysis-suitable geometric technologies
and isogeometric analysis [30–37].

While smoothness is an important consideration, NURBS are se-
verely limited by their tensor product construction. In traditional
NURBS-based design, modeling a complicated engineering design
often requires hundreds, if not thousands, of tensor product NURBS
patches which are usually discontinuous across patch boundaries.
Also, almost all NURBS models use trimming curves. For these
reasons, a global geometric discretization, based on NURBS, is usu-
ally not suitable as a basis for analysis.
ll rights reserved.

t).
T-splines were introduced as a superior alternative to NURBS
[38]. T-splines can model complicated designs as a single, water-
tight geometry. Additionally, NURBS are T-splines so existing tech-
nology based on NURBS extends to T-splines. Any trimmed NURBS
model can be represented by a watertight trimless T-spline [39]
and multiple NURBS patches can be merged into a single water-
tight T-spline [38,40]. Unlike NURBS, T-splines can be locally re-
fined [41] without introducing a complex hierarchy of meshes
[42]. In other words, all local refinement is done on one control
mesh on a single hierarchical ‘‘level’’ and all control points have
similar influence on the shape of the surface. These properties
make T-splines an ideal technology for isogeometric discretiza-
tions and integrated design-through-analysis applications.

Initial investigations using T-splines as a basis for isogeometric
analysis demonstrated that the T-spline basis possesses similar con-
vergence properties to NURBS with far fewer degrees-of-freedom
[43–45]. Additionally, T-splines possess a natural finite element
structure which can be integrated seamlessly into existing finite
element frameworks via Bézier extraction [46,47]. T-splines have
since been applied to problems in fracture and damage [48,49],
and shells [19].

Analysis-suitable T-splines were introduced in [50]. Analysis-suit-
able T-splines are a mildly restricted subset of T-splines. Analysis-
suitable T-splines are linearly independent [50] and, if a minor
boundary condition constraint is honored, form a partition of unity
[51]. In this paper, we develop a highly localized refinement algo-
rithm for analysis-suitable T-splines which meets the demands of
both design and analysis.

This paper is organized as follows. Basic T-spline concepts are
reviewed in Section 2. Analysis-suitable T-splines are then de-
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Fig. 1. The domain X � R2 for a bivariate, cubic (p = 3) T-spline.
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scribed in Section 3. Section 4 presents a local refinement algorithm
for analysis-suitable T-splines. The behavior and effectiveness of
this algorithm is then demonstrated in Section 5. For simplicity, this
paper focuses on bicubic T-spline surfaces, although the concepts
generalize to arbitrary odd degree. T-splines of arbitrary degree
are discussed in [43,52].

2. T-spline fundamentals

We present a brief overview of fundamental T-spline concepts
focusing on those ideas required to understand local refinement.
A more detailed description of T-splines from an isogeometric
analysis perspective is presented in [47]. We base our develop-
ments on the physical domain X � R2 shown in Fig. 1. Throughout
this paper we use ds to indicate the number of spatial dimensions.
In all cases, the polynomial degree p is 3.

2.1. The T-mesh

The fundamental object of interest underlying T-spline technol-
ogy is the T-mesh, denoted by T. For surfaces, the T-mesh is a mesh
of polygonal elements. Each polygonal element is either a quadri-
lateral or an element with quadrilateral shape where one or more
edges is split by T-junctions. A T-junction is analogous to a ‘‘hang-
ing node’’ in finite elements. A control point, PA 2 Rds , and control
weight, wA 2 R, where the index A denotes a global control point
number, is assigned to every vertex1 in the T-mesh. A mesh for
the domain X in Fig. 1 is shown in Fig. 2a. The black and red circles
are T-mesh vertices, or, equivalently, control points. The T-junctions
in Fig. 2a are the red circles P16, P17, P28, and P29.

To define a basis, a valid knot interval configuration must be as-
signed to the T-mesh. A knot interval [53] is a non-negative real
number assigned to an edge. A valid knot interval configuration re-
quires that the knot intervals on opposite sides of every element
sum to the same value. A valid knot interval configuration for the
T-mesh in Fig. 2a is shown in Fig. 2b.

2.2. The T-spline basis

Once a valid knot interval configuration has been assigned to a
T-mesh, a T-spline basis can be constructed. For every vertex in the
T-mesh, a T-spline basis function is constructed. To illustrate, we
construct the T-spline basis function associated with P16. We note
that a class of T-splines where the T-spline blending functions do,
in fact, constitute a basis is described in Section 3.

2.2.1. Local knot interval vectors
A T-spline basis function is constructed from knot interval se-

quences inferred from the T-mesh in the neighborhood of the asso-
ciated vertex. These knot interval sequences are called local knot
interval vectors. A local knot interval vector is a sequence of knot
intervals, DN = {Dn1,Dn2,Dn3,Dn4}.

For every vertex, A, in the T-mesh, we construct a set of

local knot interval vectors, DNA ¼ DNi
A

n o2

i¼1
, where DNi

A ¼

Dni
A;1;Dni

A;2;Dni
A;3;Dni

A;4

n o
, by marching through the T-mesh in

each topological direction, starting at vertex A, until 2 vertices
or perpendicular edges are intersected. At each intersection, the
knot interval distance traversed since the last intersection is
placed in the local knot interval vector. If a T-mesh boundary is
crossed before 2 knot intervals are intersected it is common to
1 In this paper, we use the term ‘‘vertex’’ and ‘‘control point’’ interchangeably. I
should be noted, however, that a vertex usually only represents a topological mesh
entity while a control point is the location of a vertex in physical space.
t

set the remaining knot intervals to zero. This creates an open
knot vector structure along the boundary of the T-mesh. We note
that this same procedure is applied to construct the local knot
interval vectors for T-junctions.

