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Abstract

This paper develops new refinement rules for non-uniform Catmull-
Clark surfaces that produce G1 extraordinary points whose blend-
ing functions have a single local maximum. The method consists
of designing an “eigen polyhedron” in R2 for each extraordinary
point, and formulating refinement rules for which refinement of the
eigen polyhedron reduces to a scale and translation. These refine-
ment rules, when applied to a non-uniform Catmull-Clark control
mesh in R3, yield a G1 extraordinary point.

Keywords: Non-uniform, Catmull-Clark surfaces, NURBS

Concepts: •Computing methodologies → Parametric curve
and surface models;

1 Introduction

Several surface representations include both Catmull-Clark and
NURBS surfaces as special cases [Sederberg et al. 1998; Müller
et al. 2006; Sederberg et al. 2003a; Müller et al. 2010; Cashman
et al. 2009; Cashman 2010; Kovacs et al. 2015]. A major aim of
such surfaces is to facilitate the adoption of non-uniform subdivi-
sion surfaces by the CAD industry, where NURBS are widely used.

This paper solves a problem that vexes such surfaces: if knot in-
tervals are different, the blending functions for extraordinary points
can have two local maxima, as illustrated in Figure 1 (see also Fig-
ure 17 in [Kovacs et al. 2015]). Ugly blending functions unavoid-
ably manifest themselves in real-world models, such as in Figure 2.
The practical importance of this problem is elevated because such
surfaces are gaining widespread commercial use, plus they play a
central role in isogeometric analysis [Bazilevs et al. 2010].

The method in this paper creates G1, wrinkle-free surfaces for any
reasonable choice of knot intervals. Figure 1.f shows a blending
function produced by our method.

The paper is laid out as follows. Sections 2 and 3 review refine-
ment rules and prior art. Section 4 presents the notion of an eigen
polyhedron for which refinement is simply a scale and a translation
and Section 5 discusses how to design an eigen polyhedron that will
specialize to NURBS in the valence four case, and to Catmull-Clark
surfaces in the uniform case. Section 6 explains how to deduce re-
finement rules from a given eigen polyhedron, thus creating G1

refinement. Section 7 concludes.
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(a) Control mesh (b) Sederberg et al. 1998

(c) Cashman et al. 2009 (d) Kovacs et al. 2015

(e) Patching method (f) Method in this paper

Figure 1: Valence five extraordinary point blending function. The
knot interval of red edges is 10, of black edges is 1.

(a) Ring model

(b) Guitar neck model

Figure 2: Models using a blending function such as in Figure 1b-e.



We focus on the degree-three case, although the concepts should
extend to other degrees. Our discussion assumes that all control-
grid faces are four sided; if not initially, apply a single NURSS
refinement [Sederberg et al. 1998]. We convey knot information by
assigning a knot interval to each edge of the control grid [Sederberg
et al. 1998; Sederberg et al. 2003b]. In Figure 3, di and ei are knot
intervals and can be any non-negative real numbers.

2 Refinement Rules

We define a CCNURBS to be a subdivision surface whose control
mesh edges have knot intervals, and whose refinement equations
specialize to Catmull-Clark surfaces when all knot intervals are the
same and to NURBS when the valence is four and when, in Fig-
ure 3, di = d̃i = d̄i, and ei = ẽi = ēi, i = 0, 1, 2, 3.
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Figure 3: Refinement Rules.

Refinement rules for CCNURBS amount to computing face, edge,
and vertex points. Figure 3 shows labels for a valence n ver-
tex V k with neighboring face points F ki and edge points Eki ,
i = 0, . . . , n − 1, with V k, F ki , E

k
i ∈ R3. The subscripts are

modulo n, the superscript k denotes refinement level, and di, d̃i,
d̄i, ei, ẽi, and ēi are knot intervals. We will refer to edges of a con-
trol mesh that meet at an extraordinary point as spoke edges, and
the image of a spoke edge on the limit surface as a spoke curve.

