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Abstract Analysis-suitable T-splines are a topological-restricted subset of T-splines,
which are optimized to meet the needs both for design and analysis (Li and Scott
ModelsMethods Appl Sci 24:1141–1164, 2014; Li et al. Comput Aided GeomDesign
29:63–76, 2012; Scott et al. Comput Methods Appl Mech Eng 213–216, 2012). The
paper independently derives a class of bi-degree (d1, d2) T-splines for which no per-
pendicular T-junction extensions intersect, and provides a new proof for the linearly
independence of the blending functions. We also prove that the sum of the basis func-
tions is one for an analysis-suitable T-spline if the T-mesh is admissible based on a
recursive relation.

Keywords T-splines · Analysis-suitable T-splines · Linear independence ·
Partition of unity · Isogeometric analysis

Mathematics Subject Classification 65D07

1 Introduction

T-splines were originally introduced as an alternative free-form geometric shape tech-
nology to solve many inherent limitations of standard NURBS representation in the
industry [12,14]. Two main advantages of T-splines are local refinement [11,12]
and watertightness [13]. Multiple NURBS patches can be merged into a single T-
spline [7,14] and any trimmed NURBS model can be approximated with a watertight
T-spline model [13] under any given tolerance. Thus, T-splines have emerged as an
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important technology across several disciplines including industrial, architectural, and
engineering design, manufacturing and engineering iso-geometric analysis.

The isogeometric analysis (for short, IGA) paradigm uses the smooth geometric
basis as the basis for analysis, which is introduced in [6] and described in detail in [3].
With IGA, traditional design-through-analysis procedures such as geometry clean-
up, defeaturing and mesh generation are simplified or eliminated entirely. Most of
the early developments in isogeometric analysis focused on the behavior of NURBS
basis functions [3,6] and later on T-splines [1], Hierarchical B-splines [17], PHT [10,
22] and LR B-splines [4]. In 2009, [2] discovered an example of a T-spline with
linearly dependent blending functions, which means that the whole class of T-splines
are not suitable for IGA. Thus, analysis-suitable T-splines (for short, AS T-splines),
a class of T-splines which associated T-meshes have no intersections of T-junction
extensions, were developed in [9,11] to meet the basic needs for IGA. Themembers of
the class of T-splines are NURBS compatible, watertight, convex hull, affine invariant,
always linear independent for any knot intervals, optimized local refinement [11] and
characterized in terms of piecewise polynomial [8].

Linear independence and partition of unity for T-spline blending functions are two
fundamental theoretical problems associated with T-splines. There are two different
approaches to analysis the linear independence of T-spline blending functions by
computing the nullity of the transform matrix [9,18,21] or dual basis [15,16]. The
partition of unity for T-splines blending functions has not been well understood till
now [19,20]. The present paper identifies a class of T-splineswhose blending functions
are guaranteed to be linearly independent using a different approach from [16] by
computing the nullity of the transform matrix. Compared with the result in [9], the
main contribution includes,

– we generalize the bi-cubic analysis-suitable T-splines [9] to any bi-degrees;
– we derive a recursive relation for AS T-splines and use the relation to prove the
partition of unity property for AS T-splines.

The following paper is structured as follows. Pertinent background on T-splines is
reviewed in Sect. 2. Section 3 proves that any analysis-suitable T-spline has linearly
independent blending functions. Section 4 proves that the sum of the basis functions
for an admissible analysis-suitable T-spline is one. The last section is conclusion and
future work.

2 T-Splines

In the section, we prepare some basic notations and preliminary results for arbitrary
degree T-splines [1,5].