A set of local knot vectors, NA ¼ Ni
A

n o2

i¼1
, where Ni

A ¼
ni

A;1; n
i
A;2; . . . ; ni

A;5

n o
, can be derived from DNA by selecting an origin

O 2 R and setting ni
A;j ¼ Oþ

Pj
k¼2Dni

A;k�1. Since a knot in a local knot
vector corresponds to T-mesh topology (vertices or edges) encoun-
tered during basis function inference the T-mesh topology and
knot interval configuration determine the knot structure of the
underlying T-spline space. In the context of T-splines, the term
knot is often also used to refer to the underlying T-mesh vertex
or edge. In Fig. 3, the knot intervals used to construct the local knot
interval vectors for T-mesh vertex P16 are shown. The knot interval
vectors for P16 are given by

DN16 ¼
1;1;2;0
0;2;2;2

� �
:

2.2.2. The local basis function domain
Using DNA we define a local basis function domain, bXA � R2, as

bXA ¼ �
2

i¼1

bXi
A; ð1Þ

where bXi
A ¼ 0;

P4
j¼1Dni

A;j

h i
� R. A coordinate system, nA ¼ n1

A; n
2
A

� �
¼

ðnA;gAÞ, called the basis coordinate system, is assigned to each local
basis function domain.

We note that in addition to the basis coordinate systems in a T-
mesh, it is often desirable to establish larger knot coordinate sys-
tems for a subset of the knot structure of a T-mesh. Using a knot
coordinate system, multiple basis functions can be compared in a
common coordinate system. Knot coordinate systems are used
when computing the elements of the refinement operator, M, as
described in Sections 2.4.2 and 4.3.

2.2.3. T-spline basis functions
Over each local basis function domain bXA we define a single T-

spline basis function, NA : bXA ! Rþ [ f0g. This is done by forming
the tensor product of the univariate B-spline basis functions

Ni;3
A ni

AjN
i
A

� �n o2

i¼1
as

NAðnAjNAÞ �
Y2

i¼1

Ni;3
A ni

AjN
i
A

� �
: ð2Þ

The univariate B-spline basis function, Ni;p
A : bXi

A ! Rþ [ f0g, is de-
fined using a recurrence relation, starting with the piecewise con-
stant (p = 0) basis function
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Fig. 2. The T-mesh and knot interval configuration defining the bicubic T-spline geometry in Fig. 1. (a) The T-mesh defining the bicubic T-spline geometry in Fig. 1. The red
circles (16,17,28,29) are T-junctions. The indexing identifies the T-mesh control points. (b) A valid knot interval configuration for the bicubic T-mesh in (a). The triangles
correspond to a knot interval of 0, the squares correspond to a knot interval of 1, the pentagons correspond to a knot interval of 2, and the stars correspond to a knot interval of
4. Notice that the knot intervals along opposing sides of each T-mesh element sum to the same value. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 3. Constructing the local knot interval vectors corresponding to T-mesh vertex
P16.
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Ni;0
A ni

Ajn
i
A;1; n

i
A;2

� �
¼ 1 if ni

A;1 6 ni
A < ni

A;2

0 otherwise;

(
ð3Þ

where ni
A;k is the kth knot value in the local knot vector Ni

A. For p > 0,
the basis function is defined using the Cox–de Boor recursion
formula:

Ni;p
A ni

Ajn
i
A;1;n

i
A;2; . . . ;ni

A;pþ2

� �
¼

ni
A � ni

A;1

ni
A;pþ1 � ni

A;1

Ni;p�1
A ni

Ajn
i
A;1; . . . ;n

i
A;pþ1

� �
þ

ni
A;pþ2 � ni

A

ni
A;pþ2 � ni

A;2

Ni;p�1
A ni

Ajn
i
A;2; . . . ;ni

A;pþ2

� �
:

ð4Þ
2.3. Bézier element construction

A Bézier element is a region of the T-spline surface in physical
space bounded by knot lines. Each knot line in physical space is
the image of a line of reduced continuity in at least one T-spline ba-
sis function. We call the collection of Bézier elements the Bézier
mesh. The existence of T-junctions and zero knot intervals usually
results in there not being a one-to-one correspondence between T-
mesh elements and Bézier elements.
An elemental T-mesh, Telem, is formed by augmenting T with all
images of basis function knot lines that do not already correspond
to an edge in T, then eliminating all elements for which the knot
interval sum on any side is zero. The elements of Telem are in
one-to-one correspondence with the Bézier elements. Fig. 4a
shows Telem for the T-mesh in Fig. 2a. Dashed lines represent the
edges which have been added.

To construct appropriate finite element paraphernalia for T-
splines we use Telem and Bézier extraction [47,46]. Bézier extrac-
tion builds a linear operator for each Bézier element. The linear
transformation is defined by a matrix referred to as the extraction
operator. The extraction operator maps a Bernstein polynomial ba-
sis defined on Bézier elements to the global T-spline basis. The
transpose of the extraction operator maps the control points of
the global T-spline to the Bézier control points. The idea is illus-
trated in Fig. 5 for a B-spline curve. This element form can then
be integrated into existing finite element frameworks in a straight-
forward manner. See [47] for additional details.

The extracted Bézier mesh in physical space for the T-mesh in
Fig. 2a is shown in Fig. 4b. Notice the one-to-one correspondence
between elements in Telem in Fig. 4a and the Bézier elements in
Fig. 4b. On the other hand, a single T-mesh element may corre-
spond to multiple Bézier elements, and other T-mesh elements
may not correspond to any Bézier element. To demonstrate, the
Bézier elements corresponding to the T-mesh in Fig. 2 are shown
in Fig. 4b. Notice that Bézier elements 3 and 6 correspond to the
same T-mesh element, as do Bézier elements 9 and 12. Each Bézier
element in Fig. 4b is the image of a unique element in Telem in
Fig. 4a under the T-spline geometric map.

