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a b s t r a c t

This paper presents a new curve subdivision algorithm called interproximate subdivision
for generating curves that interpolate some given vertices and approximate the other
vertices. By the interproximate subdivision, only the vertices specified to be interpolated
are fixed and the other vertices are updated at each refinement step. The refinement
rules are derived to ensure that the eigenvalues of the refinement matrix satisfy the
necessary condition of C2 continuity. The interproximate subdivision also contains tension
parameters assigned to vertices or edges for shape adjustment. Compared to the 4-point
interpolatory subdivision scheme, the interproximate subdivision does not force the new
inserted vertices to be interpolated and is thus expected to have improved behavior; and
compared to the cubic B-spline refinement scheme, the interproximate subdivision is able
to generate curves interpolating user-specified vertices. In addition, the paper also presents
two extensions of the interproximate subdivision: one automatically adapts the tension
parameters locally according to the geometry of the control polygon during the refinement
to achieve convexity preservation and the other automatically relaxes the interpolating
property of some vertices to achieve better shape behavior.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Subdivision is a process that starts from a given control polygon and recursively refines the polygons by adding new
vertices as linear combinations of old vertices and meanwhile fixing or updating the positions of the old vertices [1]. The
process results in a sequence of refined polygons that converges to a limit curve. It is a simple and popular way to generate
freeform curves. In general, subdivision schemes can be divided into two categories: approximate and interpolatory.
Approximate subdivision generates curves that approximate the control polygons. Two well-known approximate curve
subdivision schemes are Chaikin’s algorithm [2] and the cubic B-spline refinement algorithm based on knot insertion of
B-splines [3]. These algorithms actually produce uniform quadratic and cubic B-spline curves with C1 continuity and C2

continuity, respectively. Interpolatory subdivision does not move the existing vertices at each refinement step and thus the
limit curve interpolates the vertices of the given control polygon. A famous interpolatory curve subdivision algorithm is the
4-point interpolatory subdivision scheme (or 4-point scheme for shorthand) [4] whose functional version was described
by Dubuc [5]. The 4-point scheme is very simple and intuitive, but generates only C1 continuous limit curves. Various
modifications on the 4-point scheme have been proposed to improve the quality of curve shapes. For example, Marinov et al.
presented geometrically controlled 4-point schemes in which the tension parameters vary according to the local geometry
in each subdivision step [6]. Dyn et al. revised the 4-point refinement rules based on iterated chordal and centripetal
parameterization [7]. Augsdörfer et al. presented six variants of the 4-point scheme based on a three stage construction [8].
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Fig. 1. A subdivision curve interpolates some control vertices shown by squares and approximates the others shown by spheres.

However, one case has been missed out, in which a subdivision curve is required to interpolate some given vertices,
but is only required to approximate the other vertices (see Fig. 1). This is useful in many applications such as the shape
reconstruction where some of the sample data contain noise. In this paper, we develop subdivision algorithms for this case,
which we call interproximate subdivision. The term ‘‘interproximate’’ originally appeared in [9], where an interproximate
spline curve was constructed to interpolate several given points and pass through some specified regions at other points.
Nevertheless, we here do not specify regions at the points that are approximated.

This paper is also motivated by an apparent observation that in order to accomplish the purpose of interpolating given
control points, there is no need for a subdivision scheme to freeze those vertices inserted during the refinement although
the 4-point scheme always fixes all the old vertices at each subdivision step. With the interproximate subdivision, only
the initially given control points are frozen, the inserted vertices during the refinement are relaxed from the interpolation
requirement and thus they can be updated by some low-pass filters in the subsequent subdivision iterations. We postulate
that this can lead to improved behavior.

Since the 4-point and cubic B-spline refinement schemes are two representative schemes of interpolatory and
approximate subdivision, respectively, it is tempting to combine them to construct the interproximate subdivision. The
idea of combining the 4-point and cubic B-spline refinement schemes has been explored in [10,11], where the results of the
4-point and cubic B-spline refinement schemes at each refinement step are linearly blended and consequently a smoother
limit curve is yielded. Different in spirit from these approaches, our interproximate scheme combines the two subdivision
schemes in a new way that for a portion of the control polygon consisting of vertices required to be interpolated, the
4-point scheme is used; for a portion consisting of vertices required only to be approximated, the cubic B-spline subdivision
is used; and for a portion connecting an interpolatory vertex and an approximate vertex, new rules are applied. The new
rules are derived to assure that the eigenvalues of the refinement matrix satisfy the necessary condition of C2 continuity.
As a result, the interproximate subdivision bridges the gap between the 4-point interpolatory subdivision and the cubic
B-spline approximate subdivision. When all the vertices of a given control polygon are not required to be interpolated, the
interproximate subdivision reduces to the cubic B-spline refinement. The interproximate subdivision also provides tension
parameters that can be used to adjust the shape of the limit curve. Furthermore, two extensions of the interproximate
subdivision are presented, which automatically adapt the tension parameters locally according to the geometry of the
control polygon during the refinement to achieve convexity preservation and automatically relax the interpolating property
of some vertices to achieve better shape behavior, respectively. The experiment shows that the interproximate subdivision
usually produces curves with better curvature behavior than the 4-point scheme.

2. Interproximate subdivision

This section first reviews the 4-point and cubic B-spline refinement schemes, and then derives geometric rules for
interproximate subdivision. Based on the derived geometric rules, an interproximate subdivision algorithm is presented,
which is followed by continuity analysis.

