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This paper presents a new perspective for constructing interpolatory subdivision from
primal approximating subdivision. The basic idea is constructing the subdivision rule
for new inserted vertices of a new interpolatory subdivision scheme based on an
approximating subdivision algorithm applied to a local configuration of the mesh with one
vertex updated for interpolation of the vertex. This idea is demonstrated by presenting two
new interpolatory subdivision schemes based on Catmull–Clark subdivision for an arbitrary
polygonal mesh and Loop subdivision for a triangular mesh, respectively. These algorithms
are simple and have a small stencil for computing new points. The new perspective also
shows a link between those classic approximating and interpolatory subdivision algorithms
such as cubic B-spline curve subdivision and the four-point interpolatory subdivision,
Catmull–Clark subdivision and Kobbelt’s interpolatory scheme, and Loop subdivision and
the butterfly algorithm.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Subdivision algorithms are a popular way to define and generate free-form curves and surfaces (Sabin, 2004; Warren
and Weimer, 2002). Given a sequence of vertices forming a polygon or a mesh, a subdivision scheme refines the polygon
or mesh by adding new vertices that are linear combinations of old ones and meanwhile keeping or changing the positions
of old vertices. As the refinement continues, the refined polygons or meshes converge to a limit curve or surface called the
subdivision curve or surface. A subdivision scheme is classified into an approximating one or an interpolatory one depending
on whether the old vertices move or not during each refinement step.

Many subdivision schemes were developed from splines and are usually approximating. Doo–Sabin and Catmull–Clark
subdivision schemes (Doo and Sabin, 1978; Catmull and Clark, 1978) generalize bi-quadratic and bi-cubic B-spline surfaces
to arbitrary topology. Like their B-spline counterparts, Doo–Sabin and Catmull–Clark subdivision surfaces only approximate
the control mesh. Loop subdivision scheme applies to triangular meshes and is a generalization of box-splines (Loop, 1987).
In 2000, Kobbelt introduced

√
3 scheme (Kobbelt, 2000) that refines a triangular mesh by inserting a new point in the

middle of each triangle, removing the old edges, and adding new edges connecting each new point to the corner vertices of
the triangle and to the neighboring new inserted points. Velho and Zorin used the similar idea in box-spline over 4-direction
grids, which leads to the 4–8 scheme (Velho and Zorin, 2001a, 2001b). The three-direction and four-direction schemes could
be combined to give mixed subdivision schemes (Stam and Loop, 2003; Peter and Shiue, 2004).
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For a subdivision scheme, if the positions of old vertices remain the same at each refinement step, the initial vertices are
always on the refined polygons or meshes, and thus on the limit curve or surface. Such a subdivision is an interpolatory one.
A famous interpolatory subdivision scheme is the four-point interpolatory subdivision for curve design, which recursively
inserts new points from every four consecutive points in the last set (Dyn et al., 1987). The four-point scheme was extended
to the triangular meshes, which resulted in the butterfly algorithm (Dyn and Levin, 1990). Zorin et al. further modified the
butterfly algorithm to improve the shape of subdivision surfaces (Zorin et al., 1996). The tensor-product extension of the
four-point scheme is Kobbelt’s interpolatory subdivision for quadrilateral meshes (Kobbelt, 1996). To construct a subdivision
surface interpolating the vertices of the initial mesh, another approach is to use an approximating subdivision scheme. The
idea is to find a new initial mesh such that its corresponding limit surface of the approximating subdivision scheme passes
through the required vertices. Nasri presented such an algorithm using Doo–Sabin subdivision (Nasri, 1987) and Halstead
et al. proposed an algorithm using Catmull–Clark subdivision (Halstead et al., 1993). Both methods require solving a system
of linear equations. Approaches of constructing the initial mesh without solving a linear system were also proposed (Zheng
and Cai, 2005; Zheng and Cai, 2006; Deng and Yang, 2010).

In this paper, we are interested in developing interpolatory subdivision schemes that apply to a given control mesh
directly to achieve interpolation. Since such interpolatory subdivision keeps the old vertices unmoved, the rules for the new
inserted vertices are crucial for delivering good shape of subdivision surfaces. In general, approximating subdivision schemes
produce better shape. Therefore we investigate how to construct interpolatory subdivision from approximating subdivision.