2.4. T-spline local refinement

The set of all T-splines with the same T-mesh topology, T, and
knot interval configuration is called a T-spline space [41]. We de-
note a T-spline space by T , where the number of T-spline control
points in T is n. While the notation T 1 # T 2 will be used in the con-
ventional set-theoretic sense, the notation T1 # T2 will indicate
that T2 can be created by adding vertices and edges to T1, and
appropriately modifying the knot intervals on any edges which
are split. In the context of finite element analysis, vertices and
edges are usually added by subdividing T-mesh elements.
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Fig. 4. The elemental T-mesh, Telem, and extracted Bézier mesh in physical space corresponding to the T-mesh in Fig. 2a. (a) The elemental T-mesh, Telem. The dashed lines are
edges which have been added to T. Only the non-zero parametric area elements (the shaded elements) are included in Telem. The indexing identifies the elements in Telem. (b)
The extracted Bézier mesh in physical space. Each element in (a) corresponds to a Bézier element in physical space. The indexing identifies the Bézier elements.

Q = CTP

N = CB

Fig. 5. Bézier extraction for a B-spline curve. B-spline basis functions and control points are denoted by N and P, respectively. Bernstein polynomials and control points are
denoted by B and Q, respectively. The curve T(n) = PTN(n) = QT B(n). The extraction operator can be localized to the individual elements. Note that the Bernstein basis is the
same for each element. Formation of element arrays can thus be standardized; see [47] for further details.

Fig. 6. A T-mesh, T1, (solid circles and lines) and T-spline space, T 1, is locally
refined through the addition of control points and edges (hollow circles and dashed
edges). In this case, T1 # T2 ! T 1 # T 2:
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A central contribution of this paper (see Section 4.2) is to iden-
tify conditions under which

T1 # T2 ! T 1 # T 2: ð5Þ

If T 1 # T 2; T 1 and T 2 are said to be nested and T 2 is a local refine-
ment of T 1. In Fig. 6, a T-mesh, T1, (solid circles and lines) and cor-
responding T-spline space, T 1, are locally refined through the
addition of control points and edges (hollow circles and dashed
edges). In this case, T1 # T2 ! T 1 # T 2.

2.4.1. Basis function refinement
In basis function refinement [41], knots are added to the local

knot vector of a cubic B-spline basis function, N(njN), where
N = {n1,n2, . . . ,n5}, to form a knot vector, N, of length m. N can then
be written as a linear combination of the m � 4 B-spline basis func-
tions defined over substrings of length 5 in N.

For the case m = 6,N(njN) is split by inserting a single knot �n into
N where ni 6

�n 6 niþ1. This splits the basis function into two scaled
basis functions:
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Nðnjn1; . . . ; n5Þ ¼ aNðnjn1; . . . ; ni; �n; niþ1; . . . ; n4Þ
þ bNðnjn2; . . . ; ni; �n; niþ1; . . . ; n5Þ; ð6Þ

where

a ¼
�n�n1
n4�n1

for �n < n4

1 for �n P n4

(
ð7Þ

and

b ¼
n5��n
n5�n2

for �n > n2

1 for �n 6 n2:

(
ð8Þ

The refinement equations for the case m > 6 can be derived through
repeated application of these equations.

A T-spline basis function, N(njN), can undergo knot insertion in
either parametric direction by inserting a knot into the corre-
sponding local knot vector and then applying the refinement equa-
tions. This results in two scaled T-spline basis functions which sum
to the original. Further knot insertion into these resultant scaled
basis functions yields a set of scaled basis functions which also
sum to the original.

2.4.2. The refinement operator M
If T 1 # T 2, each T-spline basis function, N1

A 2 T
1, can be ex-

pressed uniquely as a linear combination of the T-spline basis func-
tions, N2

B 2 T
2, as

N1
A ¼

Xn2

B¼1

mA;BN2
B; ð9Þ

where n2 is the number of control points in T 2 and the mA,B are
determined by knot insertion as described in Section 2.4.1. This
relationship can be written in matrix–vector notation as

N1 ¼MN2; ð10Þ

where N1 ¼ N1
1;N

1
2; . . . ;N1

n1

� �T
is the column vector of T-spline basis

functions, N1
A 2 T

1, N2 ¼ N2
1;N

2
2; . . . ;N2

n2

� �T
is the column vector of

T-spline basis functions, N2
B 2 T

2, and M is an n1 � n2 matrix with
elements mA,B. We call M the refinement operator.
3. Analysis-suitable T-splines

Analysis-suitable T-splines form a practically useful subset of T-
splines. Analysis-suitable T-splines maintain the important mathe-
matical properties of the NURBS basis while providing an efficient
and highly localized refinement capability. All T-splines possess
the following properties:

� The basis constitutes a partition of unity [51] (see Section 3.4.)
� Each basis function is non-negative.
� An affine transformation of an analysis-suitable T-spline is

obtained by applying the transformation to the control points.
We refer to this as affine covariance. This implies that all ‘‘patch
tests’’ (see [54]) are satisfied a priori.
� They obey the convex hull property.
� They can be locally refined.

While most (but not all [55]) T-splines are also linearly inde-
pendent, analysis-suitable T-splines are always linearly indepen-
dent for any choice of knot intervals [50]. Analysis-suitable T-
spline spaces are defined over a mildly restricted set of allowable
T-mesh topologies. This topological restriction can be described
elegantly in terms of T-junction extensions.
3.1. T-junction extensions

A T-junction extension is normally composed of a face and edge
extension (if one exists.) We define face and edge extensions to be
closed, directed line segments which originate at a T-junction. An
extended T-mesh Text is formed by adding all T-junction extensions
to a T-mesh T. The extended T-mesh, Text, for the T-mesh in Fig. 7a
is shown in Fig. 7b and c, respectively. The dotted black arrows are
face extensions and the dashed red arrows are edge extensions.
The T-junctions are denoted by large circles.