Similar as the approach of [1], we define a T-spline based on the T-mesh in the index
domain which is referred as an index T-mesh in the paper. A T-mesh is an important
object to determine T-spline blending functions and how they are arrangedwith respect
to each other. A T-mesh T for bi-degree (d1, d2) T-spline is a connection of all the
elements of a rectangular partition of the index domain [0, c+d1]×[0, r +d2], where
all rectangle corners (or vertices) have integer coordinates. Each vertex has a unique
pair of index coordinate (δi , τi ). An edge is a line segment connecting two vertices
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Fig. 1 The anchors and the local index vector for one blending function

in the T-mesh and no other vertices lying in the interior. And a face is a rectangle
where no other edges and vertices in the interior. The valence of a vertex is the number
of edges such that the vertex is an endpoint. For the interior vertices, we only allow
valence three (called T-junctions) or four vertices. We adopt the notations �, �, ⊥
and � to indicate the four possible orientations for the T-junctions. Denote the active
region as rectangle region [p, c + d1 − p] × [q, r + d2 − q], here p and q are the
maximal integers equal or less than d1+1

2 and d2+1
2 , respectively. As we will see below,

the active region carries the anchors that will be associated with the blending functions
while the other indices will be needed for the definition of the blending function when
the anchors are close to the boundary.

An anchor is a point in the index T-mesh which corresponds one blending function.
If both d1 and d2 are odd, an anchor corresponds a vertex in the active region of the
T-mesh, if both d1 and d2 are even, then an anchor corresponds the barycenter of a
face in the active region of the T-mesh. And the index coordinate for the anchor is the
index coordinate of the left-bottom vertex of the associated face. If d1 is even and d2
is odd or d1 is odd and d2 is even, an anchor is the middle point of a horizontal edge or
a vertical edge in the active region of the T-mesh. The index coordinate for the anchor
is the index coordinate of the left or bottom vertex of the associated edge.

For the i-th anchor Ai , we define a local index vector δi × τ i which is used to
define the blending function Ti (s, t). The values of δi = [δ0i , . . . , δd1+1

i ] and τ i =
[τ 0i , . . . , τ

d2+1
i ] are determined as follows. From the i-th anchor in the T-mesh, we

shoot a ray in the s and t direction traversing the T-mesh and collect a total of d1 + 2
and d2 + 2 knot indices to form δi and τ i, as shown in Fig. 1.

The indices correspond two global knot vectors s = [s0, s1, . . . , sc+d1] and t =
[t0, t1, . . . , tr+d2 ]. The end condition knots for s and t may have multiplicity d1 + 1
and d2 + 1; all the other knots are of multiplicity ≤ d1 and ≤ d2, respectively. Each
edge is assigned with a knot interval which is the associated parametric length of
the edge. The valid rules for the knot configuration require that the sums of the knot
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intervals on opposite sides of a facemust be equal [14]. Thenwe are ready to define the
blending function Ti (s, t) associated with the i-th anchor, which is a tensor-product
of degree d1 and d2 B-spline functions. The knot vectors are defined by the local knot
vectors δi × τ i,

Ti (s, t) = B[si ](s)B[ti ](t), (2.1)

where

si = [sσ 0
i
, sσ 1

i
, . . . , s

σ
d1+1
i

] and ti = [tτ 0i , tτ 1i
, . . . , t

τ
d2+1
i

] (2.2)

are subsequences of s and t, respectively.
A T-spline space is finally given as the span of all these blending functions and a

T-spline surface is defined as

C(s, t) =
nA∑

i=1

Ci Ti (s, t), (2.3)

where Ci = (ωi xi , ωi yi , ωi zi , ωi ) ∈ P
3 are homogeneous control points, ωi ∈ R are

weights, Ti (s, t) are blending functions, and nA is the number of control points or
anchors.

Analysis-suitable T-splines are defined in terms of T-junction extensions. For exam-
ple, the extension for a T-junction of type � is a line segment [i, i] × {τi }. i and i are
determined such that the edges [i, δi )×{τi } have [ d1+1

2 ] intersections with the T-mesh

and the edges (δi , i]×{τi } have [ d12 ] intersections with the T-mesh. Here [d]means the
maximal integer less or equal d. For a T-junction of type�, we can similarly define the
extension except the number of intersections that are exchanged. Also, we can define
the extensions for the other kinds of T-junctions ⊥, �, where uses degree d2 instead
of d1. All these extension examples are illustrated in Fig. 2.

Definition 2.1 For a bi-degree (d1, d2) T-spline, a T-mesh is called analysis-suitable
(for short, AS T-mesh) if the extensions for all the T-junctions � and� do not intersect
the extensions for all the T-junctions ⊥ and �. A T-spline defined on an analysis-
suitable T-mesh is called an analysis-suitable T-spline, for short AS T-spline.