1.1. Related work

There has been a lot of work on constructing interpolatory subdivision algorithms from approximating subdivision al-
gorithms. Maillot and Stam presented a unified subdivision scheme for polygonal modeling (Maillot and Stam, 2001). The
scheme involves three steps: (1) (bi-)linearly subdivide the polygon or mesh; (2) smooth each vertex by an approximating
subdivision algorithm; and (3) push back the vertices to limit the amount of shrinking of the approximating subdivision. To
achieve interpolation, each smoothed vertex that corresponds to an old vertex is pushed back to the original position and
the amount of movement is used to determine the movement of the new inserted vertices in a (bi-)linear way. Note that
the amount of push-back is important for the derived subdivision. The (bi-)linear approach is very heuristic.

Li and Ma (2007) also proposed a general approach of constructing interpolatory subdivision from approximating subdi-
vision based on the addition of weighted averaging operations on the mask of an approximating scheme. The addition of
weighted averaging operations was motivated by a relation between the cubic B-spline curve refinement and the four-point
interpolatory subdivision. Three interpolatory subdivision schemes were produced from Loop subdivision, Catmull–Clark
subdivision and

√
3 subdivision, respectively.

Lin et al. (2008) discovered another relation between cubic B-spline and four-point subdivision rules. This relation gives
heuristic for constructing interpolatory subdivision from approximating subdivision.

Romani (2009) exploited the relation between the generating functions of an approximating subdivision scheme and
its related interpolatory subdivision scheme to convert three families of approximating subdivision schemes, which gener-
ate piecewise exponential polynomials, to curve interpolating schemes. These algorithms are able to reproduce important
analytical shapes and to generate highly smooth limit curves. However, it is not straightforward to extend them to surfaces.

1.2. Our work

Our work is also motivated by a new observation about the cubic B-spline curve refinement and the four-point inter-
polatory subdivision. The observation gives us heuristics to develop an alternative approach for constructing interpolatory
subdivision schemes from approximate subdivision schemes. The basic idea is to locally construct an approximation for each
vertex which can be used to compute the contribution of the vertex to the new inserted points (such as face points or edge
points) using approximating schemes, and then to average all the contributions for the interpolatory subdivision scheme.
The approach is simple and avoids complex computation when deriving new interpolating subdivision masks. We have ap-
plied the idea to several classic approximating subdivision schemes such as Catmull–Clark subdivision, Loop subdivision and√

3 subdivision.
Our approach is similar to the approach of Lin et al. (2008). The interpolatory

√
3 subdivision derived from our approach

is the same as the one derived from the approach of Lin et al. (2008). However, while our approach with Catmull–Clark
subdivision and Loop subdivision can give the same refinement in the regular case as Kobbelt’s interpolatory subdivi-
sion (Kobbelt, 1996) and the modified butterfly subdivision (Zorin et al., 1996), the approach in Lin et al. (2008) gives
different rules. In addition, the stencil for edge points in Lin et al. (2008) is usually very large. For example, an edge point
in the scheme deduced from Catmull–Clark subdivision in Lin et al. (2008) needs at least 6 × 5 neighboring vertices, which
has been shown in Fig. 4. The experiments show that the subdivision results generated by our approach are comparable to
those generated by previous work such as Kobbelt’s interpolatory subdivision (Kobbelt, 1996) and Lin et al.’s interpolatory
subdivision (Lin et al., 2008).

The main contribution of the paper is twofold: (1) we present a new relation between cubic B-spline curve subdivision
and the four-point interpolatory subdivision and (2) we present an alternative method for constructing interpolatory subdi-
vision from approximating subdivision. Our work also provides a link between those classic approximating and interpolatory
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Fig. 1. The relation between cubic B-spline curve refinement and the four-point interpolatory subdivision.

subdivision algorithms such as Catmull–Clark subdivision and Kobbelt’s interpolatory scheme, and Loop subdivision and the
butterfly algorithm.

The rest of the paper is organized as follows. Section 2 explains our new approach for constructing interpolatory
subdivision from approximating subdivision. Section 3 presents two interpolatory subdivision schemes constructed from
Catmull–Clark subdivision and Loop subdivision to demonstrate the proposed approach. The continuity analysis is discussed
in Section 4. Section 5 concludes the paper.