2.1. 4-point scheme

Given a control polygonwith vertices {Pk
i }where k denotes the subdivision level and i is the index of vertices, the 4-point

scheme generates a refined polygon with vertices {Pk+1
i } by the following rules:Pk+1

2i+1 = (Pk
i + Pk

i+1)


1
2

+ w


− (Pk

i−1 + Pk
i+2)w

Pk+1
2i = Pk

i

(1)

where w is a tension parameter.
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Fig. 2. Refinement in the neighborhood of an ‘I ’ vertex Pk
i depicted by a square.

The refined polygon is then regarded as a new control polygon and the same rules apply to it, and so on repeatedly,
resulting in a sequence of polygons that converges to a limit curve. It is known that the 4-point scheme generates a C1

continuous limit curve for 0 < w < 1
8 . In general, w =

1
16 is a popular choice, which gives the best continuity properties

and positions Pk+1
2i+1 on the Lagrange cubic through Pk

i−1, P
k
i , P

k
i+1 and Pk

i+2.

2.2. Cubic B-spline refinement

B-splines can be refined. In particular, assume a uniform cubic B-spline curve is defined by control points {Pk
i }. The

polygon consisting of {Pk
i } approximates the B-spline curve. If we insert a new knot midway through each knot interval,

we obtain a new set of control points {Pk+1
i } which can be computed by the refinement rules:

Pk+1
2i+1 =

Pk
i + Pk

i+1

2

Pk+1
2i =

1
2
Pk
i +

1
2
Pk+1
2i−1 + Pk+1

2i+1

2
.

(2)

The new control points together with a denser knot vector define the same B-spline curve. The new control points
also form a refined polygon that is closer to the B-spline curve than the original control polygon. This refinement process
continues, resulting in a sequence of refined polygons that converges to the B-spline curve.

2.3. Geometric rules for interproximate subdivision

One common pattern of the 4-point and cubic B-spline refinement schemes is that for each edge a new vertex called an
edge point is created and each vertex in the old vertex sequence has a corresponding vertex called a vertex point in the new
vertex sequence. For the 4-point scheme, each edge point is a linear combination of 4 old vertices and each vertex point
is the same as an old vertex. For the cubic B-spline refinement scheme, each edge point is a linear combination of 2 old
vertices and each vertex point is a linear combination of 3 old vertices. Now we devise geometric rules for interproximate
subdivision by mixing the 4-point and cubic B-spline refinement schemes. Our objective is to make refinement rules have a
pattern similar to that of the 4-point and cubic B-spline refinement schemes and to generate good curve shapes.

Given a vertex sequence {Pi}, we classify the vertices into two categories: interpolatory and approximate. An
interpolatory vertex is labeled by ‘I ’ and remains at the same location during the refinement as in the 4-point scheme. An
approximate vertex is labeled by ‘A’ and is replaced by a new vertex that is a linear combination of the approximate vertex
itself and the two neighboring new edge points as in the cubic B-spline refinement scheme. For an edge, there are three
situations. The first situation is that the edge is bounded by two ‘I ’ vertices. Then we use the 4-point scheme to create the
new edge point. The second situation is that the edge is bounded by two ‘A’ vertices. We use the cubic B-spline refinement
scheme to create the new edge point. The third situation is that the edge is bounded by one ‘I ’ vertex and one ‘A’ vertex. In
this case we need a new rule. We let the new edge point be a linear combination of three vertices among which one is the ‘I ’
vertex and the other two are on the ‘A’ vertex side including the ‘A’ vertex itself. This rule is kind of a mixture of the 4-point
and cubic B-spline refinement schemes.

We next determine the coefficients of the linear combinations described above. Consider five successive vertices
Pk
i−2, P

k
i−1, P

k
i , P

k
i+1 and Pk

i+2 where Pi is an ‘I ’ point. Noting that our basic idea is that the new edge points are not needed
to be interpolated, we assume that the other four vertices and Pi−3, Pi+3 as well are ‘A’ vertices without loss of general-
ity. After refinement, we have five new vertices Pk+1

2i−2, P
k+1
2i−1, P

k+1
2i , Pk+1

2i+1 and Pk+1
2i+2 (see Fig. 2). They are linear combina-

tions of Pk
i−2, P

k
i−1, P

k
i , P

k
i+1 and Pk

i+2. In particular, Pk+1
2i = Pk

i ; P
k+1
2i−1 = αPk

i−1 + (1 − α − β)Pk
i + βPk

i+1 where α and β

are two coefficients and the coefficients of Pk
i−1, P

k
i , P

k
i+1 sum to one to ensure that the rule is translation-invariant; and

Pk+1
2i−2 = (1 − γ )Pk

i−1 + γ
Pk+1
2i−3+Pk+1

2i−1
2 =

γ

4 P
k
i−2 + (1 −

3γ
4 +

αγ

2 )Pk
i−1 +

(1−α−β)γ

2 Pk
i +

βγ

2 Pk
i+1 where γ is another coefficient.
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Fig. 3. Four cases for a new edge point.