Defining a (2n+ 1)× 3 matrix

Pk = [F k0 . . . . , F
k
n−1, E

k
0 , . . . , E

k
n−1, V

k]T , (1)

refinement can be written Pk+1 = MkPk where Mk is a (2n +
1)× (2n+ 1) stochastic matrix whose elements Mk

ij are functions
of knot intervals.
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Figure 4: Catmull-Clark subdivision rules.

Referring to Figure 4, the Catmull-Clark refinement rules are:

F k+1
i =

V k + Eki + Eki+1 + F ki
4

, (2)

Ek+1
i =

F k+1
i + V k + F k+1

i−1 + Eki
4

, (3)

V k+1 =

∑n−1
i=0 (F k+1

i + Eki + V k)

n2
+

(n− 3)V k

n
. (4)

Refinement for the NURBS case amounts to conventional B-spline
knot insertion: for both knot vectors, a knot is inserted midway
between each pair of existing knots. Assuming for simplicity that
di = ei, i = 0, 1, 2, 3 (see Figure 5; this will always be the case
after one refinement), the refinement rules for NURBS are

F k+1
i =

9didi+1V
k + (di+1 + 2di−1)(di + 2di+2)F ki

4(2di + di+2)(di−1 + 2di+1)

+
3di+1(di + 2di+2)Eki + 3di(di+1 + 2di−1)Eki+1

4(2di + di+2)(di−1 + 2di+1)
(5)

Ek+1
i =

di−1F
k+1
i + di+1F

k+1
i−1 + (di−1 + di+1)Hk

i

2(di+1 + di−1)
, (6)

V k+1 =
V k

4
+

∑3
i=0(hiH

k
i + fiF

k+1
i )

4(d0 + d2)(d1 + d3)
, (7)

where fi = di−1di+2, hi = di+2(di−1 + di+1), and

Hk
i =

3diV
k + (2di+2 + di)E

k
i

2(di+2 + 2di)
.
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Figure 5: NURBS Refinement.

For the CCNURBS formulation in [Sederberg et al. 1998], any edge
can be assigned any knot interval. This freedom enables the cre-
ation of local creases and darts. However, even away from extraor-
dinary points, the surfaces are only G1. Furthermore, the refine-
ment matrices change at each iteration (Mk+1 6= Mk), so eigen-
vectors and eigenvalues are not defined.

In this paper—as well as in [Sederberg et al. 2003a], [Cashman
et al. 2009], and [Kovacs et al. 2015]—we require the knot inter-
vals on opposing edges of every face to be identical, so in Fig-
ure 3, di = d̃i = d̄i, and ei = ẽi = ēi, i = 0, 1, . . .. This con-
straint causes no loss of design freedom, because local features can
be added using T-junctions [Sederberg et al. 2003a]. Furthermore,
two important advantages arise: the surfaces are C2 NURBS away
from extraordinary points, and the refinement matrix is stationary—
M i = M, i = 1, . . . ,∞. In the remainder of this paper, we will
thus simply write the refinement as

Pk+1 = MPk. (8)



3 Prior Work

The ugly behavior illustrated in Figure 1 that often arises in CC-
NURBS limit surfaces has attracted research for over a decade.
[Cashman et al. 2009] proposes a strategy of minimizing the dif-
ference in knot intervals for spoke edges at an extraordinary point.
It does so by performing a preprocess of repeatedly splitting the
largest knot interval at an extraordinary point if it is more than twice
as large as the smallest knot interval at that extraordinary point, and
then performing a local refinement to make all knot intervals the
same. While this provides improvement in some cases, Figure 1.c
shows that the strategy does not work universally.

[Kovacs et al. 2015] modifies the CCNURBS refinement rules
in [Sederberg et al. 1998], yielding improved surfaces in some
cases, although Figure 1.d shows that wrinkles remain.