AS T-meshes have two key properties (Lemmas 2.2 and 2.3) which will be used in
the following section. As these two lemmas have also been proved in [16] (Lemma
3.2 (a) and (b)), so we omit the proof here.

Lemma 2.2 In an analysis-suitable T-mesh T, for any anchor Ai , let T F(Ai ) be the
union of all the rectangles R j,k

i
.= (σ

j
i , σ

j+1
i ) × (τ ki , τ k+1

i ). Here j = 0, . . . , d1,
k = 0, . . . , d2, then there are no T-mesh vertices inside TF(Ai ).

Lemma 2.3 In an analysis-suitable T-meshT, for any anchorAi , let hSK (Ai ) be the
union of all the edge segments [σ 0

i , σ
d1+1
i ]×{τ j

i }, j = 0, 1, . . . , d2+1 and vSK (Ai )

be the union of all the edge segments {σ j
i } × [τ 0i , τ

d2+1
i ], j = 0, 1, . . . , d1 + 1. Then
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(a) bi-degree (3, *) (b) bi-degree (5, *)

(c) bi-degree (*, 4) (d) bi-degree (*, 2)
Fig. 2 The extensions for four different kinds of T-junctions

hSK (Ai ) lies on the edges of T-mesh T or lies on the extensions of all T-junctions �
and � on hSK (Ai ), and vSK (Ai ) lies on the edges of T-mesh T or on the extensions
of T-junctions ⊥ and � on vSK (Ai ).

Definition 2.4 A T-mesh is admissible, if the vertex (i, j) is not ⊥ or � when 0 ≤
i ≤ d1 or c ≤ i ≤ c + d1, and is not � or � when 0 ≤ j ≤ d2 or r ≤ j ≤ r + d2.

3 Linear Independence

In this section, we generalize the method in [9] to prove that any bi-degree (d1, d2)
analysis-suitable T-splines have linear independent blending functions.

3.1 NURBS Conversion

Each T-spline can be converted into the underlying NURBS form N (s, t) =∑nP
k=1Nk Nk(s, t), where nP is the number of NURBS anchors. And Ni =∑nA
j=1mi, jC j . This relationship can be written in a matrix form MT = P, where

M is called the T-spline-to-NURBS transform matrix. If all the elements of row j of
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(a) Influence graph. (b) First pruning. (c) Fully pruned.

Fig. 3 A T-mesh and its influence graph

M are zero except m ji , column i is called an innocuous column. Column reduction is
the operation of removing an innocuous column from M along with any zero rows that
the column removal may have introduced. It is evident that column reduction operator
will preserve the nullity of the matrix.

We can visualize column reduction by using a directed graph G drawn on a T-mesh
that we call it an influence graph. G contains two types of anchors: T-anchors corre-
sponding to the anchors for a T-spline, and N-anchors corresponding to the anchors for
the underlying tensor-product NURBS by extending all the T-junctions to the bound-
ary. If mi j is non-zero, an edge is drawn from the j-th T-anchor to the i-th N-anchor.
The valence of an N-anchor is the number of edges that point to it. The valence of
a T-anchor is the number of edges originating from it. An innocuous anchor is any
T-anchor that points to at least one N-anchor of valence one. The operation of pruning
a graph is the graphical equivalent of column reduction, and consists of eliminating
an innocuous anchor, edges originating from it, and any N-anchors that no longer are
pointed to. A graph from which all innocuous anchors have been pruned is said to be
fully pruned. A subgraph of G consists of any set of T-anchors, all N-anchors pointed
to by those T-anchors, and all edges connecting those anchors. A V2-subgraph is a
subgraph whose T-anchors all have a valence of at least two. A fully pruned graph is
either empty, or consists of one or more V2-subgraphs.

Lemma 3.1 If the fully pruned influence graph for a T-mesh has no V2-subgraphs,
the T-spline has linearly independent blending functions.

Proof See [9] for details. �	
Figure 3 shows the pruning process of a bi-quadratic T-spline defined on the T-mesh

in Fig. 1.

3.2 Linear Independence

This section presents that an AS T-mesh assures linear independence of the T-spline’s
blending functions.