2. From approximation to interpolation

This section first explains a new observation about the cubic B-spline curve refinement and the four-point interpolatory
subdivision. Then an alternative approach for modifying approximating subdivision scheme to derive interpolatory subdivi-
sion schemes is presented.

2.1. A new observation

Consider four consecutive points P0, P1, P2 and P3. The four-point interpolatory subdivision computes a new edge point
R as a linear combination of them (refer to Fig. 1):

R = 9

16
(P1 + P2) − 1

16
(P0 + P3). (1)

A new observation is that the edge point R can also be derived by cubic B-spline curve refinement. In fact, we first
compute a temporary point Q 1 such that the limit position of a uniform cubic B-spline curve with control points P−1, P0,
Q 1, P2 and P3 corresponding to Q 1 is P1 (see Fig. 1(b)). Since

P1 = 2

3
Q 1 + 1

6
P0 + 1

6
P2, (2)

Q 1 = 3

2
P1 − 1

4
P0 − 1

4
P2. (3)

Then we apply cubic B-spline curve refinement to edge Q 1 P2 to compute an edge point E1:

E1 = 1

2
Q 1 + 1

2
P2 = 3

4
P2 + 3

8
P1 − 1

8
P0. (4)

Similarly, we can also compute Q 2 and E2 (see Fig. 1(c)):

Q 2 = 3

2
P2 − 1

4
P1 − 1

4
P3, (5)

E2 = 1

2
Q 2 + 1

2
P2 = 3

4
P2 + 3

8
P1 − 1

8
P3. (6)

It is easy to find that the edge point R is actually the average of the two temporary edge points E1 and E2.

2.2. An alternative approach

The observation in Section 2.1 gives a heuristic for deriving interpolatory subdivision rules from approximating subdivi-
sion rules.

A subdivision scheme involves two parts: topological rules and geometric rules. The topological rules specify how the
new inserted vertices and the existing vertices are connected to form a new mesh. Fig. 2 shows three examples of classic
topological rules. Fig. 2(a), (b) are two face-splitting rules (for Catmull–Clark subdivision and Loop subdivision, respectively),
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Fig. 2. Three examples of classic topological subdivision rules.

Fig. 3. Processes of the new interpolatory scheme. (a) Compute the contribution of each vertex to the neighboring face points and edge points. (b) Compute
the face point as the average of the face contributions from the vertices of the face. (c) Compute the edge point as the average of the contributions from
the two end vertices of the edge.

with which each face of the mesh is split into several sub-faces. Fig. 2(c) is the refinement rule of
√

3 subdivision, with
which a new point is inserted in the middle of each triangle, the old edges are removed, and new edges are generated.

Note that when we construct interpolatory subdivision from approximating subdivision, the topological rules for inter-
polatory subdivision have already been specified by those for approximating subdivision. For example, the topological rules
for Loop subdivision and the butterfly subdivision are the same, and the topological rules for the

√
3 subdivision and the

interpolatory
√

3 subdivision (Labsik and Greiner, 2000) are the same. Therefore we only need to focus on geometric rules
that specify the positions of the new inserted vertices and the old vertices. According to the heuristic we derived earlier, we
can have a new method to construct an interpolatory subdivision scheme from a prime approximating subdivision scheme.
The geometric rules are as follows:

(1) Compute a temporary point for each vertex such that the limit position of the temporary point when an approximating
subdivision applies to a local configuration of the vertex with the vertex replaced by the temporary point is the same
as the position of the vertex.

(2) Compute the contributions of the temporary point to all neighboring face points, edge points when the approximating
subdivision is applied once (see Fig. 3(a)).

(3) Compute the new face point for each face as the average of the contributions from the vertices of the face (see Fig. 3(b)).
(4) Compute the edge point for each edge as the average of contributions from two end points of the edge (see Fig. 3(c)).

3. Interpolatory subdivision scheme construction

In this section, we demonstrate our proposed approach by presenting two new interpolatory subdivision schemes based
on Catmull–Clark subdivision and Loop subdivision, respectively. The topological rules for the new interpolatory schemes
are exactly the same as those for the corresponding approximating schemes.