Fig. 7b shows the T-junction extensions in the index space [43]
of the T-mesh. The index space is created by plotting the knots in
the T-mesh at equally spaced intervals, regardless of their actual
values. The index space point of view is useful for developing algo-
rithms, as well as for building intuition. For example, in the index
space it is easy to identify the knot lines at which the support of
any given function will begin or end. Additionally, the direction
of traversal and orientation of a T-junction extension can be un-
iquely established in the index space of the T-mesh.

Fig. 7c shows the set of T-junction extensions drawn on the T-
mesh in physical space. We often drop the distinction between
the index and physical space representation for T-junction exten-
sions and use the physical space representation.

A T-junction extension is formed in a manner similar to what
was described for the construction of local knot interval vectors
in Section 2.2.1. A face extension is created by marching from the
T-junction, in the direction of a missing edge (thus spanning T-
mesh faces), until two perpendicular edges or vertices are inter-
sected. The direction of an extension is always away from its T-
junction. An edge extension is then formed only if an edge is at-
tached to the T-junction in the opposite direction. If so, the exten-
sion is formed by marching in the opposite direction of the face
extension until the edge’s opposite vertex is encountered (thus
spanning a T-mesh edge). Since T-junction extensions are closed
line segments, a horizontal and vertical extension can intersect
either on the interior of both extensions or at the endpoint of
one extension or both extensions.

As an example, consider T-junction E in Fig. 7b. The face exten-
sion points to the right and intersects the two vertical edges corre-
sponding to indices 5 and 6 along the bottom. Since T-junction E is
connected to an edge in the direction opposite the face extension,
we also form an edge extension along that edge. The edge exten-
sion points to the left and intersects the vertical edge correspond-
ing to index 2 along the bottom. The T-junction extension for T-
junction E is composed of the face and edge extension.

3.2. The extension graph

Intersecting T-junction extensions in an extended T-mesh Text

can be visualized using an undirected graph. We call this graph
the extension graph and denote it by E(Text). Each node in E corre-
sponds to a single T-junction extension in Text. If two extensions in
Text intersect then an edge is drawn between the corresponding
nodes in E. The extension graph for the extended T-mesh in
Fig. 7b is shown in Fig. 8a. In this case there are five intersections
represented by the five edges in the graph.

3.3. Analysis-suitable definition

An analysis-suitable T-spline is one whose extended T-mesh is
analysis-suitable. An analysis-suitable extended T-mesh is one
where no T-junction extensions intersect. In other words, E(Text)
is an empty graph (no edges in the graph). We denote an analy-
sis-suitable T-spline space by T s and analysis-suitable T-mesh by
Ts. The T-mesh in Fig. 7a is not analysis-suitable. This can be seen
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by inspecting the extension graph in Fig. 8a which has five edges.
By adding the dashed edges in Fig. 8b the T-mesh becomes analy-
sis-suitable because its extension graph is empty.

3.4. Partition of unity

An analysis-suitable T-spline basis forms a partition of unity. In
other words,

Pn
A¼1NA ¼ 1. The partition of unity property is impor-

tant for both geometry and analysis because it assures affine
covariance and exact satisfaction of all patch tests. In the context
of T-splines, the partition of unity property can be described in
two ways. The equation for any T-spline surface is

T ¼
Pn

A¼1PAwANAPn
A¼1wANA

; ð11Þ

where the PA are control points, wA are weights, and NA are blending
functions. This equation can also be written as

T ¼
Xn

A¼1

wANAPn
B¼1wBNB

PA ¼
Xn

A¼1

RAPA ð12Þ

in which case the RA may be rational T-spline blending functions. It
is clear that the RA always sum to one, regardless of the choice of wA.
In general, affine covariance only requires that the RA form a parti-
tion of unity, not the NA. However, it is shown in [51] that for an
analysis-suitable T-spline with all wA = 1, RA � NA. Thus, when we
say that analysis-suitable T-splines form a partition of unity, we
mean that both the NA and RA sum to one. This stronger notion of
partition of unity is also a property of NURBS.

3.5. The analysis-suitable elemental T-mesh

For analysis-suitable T-splines, the elemental T-mesh, Telem (see
Section 2.3), can be formed by simply adding the face extensions to
T [51]. This greatly simplifies the construction of Telem since it is
not necessary to inspect the knot lines in the T-spline basis.

4. Local refinement of analysis-suitable T-splines

The T-spline local refinement algorithm presented in [41] may
add many superfluous control points to a T-mesh during refine-
ment. Additionally, using this algorithm to locally refine an analy-
sis-suitable T-spline often results in a refined T-spline which is not
analysis-suitable.

This behavior can be attributed to the generality of the algo-
rithm, which is designed to operate on any T-spline. No assump-
tions are made about the topological characteristics of the
underlying T-mesh or space. By restricting ourselves to analysis-
suitable T-splines, however, we can leverage the structure of the
T-mesh to develop a simple local refinement algorithm which only
introduces a minimal number of superfluous control points and
preserves the properties of an analysis-suitable space.

4.1. Analysis-suitable nesting theory

We say T2
ext is a refinement of T1

ext (denoted T1
ext #̂ T2

ext) if
T1 # T2 and no face extension endpoint in T2

ext corresponds to a
point in the interior of a face extension in T1

ext of the same direc-
tionality. Then, if T 1

s and T 2
s are analysis-suitable T-spline spaces,

T1
ext #̂ T2

ext ! T
1
s # T 2

s (A proof of this result should be forthcoming
in [56]). Note that we compare face extensions in the index space
of T2

ext .
Nestedness between two T-spline spaces, T 1

s and T 2 (not neces-
sarily analysis-suitable), can be visualized using a simple modifica-
tion of the extension graph described in Section 3.2. We call this
graph the coupled extension graph, E T1!2
ext

� �
. T1!2

ext , called a coupled
extended T-mesh, is constructed by adding the face extensions of
T1

ext to T2
ext .