Suppose ŝ is a subsequence of s, then the associated B-spline for knot vector ŝ is
a linear combination of all the B-splines for the global knot vectors s, i.e., B [̂s](s) =
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Fig. 4 Illustration for the proof

∑t
j=1 d j B j (s), where the d j results from the knot insertions. We define F(̂s) =

{ j |d j 
= 0} which are the indices of all contributed B-splines and define L (̂s) the
biggest index in F(̂s). Similarly, we can define F(̂t) and L (̂t). The footprint F(Ai )

for a T-anchor Ai is defined as F(Ai ) = F(si ) × F(ti ), which are all the indices of
N-anchors pointed by the T-anchor and let LLi = (L(si ), L(ti )) (Fig. 4).

Lemma 3.2 Suppose we are given two knot vectors s1 = (si0 , si1 , . . . , sid+1) and
s2 = (sik , sik+1 , . . . , sid+1+k ), k > 0, which are both subsequences of global knot
vector, then L(s1) < L(s2).

Proof It is evident that L(s1) ≤ L(s2) and if si0 < sik , L(s1) < L(s2). Otherwise,
suppose si0 = sik , and si0 = · · · = sim1


= sim1+1 and sik = · · · = sik+m2

= sik+m2+1 ,

then m1 = m2 + k. According to the definition of L(s1) and L(s2), the multiplicity of
sL(s1) and sL(s2) should be m1 and m2, respectively, i.e., sL(s1) = · · · = sL(s1)+m1 
=
sL(s1)+m1+1, and sL(s2) = · · · = sL(s2)+m2 
= sL(s2)+m2+1. As m1 > m2, so L(s1) <

L(s2). �	
Theorem 3.3 The blending functions for an analysis-suitable T-spline are linearly
independent.

Proof If the fully pruned influence graph for the T-mesh has no V2-subgraphs, then
the theorem can be directly derived from Lemma 3.1. Otherwise, suppose it has a
V2-subgraph G̃, denote anchorLL to be the bottommost N-anchor in the V2-subgraph
(if there are more than one N-anchor, we choose the leftmost one). Thus, there must
exist at least two T-anchors, denoted asA1,A2 such that LL1 = LL2 = LL. Suppose
the index coordinates for A1 and A2 are (σ1, τ1) and (σ2, τ2), respectively. If σ1 = σ2
or τ1 = τ2, then LL1 
= LL2 by Lemma 3.2. Otherwise, we have the following two
cases. In both cases, we denote δ = max(σ 0

1 , σ 0
2 ) and τ = max(τ 01 , τ 02 ).

1. If σ1 > σ2 and τ1 > τ2 (or, if σ1 < σ2 and τ1 < τ2):
Since L(t1) = L(t2), according to Lemma 3.2, the common indices for t1 and
t2 between [τ, τ q+1

2 ] cannot match exactly. Thus, there exists T-junction Q1 =
(δ1, τ1), � or �, in rectangle [σ p+1

2 , σ
p+1
1 ] × [τ, τ q+1

2 ]. And if Q1 lies on the
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index line σ
p+1
2 , it can only be �. Thus, the extension of Q1 covers all edges

[δ, σ p+1
2 ] × {τ1} following Lemma 2.3. With the same analysis for s1 and s2, we

can conclude that there exists a T-junction Q2 = (δ2, τ2), ⊥ or � which extension
covers all edges {δ2} × [δ, σ p+1

2 ]. As δ2 ∈ [δ, σ p+1
2 ] and τ1 ∈ [τ, τ q+1

2 ], the two
extensions intersect.

2. If σ1 > σ2 and τ1 < τ2 (or, if σ1 < σ2 and τ1 > τ2):
As L(t1) = L(t2), according to Lemma 3.2, the common indices for t1 and
t2 between [τ, τ q+1

1 ] cannot match exactly. Thus, there exists T-junction Q1 =
(δ1, τ1),� or�, in rectangle [σ p+1

1 , δ]×[τ, τ q+1
1 ]. And if Q1 lies on the index line

σ
p+1
1 , it can only be�. Thus, the extension of Q1 covers all edges [δ, σ p+1

2 ]×{τ1}.
With the same analysis for s1 and s2, we can conclude that there exists a T-junction
Q2 = (δ2, τ2), ⊥ or � which extension covers all edges {δ2} × [τ, τ q+1

1 ]. As
δ2 ∈ [δ, σ p+1

2 ] and τ1 ∈ [τ, τ q+1
1 ], the two extensions intersect.