3.1. Interpolatory scheme based on Catmull–Clark subdivision

The interpolatory subdivision scheme for quadrilateral meshes was first introduced by Kobbelt in Kobbelt (1996). The
masks for the regular case are exactly the tensor product of standard four-point interpolatory subdivision rules. The rules
for an irregular vertex are achieved by introducing a virtual point to make both possible ways to compute face points from
edge points by applying the standard four-point rules lead to the same result. For example, in Fig. 4(a), using the four-point
rules for edge points Ei

h and Ei
v to compute face point F will obtain the same result. However, the scheme applies only to

quadrilateral meshes. To apply the scheme to an arbitrary mesh, a pre-computing step is needed to convert the mesh into
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Fig. 4. Kobbelt rules (Kobbelt, 1996) and Lin et al.’s rules (Lin et al., 2008). The right figure shows the support for computing an edge point in red. (For
interpretation of colors in this figure, the reader is referred to the web version of this article.)

Fig. 5. The new interpolatory subdivision scheme based on Catmull–Clark subdivision scheme.

a quadrilateral mesh. The scheme has been improved in Li et al. (2004) to make the limit surface at extraordinary vertices
have bounded curvature.

Lin et al. (2008) deduced an interpolatory subdivision scheme from Catmull–Clark subdivision. The rules are illustrated
in Fig. 4(b) and (c). Its refinement rules are different from the four-point rules even for a tensor-product mesh. Moreover,
the support for computing edge points is quite large. Fig. 4(c) shows all the control points that will contribute to the red
edge point.

Here we provide a new interpolatory subdivision scheme based on Catmull–Clark subdivision. Refer to Fig. 5(a). Suppose
that a vertex V has n neighboring faces. Denote the n adjacent vertices by Ei , i = 1,2, . . . ,n, and the other vertices of the
i-th face by Ci,1, . . . , Ci,ni . Based on the geometric rules presented in Section 2, we need to compute the contributions of
each vertex for the neighboring face points and edge points, which is given below.

(1) Notice that points Ei only influence one direction. So we first compute Di such that the limit position of cubic B-spline
refinement of Ci−1,ni−1 , Di and Ci,1 is Ei :

Di = 3

2
Ei − 1

4
Ci−1,ni−1 − 1

4
Ci,1.

(2) Compute point C such that the limit position of C using Catmull–Clark subdivision with control points Di and Ci, j ,
j = 1,2, . . . ,ni , is V . That is,

V = n − 1

n + 5
C + 2

n(n + 5)

n∑
i=1

Di + 4

n(n + 5)

n∑
i=1

Fi (7)

where Fi = 1
ni+3 (C + Di + Di+1 + ∑ni

j=1 Ci, j). Thus, C is the combination of V and all Di and Ci, j :

C = 1

α
V − 4

n(n + 5)α

(
n∑

i=1

(
1

ni + 3
+ 1

ni−1 + 3

)
Di +

n∑
i=1

1

ni + 3

ni∑
j=1

Ci, j

)
,

with α = n−1
n+5 + 4

n(n+5)

∑n
i=1

1
ni+3 .

(3) Compute the contribution f i for the i-th face point as the average of all the vertices of that face, i.e.,
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Fig. 6. (a) The origin meshes. (b) The results using the scheme in Kobbelt (1996). (c) The results using scheme in Lin et al. (2008). (d) The results using the
proposed scheme.

f i = 1

ni + 3

(
C + Di +

ni∑
j=1

Ci, j + Di+1

)
. (8)

(4) According to step one, the contribution ei for the i-th edge point should be computed as average in one direction and
limit position of cubic B-spline refinement in the other direction. So ei is the linear combination of C , Di , Di−1, Di+1,
Ci−1,ni−1 and Ci,1, i.e.,

ei = 1

2

(
2

3
C + 1

6
Di−1 + 1

6
Di+1

)
+ 1

2

(
2

3
Di + 1

6
Ci−1,ni−1 + 1

6
Ci,1

)

= 1

3
C + 1

6
Di + 1

12
(Di−1 + Di+1 + Ci−1,ni−1 + Ci,1).

Compared with previous two subdivision schemes (Kobbelt, 1996; Lin et al., 2008), our new interpolatory scheme has
the following properties:

• It is suited for arbitrary polygon meshes.
• The scheme also has the same property as that in Kobbelt (1996). Both possible ways to compute a face point from

edge points by applying the standard four-point rules lead to the same result. As illustrated in Fig. 5(b), face point F is
the result of applying four-point rules to edge points Ei

h , i = 1, . . . ,4. It is also equal to that of applying four-point rules
to edge points Ei

v , i = 1, . . . ,4.