To construct E T1!2
ext

� �
we augment E T2

ext

� �
by adding an addi-

tional edge to the graph if a T-junction face extension endpoint
in T2

ext is in the interior of a face extension from T1
ext of the same

directionality. In that case, a ‘‘loop edge’’ is drawn from the corre-
sponding node in E T2

ext

� �
to itself creating a small loop in the graph.

If T2
ext is analysis-suitable ðEðT2

extÞ is empty) then the only edges
which exist in E T1!2

ext

� �
are ‘‘loop edges.’’ The non-existence of loop

edges is a necessary condition that T1
ext #̂ T2

ext . If E T1!2
ext

� �
is an

empty graph then T 2 is analysis-suitable and T 1
s # T 2. The weight

of a coupled extension graph is the number of edges in the graph
and is denoted by W(E). The weight of a node is the number of
edges touching the node.

Fig. 9 illustrates the construction of a coupled extension graph
and its use in determining nestedness. An analysis-suitable ex-
tended T-mesh T1

ext is shown in Fig. 9a and T2
ext is shown Fig. 9b.

We construct the coupled extended T-mesh T1!2
ext in Fig. 9c. Notice

that in this case the only face extension from T1
ext which is visible (a

light gray dotted arrow in a box) corresponds to T-junction exten-
sion B in Fig. 9a. This indicates that the endpoint of T-junction
extension C in T2

ext (see Fig. 9b) is in the interior of T-junction
extension B in T1

ext (see Fig. 9a.) Fig. 9d shows E T1!2
ext

� �
. Since the

graph is not empty, T 1
s � T 2. In fact, the edges between different

nodes means the underlying extension graph E T2
ext

� �
is not empty

which implies that T 2 is not analysis-suitable. The loop edge which
begins and ends at node C indicates that T1

ext �̂ T2
ext .

4.2. A local refinement algorithm

The example in Fig. 9 motivates a simple approach to local
refinement. First, create T2 � T1

s . As in standard finite element
analysis, this is usually done by subdividing a set of T-mesh ele-
ments in T1

s . The T-mesh elements are often selected so as to re-
duce error in the finite element solution. If E T1!2

ext

� �
is not empty,

we must add some additional control points and edges to T2 to
cause E T1!2

ext

� �
to be empty.

To illustrate, Fig. 10a shows the T-mesh T2 from Fig. 9b, where
T 1

s � T 2 eventhough T1
s # T2. This can be seen by inspecting the

coupled extension graph in Fig. 9d. To ensure nestedness, addi-
tional refinement of T2 must be performed. Fig. 10b–d shows three
possible analysis-suitable refinements of T2 where the resulting
coupled extension graph E T1!2

ext

� �
is empty. The dashed edges and

open circles in Fig. 10 are T-mesh edges and vertices, respectively,
added during local refinement. The minimum of the three refine-
ments is shown in Fig. 10d, where only 6 vertices and 8 edges have
been added. We note that Fig. 10b is a NURBS refinement.

This example raises the question of how to devise an algorithm
for automatically finding the fewest additional control points and
edges that will cause E T1!2

ext

� �
to be empty. Finding the minimal

number is an NP-hard problem, so for efficiency, our algorithm
uses the following greedy strategy that only provides an approxi-
mate minimum. The following steps constitute our analysis-suit-
able local refinement algorithm:

1. Create T2 � T1
s .

2. Using T1
s and T2, form E T1!2

ext

� �
.

3. Of all possible insertion edges, add one into T2 for which the
weight of the resulting E T1!2

ext

� �
is smallest. An insertion edge

has a vertex that is a T-junction in T2 and the corresponding
node in the coupled extension graph has non-zero weight (see
Fig. 11.)

4. Repeat Step 3 until the weight of E T1!2
ext

� �
is zero.

5. Compute the refinement operator M, if desired. See Section 4.3.
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Fig. 9. Determining nestedness. (a) An analysis-suitable extended T-mesh T1

ext . (b) An extended T-mesh T2
ext (not analysis-suitable). (c) Superimposing the face extensions

from (a) on T2
ext to form T1!2

ext . Notice that the only face extension from T1
ext which is visible is in the light gray box. (d) The coupled extension graph for (c). The graph contains

edges which implies that T 1
s � T 2.
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Only one insertion edge is inserted during each iteration of the
refinement algorithm. Also, there are cases for which the weight
will stay the same or increase after the addition of the optimal
insertion edge. It should be noted that the algorithm will always
terminate, because in the limit, if all T-junctions are extended all
the way to a boundary edge, a NURBS is created.

We first demonstrate Steps 1–4 of analysis-suitable local refine-
ment on a simple example. Step 5 is explained in detail in Section
4.3. We begin with the analysis-suitable T-mesh T1

s shown in
Fig. 12a. In Fig. 12b, T1

s is refined by subdividing several T-mesh
elements. The coupled extension graph E T1!2

ext

� �
can then be con-

structed from the coupled extended T-mesh T1!2
ext as shown in

Fig. 12d and c, respectively. Notice that the weight of the graph
is 4 so nesting is not assured between T 1

s and T 2.
We now begin to add insertion edges to T2 until E T1!2

ext

� �
is

empty. The result of the first iteration of the algorithm is shown
in Fig. 13. The input coupled extension graph is shown in
Fig. 13a. The corresponding set of insertion edges is shown in
Fig. 13b. Notice that insertion edges are only created for T-junctions
where the weight of the corresponding node in E T1!2

ext

� �
is nonzero.