Pk+1
2i+1 and Pk+1

2i+2 can be obtained by symmetry. These linear relationships can be written by

[Pk+1
2i−2, P

k+1
2i−1, P

k+1
2i , Pk+1

2i+1, P
k+1
2i+2]

T
= M[Pk

i−2, P
k
i−1, P

k
i , P

k
i+1, P

k
i+2]

T (3)

where

M =



γ

4
1 −

3γ
4

+
αγ

2
(1 − α − β)γ

2
βγ

2
0

0 α 1 − α − β β 0
0 0 1 0 0
0 β 1 − α − β α 0

0
βγ

2
(1 − α − β)γ

2
1 −

3γ
4

+
αγ

2
γ

4

 (4)

is a 5×5matrix called the refinement matrix. The refinement matrix is useful in analyzing the continuity of the limit curve.
Suppose the five eigenvalues of the matrix are λ0, λ1, λ2, λ3 and λ4 in a decreasing order, where λ0 = 1. The necessary
condition for a subdivision scheme to produce a smooth curve with bounded curvature at Pi is λ2

1 = λ2 > λ3 (referring
to [12] or [1]). By simple calculation, we can obtain the five eigenvalues of M : 1, γ

4 ,
γ

4 , α − β and α + β . Examining the
4-point and cubic B-spline refinement schemes, we can assume that α > 0 and β ≤ 0. Then α − β ≥ α + β . Hence we
choose λ0 = 1, λ1 = α −β, λ2 = α +β, λ3 =

γ

4 and λ4 =
γ

4 . Moreover, we require that (α −β)2 = α +β and α +β >
γ

4 .
Weparameterizeα andβ by introducing δ and lettingα−β = δ. Thenα+β = δ2. Solving forα andβ givesα = (δ2

+δ)/2
and β = (δ2

− δ)/2. Moreover, it is derived from (α −β)2 = α +β ≤ α −β < 1 and α −β > 0 that δ ∈ (0, 1). In addition,
γ should be less than 4δ2. Therefore we let γ = 4cδ2 where c ∈ (0, 1) is a constant. In general, we just simply let c =

1
2 ,

which conforms to the cubic B-spline refinement where δ =
1
2 .

Furthermore, the parameter δ has a geometric meaning, which is described in the following theorem.

Theorem 1. Let q(s) be a quadratic polynomial curve that interpolates Pk
i−1, P

k
i and Pk

i+1 at s = −1, 0 and 1, respectively. Then
the new edge points Pk+1

2i+1 and Pk+1
2i−1 defined in (3) lie on curve q(s) at s = δ and s = −δ, respectively.

Proof. Let q(s) = q0 + q1 s + q2 s2. Then q(−1) = Pk
i−1, q(0) = Pk

i and q(1) = Pk
i+1, from which we get q0 = Pk

i , q1 =

Pki+1−Pki−1
2 , q2 =

Pki−1+Pki+1
2 −Pk

i . Thus q(δ) = q0+q1δ+q2δ2
=

δ2−δ
2 Pk

i−1+(1−δ2)Pk
i +

δ2+δ
2 pki+1 = βPk

i−1+(1−α−β)Pk
i +αPk

i+1.
Similarly, q(−δ) = q0 − q1δ + q2δ2

= αPk
i−1 + (1 − α − β)Pk

i + βPk
i+1. This completes the proof. �

To sum up, we define geometric rules for our interproximate refinement as follows:

(1) New edge point Pk+1
2i+1 is computed based on the following four cases (see Fig. 3).

(1.a) Both Pk
i and Pk

i+1 are labeled by ‘I ’:

Pk+1
2i+1 =


1
2

+ wi


(Pk

i + Pk
i+1) − wi(Pk

i−1 + Pk
i+2) (5)

where wi is a parameter assigned to edge Pk
i P

k
i+1.

(1.b) Pk
i is labeled by ‘I ’ and Pk

i+1 is labeled by ‘A’:

Pk+1
2i+1 =

(δk
i )

2
− δk

i

2
Pk
i−1 + (1 − (δk

i )
2)Pk

i +
(δk

i )
2
+ δk

i

2
Pk
i+1 (6)

where δk
i is a parameter assigned to point Pk

i .
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(1.c) Pk
i is labeled by ‘A’ and Pk

i+1 is labeled by ‘I ’:

Pk+1
2i+1 =

(δk
i+1)

2
+ δk

i+1

2
Pk
i + (1 − (δk

i+1)
2)Pk

i+1 +
(δk

i+1)
2
− δk

i+1

2
Pk
i+2 (7)

where δk
i+1 is a parameter assigned to point Pk

i+1.
(1.d) Both Pk

i and Pk
i+1 are labeled by ‘A’:

Pk+1
2i+1 =

1
2
Pk
i +

1
2
Pk
i+1. (8)

(2) New vertex point Pk+1
2i is computed based on the following two cases.

(2.a) Pk
i is labeled by ‘I ’:

Pk+1
2i = Pk

i . (9)
(2.b) Pk

i is labeled by ‘A’:

Pk+1
2i = (1 − γ k

i )Pk
i + γ k

i
Pk+1
2i−1 + Pk+1

2i+1

2
(10)

where γ k
i = 2min{(δk

i−)2, (δk
i+)2} with

δk
i− =


δk
i−1, if Pk

i−1 is an ‘I ’ point
1
2
, otherwise

and

δk
i+ =


δk
i+1, if Pk

i+1 is an ‘I ’ point
1
2
, otherwise.