Fig. 6 shows two examples that are the results created by the proposed method and the methods in Kobbelt (1996) and
Lin et al. (2008). Figs. 7 and 8 show the reflection lines, discrete Gaussian curvature and mean curvature of the subdivision
surfaces created by the proposed method and the methods in Kobbelt (1996) and Lin et al. (2008).

3.2. Interpolatory scheme based on Loop subdivision

Now we present a new interpolatory scheme for triangular meshes based on Loop subdivision. Suppose that vertex V
has n neighboring vertices Ei , i = 1, . . . ,n. The computation of contribution ei of vertex V to the neighboring edge points
is given below.

(1) Compute a vertex C such that the limit position of C and Ei is V using Loop subdivision, i.e.,

V = (1 − nχ)C + χ

n∑
i=1

Ei

where χ = 8β
3+8nβ

and β = 1
n ( 5

8 − ( 3
8 + 1

4 cos( 2π
n ))2) in Loop’s original choice (Loop, 1987) and β = 3

8n for n > 3 and

β = 3
16 for n = 3 in Warren’s choice (Warren and Weimer, 2002). Thus,

C = V

1 − nχ
− χ

1 − nχ

n∑
i=1

Ei .
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Fig. 7. The reflection lines, Gaussian curvature and mean curvature for the subdivision surfaces created by three different methods. Left: Kobbelt’s
method (Kobbelt, 1996). Middle: Lin et al.’s method (Lin et al., 2008). Right: the proposed method.

Fig. 8. The reflection lines of subdivision surfaces created by Kobbelt’s method (Kobbelt, 1996) (left), Lin et al.’s method (Lin et al., 2008) (middle), and the
proposed method (right).

(2) Compute the contribution for the edge point ei using Loop subdivision scheme with control points C , Ei−1, Ei and Ei+1,
i.e.,

ei = 3

8
C + 3

8
Ei + 1

8
Ei−1 + 1

8
Ei+1 = 3V

8(1 − nχ)
− 3χ

8(1 − nχ)

n∑
i=1

Ei + 3

8
Ei + 1

8
Ei−1 + 1

8
Ei+1.

Remark 1. If n = 6, the masks for edge points are a = 17
32 , b = 1

16 , c = − 1
32 and d = − 1

32 . Here a,b, c,d are the coefficients
for the vertices in Fig. 9(b). This is exactly the same as the modified butterfly scheme in Zorin et al. (1996) with weight
w = − 1

32 .

Remark 2. According to Loop’s choice, E1 can be computed by equation E1 = (1 − ∑n
i=1 si)V + ∑n

i=1 si Ai , where s1 =
3n−5+8T 2

8n , s2 = sn = n−5+8T 2

8n and the other si = − 5−8T 2

8n . Here T = 3
8 + 1

4 cos( 2π
n ).

Fig. 10 shows several examples with modified butterfly scheme (Zorin et al., 1996) and our proposed interpolatory
scheme. Fig. 11 shows the reflection lines for the subdivision surfaces of the butterfly scheme (Dyn and Levin, 1990), the
modified butterfly scheme (Zorin et al., 1996) and the proposed scheme.
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Fig. 9. The notations for the new interpolatory scheme based on Loop subdivision scheme.

Fig. 10. (a) The initial control grids. (b) The results of the modified butterfly schemes (Zorin et al., 1996). (c) The results of the proposed scheme.

3.3. Subdivision rules for boundary

This section discusses how to construct subdivision rules for boundaries for the two proposed interpolatory schemes.
Refer to Fig. 12. Suppose that V E1 and V En are two boundary edges. In the following, we give the details of computing the
contribution to the neighboring face points or edge points from vertex V . These rules are very simple and similar to the
rules for interior vertices except for the method of computing point C and the boundary edge contributions.

For the interpolatory subdivision scheme from Catmull–Clark scheme, the boundary rules are as follows:

(1) Compute Di for i = 2, . . . ,n for each Ei with the same formula as that in Section 3.1.
(2) Compute C = 3

2 C − 1
4 (A1 + An).

(3) Compute the contribution f i for the face points using exactly the same formula in Section 3.1 using the new point C .
(4) Compute the contribution for the edge points using exactly the same formula in Section 3.1 for ei , i = 2,3, . . . ,n − 1.