Each insertion edge is then added to T2 as a T-mesh edge and the
change in graph weight DW and total resulting graph weight W
are computed as shown in the Table of Fig. 13. The shaded cells
are the DWs which must be computed during this iteration. Since
this is the first iteration all must be computed. The insertion edge
with the largest DW is then selected and inserted into the T-mesh.
For this iteration, insertion edge K (the bold dashed line in Fig. 13b)
is inserted into T2. Notice that in this case insertion edge E could
also have been selected. Both have a DW of 2.

The second and final iteration of the algorithm is shown in
Fig. 14. The coupled extension graph is shown in Fig. 14a. Notice
the presence of the new T-mesh edge in T2 which corresponds to
insertion edge K from the previous step. The current insertion
edges are shown in Fig. 14b. There are now only three since the
previous iteration decoupled nodes A, J, and K. The current values
of DW and W are shown in the Table of Fig. 14. None of the DW
cells are shaded which indicates that the values are saved from a
previous iteration and not computed. In general, only a small num-
ber of DWs need to be computed during each step of local refine-
ment. The insertion edge with the largest DW is E which, when
inserted, drives the total weight of the graph to zero thus terminat-
ing the refinement process. The final refined T-mesh is shown in
Fig. 15. The new edges are the dashed lines. If desired, the refine-
ment operator M can be computed as described in Section 4.3.
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Fig. 10. Several analysis-suitable local refinements for the example in Fig. 9. The dashed edges and open circles are T-mesh edges and vertices, respectively, added during
local refinement. (a) The T-mesh T2 from Fig. 9b. (b) 18 vertices and 19 edges have been added. (c) 7 vertices and 8 edges have been added. (d) 6 vertices and 8 edges have
been added.
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Fig. 11. T-mesh edges which may be inserted during Step 3 of the local refinement algorithm. (a) The T-mesh T2. (b) The thick black dashed lines are edges which can be
inserted into T2. Notice that each of these edges has a vertex which is a T-junction in T2 and the corresponding node in the coupled extension graph has non-zero weight (see
Fig. 9d.) The thick black dashed lines are called insertion edges. The thin red dashed lines are examples of T-mesh edges which are not inserted to form a refined T-mesh
because they do not satisfy the requirements of an insertion edge. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 12. Initialization of a simple analysis-suitable local refinement example. (a) The initial analysis-suitable T-mesh before refinement. (b) Four T-mesh elements are
subdivided to form T2. (c) The coupled extended T-mesh T1!2

ext corresponding to (a) and (b). (d) The coupled extension graph E T1!2
ext

� �
. The graph is not empty so nesting does

not necessarily hold.
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4.3. Computing the refinement operator M

We now describe how the elements, mA,B, of a refinement oper-
ator, M, are computed. We recall that Steps 1–4 of the analysis-
suitable local refinement algorithm in Section 4.2 guarantee that
T 1

s # T 2
s and the existence of M. We note that all knot comparisons

between basis functions are made in a common knot coordinate
system defined in the index space of T2

s (see Section 2.2.2).
Before proceeding, we define several important index space

concepts. For a basis function, Nk
A 2 T

k
s , we can construct the index

vectors, CA;k ¼ Ci
A;k

n o2

i¼1
, where Ci

A;k ¼ sk;i
A;1; s

k;i
A;2; . . . ; sk;i

A;5

n o
and sk;i

A;j is

the index of ni
A;j in the index space of Tk. Using CA,k we can then de-

fine the index domain XI
A;k � R2 as

XI
A;k ¼ �

2

i¼1
XI;i

A;k; ð13Þ

where XI;i
A;k ¼ sk;i

A;1; s
k;i
A;5

h i
� R.

We first initialize all entries in M to zero. Then, for each N1
A 2 T

1
s

and N2
B 2 T

2
s such that XI

B;2 # XI
A;2, we insert ni

B;j into Ni
A if

s2;i
B;j R Ci

A;2; i ¼ 1;2; j ¼ 1;2; . . . ;5. This constructs refined local knot
vectors, NA ¼ Ni

A

� 	2

i¼1. We then apply basis function refinement
(see Section 2.4.1) using NA to generate the linear combination
N1
A ¼

Xm

k¼1

cA;kNk: ð14Þ

If there exists an Nk such that Nk � N2
B , then we set mA,B = cA,k. Note

that the index vectors and domains for N1
A are constructed using the

index space of T2
s . This is possible since T1

s # T2
s .

To illustrate, Fig. 16a shows a T-mesh, T1
s , where additional ver-

tices and edges (open circles and dashed lines) have been added
during the first four steps of the local refinement algorithm in
Section 4.2 to form T2

s . As a result T 1
s # T 2

s . The knot intervals used
in this example are shown next to the corresponding edges. The in-
dex space representation is shown in Fig. 16b. For simplicity we
choose a global knot coordinate system with an origin at (1,0) in
the index space of T2

s . We note that, in practice, the knot coordi-
nate system can be defined by the subset of knots in T2 which
define N1

A and N2
B.

We now compute mA,B, where the basis functions N1
A 2 T

1
s and

N2
B 2 T

2
s are associated with the vertices labeled A and B in

Fig. 16. In this case, the index vectors, with respect to the index
space of T2

s , are

CA;2 ¼
1;2;3;5;6
0;1;2;4;5

� �
ð15Þ



Fig. 13. The first local refinement iteration for the example in Fig. 12. (a) The input coupled extension graph. This graph has a weight of 4. (b) The corresponding insertion
edges. DW and W for each insertion edge are shown in the table. DW measures the change in graph weight after the edge is inserted into T2. W is the total graph weight after
the edge is inserted into T2. The shaded cells indicate DW values which were computed during this iteration. Insertion edge K minimizes the graph weight and is inserted into
the T-mesh as a T-mesh edge. Notice that in this case insertion edge E could also have been selected. Both have a DW of 2.