2.4. Interproximate subdivision algorithm

Using the geometric rules as a building block, we can construct our interproximate subdivision algorithm to create a
subdivision curve from a given control polygon. The inputs are a control polygon consisting of labeled vertices {Pi} and
parameters {wi} and {δi}. Each vertex Pi is labeled by either ‘I ’ or ‘A’. For each ‘I ’ vertex Pi, a parameter δi ∈ (0, 1) is
assigned, and for each edge with two end vertices Pi and Pi+1 both labeled by ‘I ’, a parameter wi ∈ (0, 1/8) is assigned.
The interproximate subdivision algorithm involves determination of geometric positions of new control points and other
information as well. It recursively refines the polygons. The main steps are as follows:

• initialization: Let P0
i = Pi and δ0

i = δi.
• for (k = 0; k < the maximum iteration number; k + +) {

– Use the geometric refinement rules described in Eqs. (5)–(10) to compute Pk+1
i ;

– If Pk
i is an ‘I ’ vertex, label Pk+1

2i by ‘I ’ and let δk+1
2i = δk

i ;
else label Pk+1

2i by ‘A’;
– Label Pk+1

2i+1 by ‘A’.
}.

Note that for a vertex Pi labeled by ‘I ’, all subsequent vertices Pk
2ki, k = 1, 2, . . . are also labeled by ‘I ’ and Pk

2k i = Pi. Thus
all the refined polygons pass the position of Pi and so does the limit curve. Particularly, if all the initial control points are ‘I ’
points, they lie on the refined polygons and thus the limit curve as well. On the other hand, if all the initial control points
are ‘A’ points, the algorithm just degenerates to the uniform cubic B-spline refinement.

In our interproximate subdivision scheme, there are two sets of parameters wi and δi. wi is for edges bounded by two
‘I ’ vertices and δi is for vertices labeled by ‘I ’. These parameters serve as tension parameters that can be used to adjust
the tightness of the curve. Specifically, when wi approaches zero, the curve tends to be pulled to the corresponding edge.
When δi approaches zero, the curve is pulled towards the corresponding vertex. Figs. 4 and 5 show the effects of wi and δi,
respectively. In the interproximate subdivision, we choose 1/8 as a default value for wi while 1/16 is one popular choice in
the classic 4-point scheme. This is because in the classic 4-point scheme wi occurs in all iterations of refinement and in the
interproximate subdivision wi only occurs in the first iteration of refinement, after which there is no edge bounded by two
‘I ’ vertices. For δi, we choose 1/2 as the default value, which corresponds to a cubic B-spline curve as shown in Theorem 3
given in Section 2.5.

Remark 2. In the case that the input control polygon P0P1 · · · Pn is open, we add two ‘‘boundary vertices’’ P−1 and Pn+1 and
label them by ‘A’. The subdivision algorithm is applied to this extended polygon. The choice of P−1 and Pn+1 depends on
applications. Two common choices are P−1 = P0, Pn+1 = Pn and P−1 = 2P0 − P1, Pn+1 = 2Pn − Pn−1.



Author's personal copy

X. Li, J. Zheng / Journal of Computational and Applied Mathematics 244 (2013) 36–48 41

Fig. 4. Interpolation of the vertices of a polygon with δi = 0.5 and wi = 1/3, 1/8, 1/16, −1/16 (from left to right).

Fig. 5. Interpolation of the vertices of a polygon with wi =
1
8 and δi = 15/32, 11/32, 7/32, 3/32 (from left to right).

2.5. Continuity analysis

By the interproximate subdivision, each ‘I ’ vertex will be separated from other ‘I ’ vertices after several iterations of
refinement. The ‘A’ vertices between two consecutive ‘I ’ vertices actually serve as the control points for a cubic B-spline
curve segment that is a portion of the limit curve. Specifically, suppose Pk

2k i and Pk
2kj are two consecutive ‘I ’ vertices and

the inbetween ‘A’ vertices are Pk
2k i+1

, Pk
2k i+2

, . . . , Pk
2kj−2

, Pk
2kj−1

. These ‘A’ vertices define a cubic B-spline curve that is on the
limit curve between Pk

2k i and Pk
2kj. When the iteration number increases, the number of the inbetween ‘A’ vertices increases,

and the cubic B-spline curve segment extends and eventually the curve segment connects Pk
2ki and Pk

2kj at the two ends.
Therefore we can conclude the limit curve is C2 continuous at any point other than those ‘I ’ vertices on the limit curve. For
the ‘I ’ vertices, the refinement rules are designed such that the necessary condition for the second order continuity at these
points are satisfied, but whether the limit curve is indeed C2 continuous is still under investigation. In a special case where
all δk

i = 0.5, the curve is proved to be C2 continuous due to the following theorem.

Theorem 3. When all δ0
i =

1
2 , the limit curve generated by the interproximate subdivision scheme is a cubic B-spline curve.

Proof. Consider the polygon · · · P1
2i−1P

1
2iP

1
2i+1 · · · that is obtained by one iteration of refinement.We construct a newpolygon

· · ·Q 1
2i−1Q

1
2iQ

1
2i+1 · · · such thatQ 1

k corresponds to P1
k . For each ‘A’ vertex P1

i , we letQ 1
i = P1

i . Obviously, all P
1
2i±1 are ‘A’ vertices.