Thus, all cases assure that AS T-splines have no V2-subgraphs and our proof follows
from Lemma 3.1. �	

4 Partition of Unity

In this section, we further prove that the sum of the blending functions for an AS
T-spline is one if the T-mesh is admissible. The basic idea is based on the following
recursive relation for AS T-splines.

Given a bi-degree (d1, d2) AS T-spline defined on T-mesh T, a new T-mesh Td1,d2
α,β

is defined according to the following rules. Let α1 and β1 be the maximal integer equal
or less than α+1

2 and β+1
2 , respectively. First, we extend each T-junction ⊥ and � α1

bays and extend each T-junction � and � β1 bays to create a new T-mesh. Here a
bay means the index intervals for two intersections of the extension in the T-mesh.
And then we create T-mesh Td1,d2

α,β from the T-mesh which lies in the rectangle region

[α, c+ d1 −α]× [β, r + d2 −β]. Fig. 5 illustrates an admissible T-mesh T3,3
0,0 and the

corresponding T-mesh T3,3
2,1.

(a) Not a bi-cubic admissible
T-mesh

(b) Corresponding admissi-
ble T-mesh 3,3

0,0

(c) admissible T-
mesh 3,3

2,1

Fig. 5 Admissible T-mesh Td1,d2
α,β
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Lemma 4.1 If T-mesh T
d1,d2
0,0 is an admissible AS T-mesh, then for all 0 ≤ α ≤ d1

and 0 ≤ β ≤ d2, T
d1,d2
α,β is also an admissible AS T-mesh.

Proof This can be derived from the definition of admissible T-mesh directly. �	
Lemma 4.2 Suppose the blending functions for a bi-degree (d1, d2) AS T-spline
defined on T-mesh T

d1,d2
0,0 are T d1,d2

k (s, t), k = 1, . . . , n1 and those for a bi-degree

(d1 −α, d2 − β) AS T-spline defined on T-mesh T
d1,d2
α,β are T d1−α,d2−β

k (s, t), k =
1, . . . , n2, then

n1∑

k=1

T d1,d2
k (s, t) =

n2∑

k=1

T d1−α,d2−β
k (s, t). (4.1)

Proof We only need to prove the lemma for (α, β) being (1, 0) and (0, 1) because
the other cases can be proved recursively. And for symmetry, the only case we need
to prove is α = 1, β = 0. Also in order to make the notations to be simple, we can
assume that d1 and d2 are both odd since the other cases are exactly similar.

The main proof has two steps. The first step is to prove that for any blend-
ing function Ti (s, t) = B[si ](s) × B[ti ](t), where si = [sσ 0

i
, sσ 1

i
, . . . , s

σ
2p+2
i

]
and ti = [tτ 0i , tτ 1i

, . . . , t
τ
2q+2
i

], for a vertex C1
i defined on T-mesh T

d1,d2
0,0 can be

expressed into the combination of bi-degree (2p, 2q + 1) blending functions defined
on T

d1,d2
1,0 . It is obvious that Ti (s, t) can be written into the combination of B-splines

B[sli ](s) × B[ti ](t) and B[sri ](s) × B[ti ](t), here sli = [sσ 0
i
, sσ 1

i
, . . . , s

σ
2p+1
i

](s) and
sri = [sσ 1

i
, sσ 2

i
, . . . , s

σ
2p+2
i

](s), respectively. So we should prove that T l
i and T

r
i are the

linear combinations of the bi-degree (2p, 2q + 1) blending functions in T
d1,d2
1,0 . We

only consider B-spline T l
i and T r

i can be proved exactly in the same method.
Denote the two adjacent edges ofC1

i byC
2l
i andC2r

i . Referring to Fig. 6, in T-mesh

T
d1,d2
1,0 , suppose that the indices of the T-nodes both on edges {σ p

i } × [τ 0i , τ
2q+2
i ] and

{σ p+1
i }× [τ 0i , τ

2q+2
i ] are τ0, . . . , τk , k ≥ 2q +2. Then it is sufficient to prove that the

indices of the knot vectors for the blending functions which are associated with edges
[σ p

i , σ
p+1
i ] × {τ j }, j = q, . . . , k − q in the s-direction are all [σ 0

i , σ 1
i , . . . , σ

2p+1
i ].