Fig. 14. The second and final local refinement iteration for the example in Fig. 12. (a) The input coupled extension graph. This graph has a weight of 2. (b) The corresponding
insertion edges. DW and W for each insertion edge are shown in the Table. DW measures the change in graph weight after the edge is inserted into T2. W is the total graph
weight after the edge is inserted into T2. Since no DW cells are shaded all values are saved from the previous refinement step (see Fig. 13.) Insertion edge E drives the graph
weight to zero and is inserted into the T-mesh as a T-mesh edge to complete the refinement process.
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and

CB;2 ¼
2;3;4;5;6
0;1;2;3;4

� �
: ð16Þ
The index domain, XI
A;2 ¼ ½1;6	 � ½0;5	, is the union of the dark and

lightly shaded rectangles in Fig. 16b and the index domain,
XI

B;2 ¼ ½2;6	 � ½0;4	, is the lightly shaded rectangle.



Fig. 15. The final refined T-mesh for the example in Fig. 12. The new edges and
vertices are the dashed lines and open circles, respectively.
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Fig. 16. Computing the refinement coefficient, mA,B. (a) The T-mesh, T1

s , consists of the
topology phase of analysis-suitable local refinement (steps 1–4 in Section 4.2) are denote
T 1

s # T 2
s . (b) The index space of T2

s . The index domain XI
A;2 ¼ ½1;6	 � ½0;5	 is the union of th

lightly shaded rectangle. The origin of the common knot coordinate system is (1,0) in the
(a) and (b).

Fig. 17. An analysis-suitable lo
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In this coordinate system, the local knot vectors for N1
A and N2

B

are

NA ¼
0;1;2;4;4
0;0;2;4;4

� �
ð17Þ

and

NB ¼
1;2;3;4;4
0;0;2;4;4

� �
: ð18Þ

Obviously, XI
B;2 # XI

A;2, and since s2;1
B;3 ¼ 4 and s2;2

B;4 ¼ 3 are not in C1
A;2

and C2
A;2 we insert the corresponding knots n1

B;3 ¼ 3 and n2
B;4 ¼ 4 into

N1
A and N2

A. This results in the refined local knot vectors

NA ¼
0;1;2;3;4;4
0;0;2;4;4;4

� �
: ð19Þ
A B

1 1 1 0
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(b)
solid circles and lines. The topology (control points and edges) added during the

d by the open circles and dashed lines, respectively. The topology phase ensures that
e dark and lightly shaded rectangles and the index domain XI

B;2 ¼ ½2;6	 � ½0;4	 is the
index space. The knot intervals for the common knot coordinate system are shown in

cal refinement framework.
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Applying the refinement equations, (6)–(8), to NA, in each univariate
direction, and taking the tensor product of the resulting coefficients
results in

N1
A ¼ cA;1N1 þ cA;2N2 þ cA;3N3 þ cA;4N4; ð20Þ

¼ 3
4

N1 þ
1
4

N3; ð21Þ

where

N1 ¼
0;1;2;3;4
0;0;2;4;4

� �
ð22Þ
Fig. 18. A T-spline container ship hull. The

Fig. 19. The regions of the container ship hull where analysis-suitable local refinemen
followed by highly localized refinement along the curve.

Fig. 20. The first iteration of analysis-suitable local refinement of the container ship hull i
refinement highlighted in red. The control points added during analysis-suitable local re
new control points are highlighted in red. (Note: Some of the T-mesh edges are hidden
legend, the reader is referred to the web version of this article.)
and

N3 ¼
1;2;3;4;4
0;0;2;4;4

� �
: ð23Þ

Since N3 � N2
B , we have that mA;B ¼ 1

4.

5. Applying analysis-suitable local refinement

We now explore the application and behavior of analysis-
suitable T-splines and local refinement. In this example, we use
analysis-suitable local refinement to transform an initial coarse
surface is C2-continuous everywhere.

t will be performed. First, refinement will be performed in the rectangular region

n Fig. 18. The Bézier elements are shown on the top with those elements selected for
finement are shown in the middle. The refined T-mesh is shown on the bottom. The

behind the ship hull.) (For interpretation of the references to colour in this figure



Fig. 21. The second iteration of analysis-suitable local refinement of the container ship hull in Fig. 18. The Bézier elements are shown on the top with those elements selected
for refinement highlighted in red. The control points added during analysis-suitable local refinement are shown in the middle. The refined T-mesh is shown on the bottom.
The new control points are highlighted in red. (Note: Some of the T-mesh edges are hidden behind the ship hull.) (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 22. The third iteration of analysis-suitable local refinement of the container ship hull in Fig. 18. The Bézier elements are shown on the top with those elements selected
for refinement highlighted in red. The control points added during analysis-suitable local refinement are shown in the middle. The refined T-mesh is shown on the bottom.
The new control points are highlighted in red. (Note: Some of the T-mesh edges are hidden behind the ship hull.) (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 23. The fourth iteration of analysis-suitable local refinement of the container ship hull in Fig. 18. The Bézier elements are shown on the top with those elements selected
for refinement highlighted in red. The control points added during analysis-suitable local refinement are shown in the middle. The refined T-mesh is shown on the bottom.
The new control points are highlighted in red. Notice that analysis-suitable local refinement remains localized to the Bézier elements selected for refinement. (Note: Some of
the T-mesh edges are hidden behind the ship hull.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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T-spline ship hull design into an analysis-suitable model. The anal-
ysis-suitable model can then be used directly in isogeometric anal-
ysis by way of Bézier extraction [47]. We note that this same
approach can also be used as an adaptive finite element solution
strategy. A demanding application of adaptive T-spline local refine-
ment in the context of a phase-field fracture model is described in
[57].