Another method that has been explored for dealing with this prob-
lem is to modify the “patch” method in [Peters 2000] to handle
differing knot intervals. This method produces one Bézier patch (or
a small number of patches) for each face of the control mesh, and
is currently used commercially in the Autodesk T-Splines Plugin
for Rhino, as well as in the Autodesk Inventor and Autodesk Fu-
sion products [T-Splines 2016]. The patches are forced to be G1 by
satisfying algebraic constraints called connecting functions. While
it is straightforward to modify the connecting functions to allow
different knots, achieving good-looking results has proven just as
elusive for patching as it has for subdivision. The reason is that
no theoretically sound technique has been found for computing the
position and normal for the extraordinary point and tangent vectors
for spoke curves, since these are usually obtained from subdivision
surfaces. While the resulting surfaces are mathematically G1, the
best implementation we know of—currently used in the Autodesk
T-Splines Plugin for Rhino—often produces ugly results similar to
those in Figure 1. Figure 1.e shows one such example.

Other prior art that aims to unify cubic NURBS and Catmull-Clark
surfaces into a single representation includes Extended Subdivision
Surfaces [Müller et al. 2006] and Dinus [Müller et al. 2010]. These
schemes handle extraordinary points by reverting to Catmull-Clark
rules, ignoring the actual knot intervals. While this assures smooth
blending functions, the abrupt transition between the uniform ex-
traordinary point and its nonuniform neighbors leads to undesirable
results such as illustrated in Figure 6.

(a) Müller et al. 2006 (b) Method in this paper

Figure 6: Example involving Müller et al. 2006.

4 Eigen Polyhedra

In the examples in Figure 1, a single control point moved out of
plane produces a limit surface that has two local maxima. We now
look more closely at this curious phenomenon.

Figure 7 shows the spoke curves for the surface in Figure 1.b. No-
tice that theG0 extraordinary point lies between the two local max-
ima, and that the angle between two pairs of adjacent spoke curves
appears to be zero. The reason this happens can be understood by
examining the first neighborhood control grid faces after repeated

(a) Top view (b) Perspective view

Figure 7: Spoke curves for surface in Figure 1.b

refinement. Figure 8 shows how those faces become more narrow
with each iteration, causing the angles between some edges to ap-
proach zero upon refinement. This observation suggests that the

(a) 0 (b) 1 (c) 3 (d) 5 (e) 7

Figure 8: First neighborhood of extraordinary point after refine-
ments, for example in Figure 1.b. Subcaption is number of refine-
ments. Each subfigure is enlarged so their heights are similar.

ugly behavior in Figure 1 and Figure 7 might be eliminated if re-
finement rules could be devised that avoid the collapsing of faces in
Figure 8. This line of thinking led to the notion of eigen polyhedra,
which are meshes that lie in the x–y plane. Denote by

P̂k = [F̂ k0 . . . . , F̂
k
n−1, Ê

k
0 , . . . , Ê

k
n−1, V̂

k]T , (9)

a (2n + 1) × 2 matrix where V̂ k, F̂ ki , Ê
k
i ∈ R2. We will use the

expression “polyhedron P̂k” to mean the polyhedron in R2 whose
vertices are stored in a matrix P̂k and whose topology is illustrated
in Figure 11.a.
Definition 1. Polyhedron P̂0 is an eigen polyhedron of M if

P̂1 = MP̂0 ≡ λP̂0 + IT̂ 0 (10)

where polyhedron P̂0 has V̂ 0 = (0, 0),M is a (2n+1)×(2n+1)

matrix whose rows sum to one, λ ∈ R1, T̂ 0 ∈ R2, and I is a
(2n+ 1)× 1 vector of 1’s.

In words,MP̂0 produces a scale of P̂0 by a factor of λ, followed by
a translation by T̂ 0. As examples, we now describe eigen polyhedra
for Catmull-Clark and for NURBS refinement matrices.

Catmull-Clark eigen polyhedron. A Catmull-Clark refinement
matrix can be constructed from the refinement equations (2), (3),
and (4). This M has an eigen polyhedron with vertices

V̂ 0 = (0, 0) (11)

Ê0
i = (cos(

2i

n
π), sin(

2i

n
π)), and (12)

F̂ 0
i = γ(Ê0

i + Ê0
i+1) (13)

where
γ =

4

cn + 1 +
√

(cn + 9)(cn + 1)
(14)



and cn = cos( 2π
n

). In this case,

λ =
1 + γ

4γ
=

5 + cn +
√

(cn + 9)(cn + 1)

16
(15)

and T̂ 0 = (0, 0).
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(c) Valence 6

Figure 9: Catmull-Clark Eigen Polyhedra.