For e1 and en , we compute them by e1 = C+E1
2 and en = C+En

2 .

For the interpolatory subdivision scheme from Loop scheme, the boundary rules include the following steps.
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Fig. 11. The reflection lines for the subdivision surfaces of the original butterfly scheme (left), the modified butterfly scheme (middle) and our proposed
scheme (right).

Fig. 12. The boundary rules for the new interpolatory subdivision schemes.

Fig. 13. Examples of applying the proposed interpolatory subdivision from Catmull–Clark scheme to meshes with boundaries.

(1) Compute C = 3
2 C − 1

4 (A1 + An).
(2) Compute the contribution for the edge points using exactly the same formula in Section 3.1 for ei , i = 2,3, . . . ,n − 1.

For e1 and en , we compute them by e1 = C+E1
2 and en = C+En

2 .

Fig. 13 shows several examples of applying the proposed interpolatory subdivision from Catmull–Clark scheme to arbi-
trary polygon meshes with boundaries. Fig. 14 shows the results of applying the proposed interpolatory subdivision from
Loop scheme to the same models with triangulation. The initial control meshes are also displayed with the resulting sur-
faces.
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Fig. 14. Examples of applying the proposed interpolatory subdivision from Loop scheme to triangular meshes with boundaries.

Table 1
The first three leading eigenvalues of our new interpolatory subdivision schemes.

Scheme in Section 3.1 Scheme in Section 3.2

λ1 = λ2 λ3 λ1 = λ2 λ3

n = 3 0.4326 0.2469 0.2664 0.25
n = 4 0.5 0.25 0.3906 0.2604
n = 5 0.5339 0.3704 0.4588 0.2547
n = 6 0.5533 0.4326 0.5 0.25
n = 7 0.5655 0.4727 0.5264 0.3390
n = 8 0.5735 0.5 0.5441 0.3906
n = 9 0.5791 0.5195 0.5566 0.4292

Fig. 15. Visualization of characteristic maps of the new interpolating subdivision based on Catmull–Clark scheme for valence n = 3, 5, 6, 7, 8, 9.

4. Continuity analysis

This section provides some numerical verification for continuity analysis, while a complete analysis need to be worked
out, which we leave for future work. We construct the local refinement matrix for valence n = 3,4, . . . ,9, and then use
Matlab to compute the eigenvalues and eigenvectors of the matrix. Table 1 lists the first three eigenvalues of the two
proposed interpolatory subdivision schemes based on Catmull–Clark subdivision and Loop subdivision. Denote the (i + 1)-th
eigenvalue by λi with λi � λi+1. It can be seen that the eigenvalues satisfy λ0 = 1 and |λ1| = |λ2| > |λ3| for n = 3,4, . . . ,9,
which is the necessary condition for C1 continuity (Reif, 1995; Zorin, 1997).

The local regularity of the subdivision surface at extraordinary vertices requires the injectivity of the characteristic map.
Figs. 15 and 16 show samples of iso-parameter lines for these maps in the vicinity of irregular vertices, which indicate the
injectivity.

5. Conclusions

The paper presents a new observation on the four-point interpolatory subdivision and uniform cubic B-spline curve
refinement. The observation is that the four-point interpolatory subdivision scheme can be derived as an average of two
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Fig. 16. Visualization of characteristic maps of the new interpolating subdivision based on Loop scheme for valence n = 3, 4, 5, 7, 8, 9.

spline segments. A heuristic is thus derived from the observation, which allows to construct interpolatory subdivision
schemes from approximating subdivision schemes. Two new interpolatory subdivision schemes are presented based on
Catmull–Clark subdivision and Loop subdivision to demonstrate the heuristic. The properties of the proposed interpolatory
subdivision schemes and their comparison with the existing methods are discussed. In particular, the proposed methods
have smaller support and reproduce common interpolatory schemes in the regular case. Finally, our work also provides a
new geometric interpretation for some of classic subdivision schemes, especially for the relation between Catmull–Clark
subdivision and Kobbelt’s interpolatory subdivision, and Loop subdivision and the butterfly subdivision.
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