If P1
2i is an ‘I ’ vertex, we let Q 1

2i =
−P12i−1+6P12i−P12i+1

4 .
If we apply the cubic B-spline refinement scheme to the new polygon · · ·Q 1

2i−1 Q
1
2iQ

1
2i+1 · · ·, we generate a limit curve

that is a uniform cubic B-spline curve. By Theorem 1, it is easy to verify that the new vertices generated by the cubic
B-spline refinement scheme from · · ·Q 1

2i−1Q
1
2iQ

1
2i+1 · · · are the same as the new vertices generated by the interproximate

subdivision scheme from · · · P1
2i−1P

1
2iP

1
2i+1 · · · except for those ‘I ’ vertices P1

2i. By the construction of Q 1
2i, we know that the

cubic B-spline curve interpolates P1
2i and {Q k

2k i} converges to P1
2i. Therefore the limit curve generated by the interproximate

subdivision on · · · P1
2i−1P

1
2iP

1
2i+1 · · · is the same as the cubic B-spline curve generated by the cubic B-spline refinement scheme

on · · ·Q 1
2i−1Q

1
2iQ

1
2i+1 · · ·, which completes the proof. �

Experiments indicate that the interproximate subdivision scheme produces curves with better curvature behavior
compared to the classic 4-point subdivision scheme that requires all the intermediate vertices generated during the
iterations of refinement to lie on the limit curves. Two examples are shown in Fig. 6 where the curves created using the
4-point scheme are depicted in blue and the curves created using the interproximate subdivision are depicted in red. The
curvature plots placed on the right of the curves show that the 4-point scheme produces bigger curvature variance than the
interproximate subdivision.
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Fig. 6. Curves generated using the 4-point scheme (blue) and the interproximate subdivision (red). Their curvature plots are shown on the middle and
right, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3. Two variants of interproximate subdivision in R2

This section provides two geometrically controlled extensions of the interproximate subdivision in R2 – convexity
preserving and relaxed schemes – by selecting the tension parameter values based on local geometry or changing some
vertices from label ‘I ’ to label ‘A’ during the iterations of refinement.

3.1. Convexity preserving scheme

As an important shape-preserving property, convexity preserving is often required. There has been a considerable
amount of research for convexity preserving subdivision algorithm. For example, [13] proposed to choose a global w
depending on the initial convex functional data such that the limit function of the 4-point scheme is convex. [6,14] proposed
to adapt variable tension parameters locally according to the geometry of the control polygon within the 4-point stencil.

For a given sequence of control points at refinement level k: Pk
= {Pk

i } where Pk
i ∈ R2, we denote edge Pk

i P
k
i+1 by eki .

Following [6], we call an edge eki to be convex if Pk
i−1 and Pk

k+2 lie in a common half-plane with respect to the line defined
by Pk

i and Pk
i+1. This definition for a convex edge is locally based, which means a convex edge is not necessarily convex with

respect to the entire control polygon. The polygon Pk is said to be convex if every eki in Pk is convex. Note that the convex
polygon defined here is equivalent to the strictly convex polygon in [6]. A convex polygon could be closed, open, or even
self-intersecting.

Our objective is to modify the interproximate subdivision proposed in the preceding section to make it convexity
preserving. The basic idea is that we allow the tension parameters to change from one level of refinement to another and the
individual values of the tension parameters are determined locally based on the geometry of the control polygons to preserve
the convexity. Note that even the cubic B-spline refinement does not have the convexity preserving property based on our
definition of convexity (see Fig. 7 for an example). This suggests that simply adjusting the tension parameterswi and δk

i may
not be sufficient to achieve the convexity preservation, which is different from the situation in [6]. Therefore we propose
to revise the formula of computing δk

i in (10) for ‘A’ vertex updating to γ k
i = 4cki min{(δk

i−)2, (δk
i+)2} where c ik ∈ (0, 1) is a

new parameter assigned to each ‘A’ vertex. This parameter has actually been suggested earlier in the eigenanalysis of the
refinement matrix, where we just set it to 1

2 . Thus we have three sets of shape parameters: wi, δ
k
i and cki . Now we present a

convexity preserving scheme that automatically determines values for them so that the convexity of the control polygons is
preserved at each iteration of refinement. Since only situations (1.a)–(1.c) and (2.b) in the proposed geometric rules for the
interproximate subdivision involve the shape parameters, in the following we discuss each of them. For the convenience of
description, we introduce notation Lk,li,j for the line passing through Pk

i and P l
j , notation [Lk,li,j ](P) for the half-plane containing

point P with respect to line Lk,li,j , and notation [Lk,li,j ](P) for the half-plane not containing point P with respect to line Lk,li,j . We
also define tki to be a line passing through Pk

i and along the direction of Pk
i+1 − Pk

i−1, which coincides with the tangent of a
parabola interpolating Pk

i−1, P
k
i , P

k
i+1 at Pk

i .

(1) Consider situation (1.a) where the two vertices P0
i and P0

i+1 of edge e0i are both ‘I ’ vertices (see Fig. 8). Re-write the

formula (5): P1
2i+1 = mi + widi where mi =

P0i +P0i+1
2 and di = mi −

P0i−1+P0i+2
2 . Find λi and λi+1 such that mi + λidi
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Fig. 7. An example showing that the cubic B-spline refinement is not convexity preserving. Left: initial control polygon; middle: refined control polygon
after one refinement; right: cubic B-spline curve.