In Fig. 17, we schematically illustrate the process used to per-
form analysis-suitable local refinement. First, a set of Bézier ele-
ments, generated using Bézier extraction, is flagged by the user
or finite element solver. Next, the Bézier elements are used to iden-
tify corresponding T-mesh elements. We recall that several Bézier
elements may correspond to a single T-mesh element as described
Fig. 24. The fifth iteration of analysis-suitable local refinement of the container ship hull i
refinement highlighted in red. The control points added during analysis-suitable local re
new control points are highlighted in red. Notice that analysis-suitable local refinement r
T-mesh edges are hidden behind the ship hull.) (For interpretation of the references to c

Fig. 25. The sixth and final iteration of analysis-suitable local refinement of the containe
selected for refinement highlighted in red. The control points added during analysis-suita
The new control points are highlighted in red. (Note: Some of the T-mesh edges are hidde
refinements form a nested sequence of C2-continuous spline spaces. The geometry of th
colour in this figure legend, the reader is referred to the web version of this article.)
in Section 2.3 and shown in Fig. 17 on the left. The selected T-mesh
elements are then refined to generate T2 as described in Section
4.2. In this case, the T-mesh elements are simply subdivided. Once
the selected T-mesh elements are subdivided, Steps 2–5 of the lo-
cal refinement algorithm presented in Section 4.2 are applied. This
generates the final refined analysis-suitable T-spline space. Bézier
extraction is then performed resulting in a new set of Bézier ele-
ments. This process is then repeated until the resolution of the T-
spline is sufficient for the application.

The T-spline container ship hull in Fig. 18 is first designed using
the T-spline plugin for Rhino3d [58]. It is then transformed into an
analysis-suitable model using local refinement. T-splines are a
popular technology in ship hull design because an entire hull can
n Fig. 18. The Bézier elements are shown on the top with those elements selected for
finement are shown in the middle. The refined T-mesh is shown on the bottom. The
emains localized to the Bézier elements selected for refinement. (Note: Some of the
olour in this figure legend, the reader is referred to the web version of this article.)

r ship hull in Fig. 18. The Bézier elements are shown on the top with those elements
ble local refinement are shown below that. The refined final T-mesh is then shown.
n behind the ship hull.) The final Bézier element mesh is shown on the bottom. The

e hull is unchanged during the refinements. (For interpretation of the references to
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be modeled by a single watertight surface with a minimal number
of control points [59]. In analysis, however, far more degrees-of-
freedom are often required to capture the physical phenomenon
of interest. In other words, the initial T-mesh must undergo addi-
tional refinements to create models that satisfy the needs of
analysis.

To demonstrate the pertinent ideas, we assume that the final
analysis-suitable model of the hull must be sufficiently resolved
to capture the response of the ship in the two regions outlined in
Fig. 19. This will require refinements in the region of the hull cor-
responding to the rectangle followed by highly localized refine-
ments along the region corresponding to the curve. Six iterations
of refinement are performed as shown in Figs. 20–25. The initial
T-spline of the hull contains just 75 control points and 36 Bézier
elements.

The first iteration of local refinement of the ship hull is shown in
Fig. 20. A set of Bézier elements is selected for refinement as shown
on the top of Fig. 20. The refinement framework described in
Fig. 17 is then applied. First, the selected Bézier elements are used
to select corresponding T-mesh elements. These T-mesh elements
are subdivided and the local refinement algorithm described in
Section 4.2 is applied to the resulting subdivided T-mesh. The con-
trol points added during local refinement are shown in the middle
of Fig. 20. Notice that these control points remain localized to the
region of selected Bézier elements. The refined control mesh is
shown on the bottom of Fig. 20 with the new control points high-
lighted. The refined set of Bézier elements is then extracted from
the refined T-mesh as shown in Fig. 21 on the top. We note that
the transpose of the refinement operator, MT (see Sections 2.4.2
and 4.3), is used to update control point positions after each refine-
ment step. This ensures that the geometry and its parameterization
are preserved exactly.

The next five iterations of local refinement are shown in Figs.
21–25. In Figs. 21 and 22 the rectangular region in Fig. 19 under-
goes additional local refinement. In Figs. 23–25 highly localized
refinement is performed along the curve in Fig. 19. Notice that
the refinement pattern follows the curve without excessive propa-
gation of control points while preserving the C2-continuous analy-
sis-suitable T-spline basis. The fully resolved analysis-suitable
model has 1722 control points and 1922 Bézier elements. The final
Bézier mesh is shown in Fig. 25 on the bottom and the final T-mesh
is shown immediately above it. The sequence of C2-continuous T-
spline spaces is nested and the initial geometry is exactly pre-
served throughout.
6. Conclusion

Analysis-suitable T-splines address mathematical and practical
shortcomings observed when general T-spline spaces are used as a
basis for isogeometric analysis. Specifically, analysis-suitable T-
splines are linearly independent, form a partition of unity, and
can be locally refined without excessive propagation. We have
developed an analysis-suitable local refinement algorithm for this
class of T-splines, and implemented it for bicubic T-spline
surfaces.

We have also developed an efficient adaptive framework which
combines analysis-suitable T-splines, Bézier extraction, and analy-
sis-suitable local refinement. The sequence of refined spaces is
nested and exactly preserves the initial geometry. The basis of
the refined T-spline spaces maintains the smoothness of the initial
basis. We have demonstrated its effectiveness on a real-world
example of a ship hull design. The procedures described provide
a powerful methodology for instantiating the vision of isogeomet-
ric analysis. In future work, we plan to describe the analysis-
suitable treatment of ‘‘extraordinary points.’’.
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