Suppose there is an edge [σ p
i , σ

p+1
i ] × {τn}, which indices of the knot vector for

the blending function is not [σ 0
i , σ 1

i , . . . , σ
2p+1
i ]. It is obvious that τ

q+1
i 
= τn . So

we can assume that τ
q+1
i > τn since the arguments for the two cases τn > τ

q+1
i and

τ
q+1
i > τn are similar. As the indices of the knot vector for the blending function

is not [σ 0
i , σ 1

i , . . . , σ
2p+1
i ], so there exists a T-junction Q1 = (δ1, τ1), being ⊥ or

�, in rectangle [σ 0
i , σ

p+1
i ] × [τn, τ q+1

i ]. According to Lemma 2.3, the extension of

Q1 covers all edges {δ1} × [τ 0i , τ
q+1
i ]. With the same analysis for t-direction, we can

conclude that there exists a T-junction Q2 = (δ2, τ2), being � or �, which extension
covers all edges [σ 0

i , σ
p+1
i ] × {τ2}. As δ2 ∈ [σ 0

i , σ
p+1
i ] and τ1 ∈ [τ 0i , τ

q+1
i ], so the

two extensions intersect, which completes the proof of the first step.
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Fig. 6 Insert a knot into
t-direction to find presentation
blending functions and points

i
p

q

i
p+1

k-q

0

k

The second step is to prove Eq. (4.1). The main idea is to compute the contribu-
tion of blending functions T d1,d2

k (s, t) to T d1−1,d2
k (s, t). For any blending function

T d1−1,d2
k (s, t), with the knot vector in s-direction being [sσ 0

k
, sσ 1

k
, . . . , s

σ
2p+1
k

], we first
determine the indices ki such that the contribution of T

d1,d2
ki

(s, t) is not zero. Accord-
ing to the proof of first step, the indices can be divided into two parts, li and ri . The
knot vectors in s-direction for the blending functions of li are [∗, sσ 0

k
, sσ 1

k
, . . . , s

σ
2p+1
k

]
and those for ri are [sσ 0

k
, sσ 1

k
, . . . , s

σ
2p+1
k

, ∗]. Here ∗ means the index which could

be different. Thus the sum of the contributions of all these li blending functions to

T d1−1,d2
k (s, t) is

s−s
σ0k

s
σ
2p+1
k

−s
σ0k

and the sumof the contribution of all these ri blending func-

tions to T d1−1,d2
k (s, t) is

s
σ
2p+1
k

−s

s
σ
2p+1
k

−s
σ0k

. Thus, the sum of the contribution of all blending

functions T d1,d2
i (s, t) to T d1−1,d2

k (s, t) is one, which is Eq. (4.1). �	
Theorem 4.3 The sum of the basis functions for an T-spline defined on an admissible
AS T-mesh is one.

Proof It is obvious that
∑nt

k=1 T
0,0
k (s, t) = 1. Thus, the theorem can be directly

derived from Lemmas 4.1 and 4.2. �	

5 Conclusion

The paper generalizes bi-cubic AS T-splines to arbitrary degrees AS T-splines using a
different approach from [16]. We also prove the sum of the blending functions for an
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admissible AS T-spline is one based on a recursive relation for AS T-splines, which
can also be used to derive the hodograph formula for AS T-splines. As we can see
from the present paper, The class of AS T-splines is a minor topology restricted to
T-splines. And any T-spline can be represented as an AS T-spline defined on another
T-mesh. Based on the dimension results in [8], we can also derive an optimized local
refinement algorithm for any AS T-spline and characterize the AS T-splines spaces
according to the linear independence. Future papers will focus on the degree elevation
of AS T-splines and local degree elevation of AS T-splines.
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