Fig. 8. Determining wi for convexity preservation.

Fig. 9. Determining δk
i for convexity preservation.

is on line t0i and mi + λi+1di is on line t0i+1. We use the values of λi and λi+1 to bound wi. If λi, λi+1 > 0, we take
0 < wi < min(λi, λi+1) in order to ensure that the refined polygon P1 with P1

2i+1 is convex if P0 is convex. So we define
µi = ρ ṁin(λi, λi+1)where ρ ∈ (0, 1) is a user defined constant.We further boundwi by a global valueW > 0 specified
by user: wi = min(W , µi). If λi ≤ 0, we ignore its value and simply replace it by λi =

W
ρ
. Similarly, if λi+1 ≤ 0, we

simply let λi+1 =
W
ρ
.

(2) Consider situation (1.b) where vertex Pk
i is labeled by ‘I ’ and vertex Pk

i+1 is labeled by ‘A’. Theorem 1 has shown that
the new edge point Pk+1

2i+1 is on a quadratic polynomial curve passing through Pk
i−1, P

k
i , P

k
i+1. It is easy to check that

the quadratic polynomial curve segment from Pk
i to Pk

i+1 can be represented as a Bézier curve R(s) with Bézier points
Pk
i , R = Pk

i +
1
4 (P

k
i+1 − Pk

i ) and Pk
i+1 (see Fig. 9). Find the intersection point R(si) between the Bézier curve R(s) and the

line tki+1. We use si to bound δk
i so that either Pk+1

2i+1 and Pk
i are on the same half-plane with respect to tki+1 or Pk+1

2i+1 is on
tki+1. Recall that δk

i =
1
2 is our default choice. Therefore if si ∈ (0, 1

2 ], we let δk
i = si. Otherwise, we ignore si and simply

let δk
i =

1
2 . Since situation (1.c) and situation (1.b) are symmetric, situation (1.c) can be handled in a likewise manner.

For an ‘I ’ vertex Pk
i , if its neighbors P

k
i−1 and Pk

i+1 both are type ‘A’, we obtain two δk
i . Then we choose the smaller one.
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Fig. 10. Determining cki for convexity preservation.

(3) Consider situation (2.b) where vertex Pk
i is labeled by ‘A’. Rewrite the formula for Pk+1

2i : Pk+1
2i = Pk

i + cki

4min{(δk

i−)2,

(δk
i+)2}(

Pk+1
2i−1+Pk+1

2i+1
2 − Pk

i )

. We look at edge Pk

i P
k
i−1 first. If Pk

i−1 is an ‘A’ vertex as shown on the left of Fig. 10, find the

maximum value c− of cki such that Pk+1
2i and Pk

i are on the two sides of line Lk+1,k+1
2i−3,2i−1. If P

k
i−1 is an ‘I ’ vertex as shown on

the right of Fig. 10, find themaximum value c− of cki such that Pk+1
2i and Pk

i are on the same side of line Lk,k+1
i−1,2i−1. Similarly,

we can find a number c+ for cki from edge Pk
i P

k
i+1. Then we choose cki = min{c+, c−, 1

2 }.

To show that the above scheme is convex preserving, we prove the following lemmas first.

Lemma 4. If edge eki is convex in polygon Pk, its new edge point Pk+1
2i+1 is in the region [Lk,ki−1,i](P

k
i+1)∩[Lk,ki+1,i+2](P

k
i )∩[Lk,ki,i+1](P

k
i−1).

Proof. If both Pk
i and Pk

i+1 are ‘A’ vertices, Pk+1
2i+1 is on the middle of edge Pk

i P
k
i+1 and thus the lemma is obviously correct. If at

least one of Pk
i and Pk

i+1 is an ‘I ’ vertex, by the construction of Pk+1
2i+1 and the assumption that Pk is convex,we know that Pk+1

2i+1 is

within the region [tki ](P
k
i+1)∩[tki+1](P

k
i )∩[Lk,ki,i+1](P

k
i−1), which is contained in [Lk,ki−1,i](P

k
i+1)∩[Lk,ki+1,i+2](P

k
i )∩[Lk,ki,i+1](P

k
i−1). �

Lemma 5. For a convex polygon Pk, edge ek+1
2i constructed by the scheme described above in this section is convex in Pk+1.

Proof. We examine eki . There are four cases. Refer to Fig. 11 for the notations.
Case (a). Both Pk

i and Pk
i+1 are ‘I ’ vertices. The tangent line tki and line Lk,ki,i+1 divide the plane into four regions: R0 =

[tki ](P
k
i+1) ∩ [Lk,ki,i+1](P

k
i−1), R1 = [tki ](P

k
i+1) ∩ [Lk,ki,i+1](P

k
i−1), R2 = [tki ](P

k
i+1) ∩ [Lk,ki,i+1](P

k
i−1) and R3 = [tki ](P

k
i+1) ∩ [Lk,ki,i+1](P

k
i−1).

Since eki−1 and eki are convex, by construction Pk+1
2i+1 ∈ R3, Pk+1

2i−1 ∈ R2, and Pk+1
2i+2 = Pk

i+1 ∈ R3 ∩ R2. The line Lk,k+1
i,2i+1 containing

ek+1
2i is in the interior of the cone R1 ∪ R3. Thus points Pk+1

2i−1 and Pk+1
2i+2 are in the same half-plane relative to ek+1

2i . Therefore
ek+1
2i is convex.
Case (b). Both Pk

i and Pk
i+1 are ‘A’ vertices. Line Lk+1,k+1

2i−1,2i+1 and line Lk,ki,i+1 divide the plane into four regions: R0 =

[Lk+1,k+1
2i−1,2i+1](P

k
i ) ∩ [Lk,ki,i+1](P

k
i−1), R1 = [Lk+1,k+1

2i−1,2i+1](P
k
i ) ∩ [Lk,ki,i+1](P

k
i−1), R2 = [Lk+1,k+1

2i−1,2i+1](P
k
i+1) ∩ [Lk,ki,i+1](P

k
i−1) and R3 =

[Lk+1,k+1
2i−1,2i+1](P

k
i+1) ∩ [Lk,ki,i+1](P

k
i−1). Since eki−1, e

k
i and eki+1 are convex, by construction and Lemma 4 Pk+1

2i−1 ∈ R1 ∩ R2, Pk+1
2i+1 ∈

eki , P
k
i+1 ∈ R2 ∩R3, and Pk+1

2i+3 ∈ [Lk,ki+1,i+2](P
k
i )∩ (R1 ∪R2). The line L

k+1,k+1
2i,2i+1 containing ek+1

2i is in the interior of the cone R1 ∪R3.
By construction (3) given in this section and Lemma 4, we can find a positive cki+1 such that Pk+1

2i+2 ∈ R2. Thus points Pk+1
2i−1 and

Pk+1
2i+2 are in the same half-plane relative to ek+1

2i . Therefore ek+1
2i is convex.

Case (c). Pk
i is an ‘I ’ vertex and Pk

i+1 is an ‘A’ vertex. As in case (a), the tangent line tki and line Lk,ki,i+1 divide the plane

into four regions: R0 = [tki ](P
k
i+1) ∩ [Lk,ki,i+1](P

k
i−1), R1 = [tki ](P

k
i+1) ∩ [Lk,ki,i+1](P

k
i−1), R2 = [tki ](P

k
i+1) ∩ [Lk,ki,i+1](P

k
i−1) and

R3 = [tki ](P
k
i+1) ∩ [Lk,ki,i+1](P

k
i−1). The line Lk,k+1

i,2i+1 containing ek+1
2i is in the interior of the cone R1 ∪ R3 and Pk+1

2i−1 ∈ R2. Since
Pk
i+1 ∈ R2 ∩ R3, we can find a positive cki+1 such that Pk+1

2i+2 ∈ [Lk,k+1
i,2i+1](P

k
i+1) by construction (3) given in this section. Hence

points Pk+1
2i−1 and Pk+1

2i+2 are in the same half-plane relative to ek+1
2i and ek+1

2i is convex.
Case (d). Pk

i is an ‘A’ vertex and Pk
i+1 is an ‘I ’ vertex. It is proven from case (a) that edges Pk+1

2i−1P
k
i , P

k
i P

k+1
2i+1, and Pk+1

2i+1P
k
i

are all convex. Line Lk+1,k+1
2i−1,2i+1 and line Lk,k+1

i,2i+1 divide the plane into four regions: R0 = [Lk+1,k+1
2i−1,2i+1](P

k
i ) ∩ [Lk,k+1

i,2i+1](P
k
i+1), R1 =

[Lk+1,k+1
2i−1,2i+1](P

k
i ) ∩ [Lk,k+1

i,2i+1](P
k
i+1), R2 = [Lk+1,k+1

2i−1,2i+1](P
k
i+1) ∩ [Lk,k+1

i,2i+1](P
k
i+1) and R3 = [Lk+1,k+1

2i−1,2i+1](P
k
i+1) ∩ [Lk,k+1

i,2i+1](P
k
i+1). Then the

line Lk+1,k+1
2i,2i+1 containing ek+1

2i is in the interior of the cone R1 ∪R3, Pk+1
2i−1 ∈ R1 ∩R2, and Pk

i+1 ∈ R1 ∪R2. If Pk
i+1 ∈ [Lk+1,k+1

2i,2i+1 ](Pk
i ),

then Pk
i and Pk+1

2i will be on two sides of line Lk+1,k
2i+1,i+1, which contradicts the construction (3) in this section for Pk+1

2i . Thus
points Pk+1

2i−1 and Pk+1
2i+2 = Pk

i+1 are in the same half-plane relative to ek+1
2i , which implies that ek+1

2i is convex. �
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Fig. 11. Notations for proving the convexity of edge ek+1
2i .

Similarly, we have

Lemma 6. For a convex polygon Pk, edge ek+1
2i−1 constructed by the scheme described above in this section is convex in Pk+1.

Combining Lemmas 5 and 6,we have that for each vertex Pk
i of a convex polygon Pk, its corresponding two edges Pk+1

2i−1 and
Pk+1
2i are both convex in the refined polygon Pk+1. This proves the following theorem for the convexity preserving property.

Theorem 7. Given a convex polygon Pk, the refined control polygon Pk+1 produced by the scheme described above in this section
is convex.

Fig. 12 shows several examples of our convexity preserving scheme, the geometrically controlled convexity preserving
scheme proposed in [6], and the 4-point scheme. The last column of the figure shows the discrete curvature plotting of three
limit curves. The solid points in the figure are the initial control points and these points are the only interpolatory points in
our scheme. Benefited from the movable control points that are updated by a low-pass filter, our new scheme has both the
convexity preserving property and good curvature behavior.

3.1.1. Experimental analysis of smoothness
For a non-linear subdivision scheme, it is usually very difficult to check its convergence and smoothness properties

theoretically. Here we adopt the experimental method used in [15,16,6] to conduct smoothness analysis of the convexity
preserving schemeby numerically checking theHölder regularity of limit curves. Similar to [6], we define the interproximate
subdivision scheme to have Hölder regularity RH = l + αl if there exist constant C and h > 0 such that

lim
k→∞

l!2kl max
i

|(∆lPk)i+1 − (∆lPk)i| ≤ C(2−kh)αl

where (1Pk)i = Pk
i+1 − Pk

i and (∆l+1Pk)i = (∆(∆lPk))i. A method is suggested in [6] to estimate αl by computing

αj = − log2

 (j + 1)!2k(j+1) max
i

|(∆j+1Pk)i+1 − (∆j+1Pk)i|

j!2kj max
i

|(∆jPk)i+1 − (∆jPk)i|


such that αj ≈ 1 for j = 0, 1, . . . , l− 1 and αl ≉ 1. We employ this method to test the convexity preserving interproximate
subdivision scheme on about 200K randomly generated control polygons (Fig. 13). Fig. 13 shows the statistics of the
experiment result, fromwhich we can see that most of the curves generated have the Hölder regularity between 2.1 and 2.9
and only about 1.5% of the curves generated have the Hölder regularity under 2.0. One example of such outliers is given in
Fig. 14, where points P0, P1, P2 are almost collinear and the location of P0 lies between P1 and P2.
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Fig. 12. Comparison with the geometrically controlled convexity-preserving scheme [6] and the 4-point scheme [4]. 1st column: the proposed convexity
preserving scheme; 2nd column: the geometrically controlled convexity-preserving scheme; and 3rd column: the 4-point scheme with w =

1
16 . The

respective curvature plotting is shown below the curves.

Fig. 13. Experimental Hölder regularity of the limit curves generated by the convexity preserving interproximate subdivision scheme applied to randomly
generated control polygons.
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Fig. 14. An example with the Hölder regularity smaller than 2.

Fig. 15. Comparison of the relaxed scheme (left), the 4-point scheme (middle), and the geometrically controlled convexity preserving scheme [6] (right).

3.2. Relaxed scheme

Note that in some complicated situations where there exist straight edges or very small angles for example, it is
difficult to generate visually pleasing interpolating curves that go through all the given control points, even by adapting
the tension parameters to the local geometry of the control polygon. Thus it may be necessary to relax some vertices
from the interpolation requirement during the iterations of refinement. Here we present a simple relaxation strategy that
automatically selects the vertices to be relaxed based on the value of tension parameter δk

i . Specifically, for an ‘I ’ vertex the
k-level, we compute its tension parameter δk

i using themethod proposed in the convexity preservingmethod. If it is smaller
than a user defined constant (we choose 1

4 in our experiment), we change the label of the vertex to ‘A’. [8] also presented
relaxed schemes, which relax all the control points and thus are actually becoming approximate schemes. Our algorithm
only relaxes some of the ‘I ’ vertices. It is also convexity preserving.

Two examples are given in Figs. 15 and 16. The results from the 4-point scheme, the proposed convexity preserving
scheme, or the geometrically controlled convexity preserving scheme [6] are also shown for comparison. Enlarged local
regions of the curves are placed nearby. Two vertices are relaxed in Fig. 15 and three vertices are relaxed in Fig. 16.

4. Conclusion

This paper presents an interproximate subdivision algorithm that can be used to generate curves interpolating some
of the given vertices and approximating the others. The algorithm follows the fashion of the 4-point and cubic B-spline
refinement schemes. During the subdivision process, the algorithm refines the polygon by adding new edge points. Different
from the 4-point scheme, the interproximate subdivision fixes only the vertices initially specified by the user to be
interpolated and all the other vertices are updated by approximate methods such as the cubic B-spline refinement. The
interproximate method has applications in situations where some of the data points cannot be measured exactly. Even if
all the data points are required to be interpolated, the interproximate method can give smoother interpolatory curve than
the 4-point scheme. This is because the interproximate method does not require those edge vertices inserted during the
refinement to be interpolated. Futurework is to theoretically studywhether the limit curve generated by the interproximate
subdivision is C2 continuous everywhere.

The paper also explores how to adjust the tension parameters provided by the interproximate subdivision scheme or
the label types of vertices to improve shape behavior of the limit curve. Particularly, we allow the tension parameters
to be variable and present a simple method that automatically adapts the parameters according to the local geometry of
the polygons in the refinement process to achieve the convexity preserving property. We also presents a simple way to
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(a) 4-point scheme.

(b) The proposed convexity preserving scheme.

(c) The proposed relaxed scheme.

(d) The geometrically controlled convexity preserving scheme [6].

Fig. 16. Comparison of the 4-point scheme, the proposed convexity preserving scheme, the proposed relaxed scheme and the geometrically controlled
convexity preserving scheme [6].

determine which ‘I ’ vertices should be relaxed from their interpolatory requirement in order to improve the curve shape.
More sophisticated extensions of the interproximate subdivision warrant further investigation.
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