NURBS eigen polyhedron. The NURBS refinement matrix,
constructed from (5), (6), and (7), has an eigen polyhedron with
vertices

V̂ 0 = (0, 0) (16)

Ê0
i =

2di + di+2

3
(cos(

i

2
π), sin(

i

2
π)), and (17)

F̂ 0
i = Ê0

i + Ê0
i+1. (18)

In this case, λ = 1
2

. Since V̂ 0 = (0, 0), T̂ 0 = V̂ 1 is obtained by
substituting (16), (17) and (18) into (7) to get

T̂ 0 =

(
d0 − d2

6
,
d1 − d3

6

)
. (19)
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Figure 10: Examples of NURBS Eigen Polyhedra.

Properties of eigen polyhedra. Since the rows of M each sum
to 1, M(IT̂ 0) = IT̂ 0. So, if P̂0 and M satisfy (10),

P̂2 = MP̂1 = M(λP̂0 + IT̂ 0) = λMP̂0 + IT̂ 0

= λ2P̂0 + (1 + λ)IT̂ 0

By induction,

P̂k = λkP̂0 + (1 + λ1 + . . .+ λk−1)IT̂ 0. (20)

From (9), the last row of P̂k is V̂ k. Since V̂ 0 = (0, 0),

V̂ k = (1+λ1 + . . .+λk−1)T̂ 0 = (1+λ1 + . . .+λk−1)V̂ 1 (21)
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Figure 11: Relationship between P̂k and P̂k+1 in (23).

and
P̂k = λkP̂0 + ÎV k. (22)

Denoting T̂ k = V̂ k+1 − V̂ k, we can obtain from (22) by straight-
forward algebraic manipulation,

P̂k+1 = MP̂k ≡ [λ(P̂k − V̂ kIV k) + ÎV k] + IT̂ k. (23)

The geometric meaning of (23) is shown in Figure 11: If P̂0 is an
eigen polyhedron of M , then MP̂k is equivalent to a scale by λ
about point V̂ k followed by a translation by T̂ k. Note that P̂k −
V̂ kI, k = 1, 2, . . ., are eigen polyhedra of M . It is straightforward
to prove that T̂ k+1 = λT̂ k = λkT̂ 0.

Obviously, if polyhedron P̂0 is an eigen polyhedron of M , polyhe-
dron P̂0 will not exhibit the non-uniform scaling behavior in Fig-
ure 8 when it is repeatedly refined by M .

If we subtract I V̂
1

1−λ from both sides of (10), we obtain

M(P̂0 − I
V̂ 1

1− λ ) = λ(P̂0 − I
V̂ 1

1− λ ), (24)

so the two columns of P̂0 − I V̂
1

1−λ are eigenvectors of M , each of
whose eigenvalue is λ. This suggests that M will have an eigen
polyhedron if M has two identical eigen values. Unfortunately,
other than the Catmull-Clark and NURBS special cases, generic
CCNURBS refinement matrices do not have two identical eigen
values [Kovacs et al. 2015].

Eigen polyhedra are similar to what [Ball and Storry 1988] calls a
natural configuration, and to the control grid of a characteristic map
in [Reif 1995].

The main contribution of this paper is to use the notion of an eigen
polyhedron to create CCNURBS refinement rules for which M has
an eigen polyhedron, and thus has two identical eigenvalues.

In Section 5 we discuss how to design an eigen polyhedron P̂0 a
priori, for any set of knot intervals and any valence—without first
knowing M . We then show in Section 6 how to construct a refine-
ment matrix for which P̂0 is an eigen polyhedron. This procedure
creates CCNURBS refinement rules that produce a G1 surface and
whose blending functions have a single local maximum.

5 Creating an Eigen Polyhedron

We now explain how to design an eigen polyhedron for a valence-
n extraordinary point whose edges have knot interval values



d0, . . . , dn−1. We set V̂ 0 = (0, 0), and express the points Ê0
i

and F̂ 0
i , i = 0, . . . , n − 1 as equations that are functions of n and

d0, . . . , dn−1. We have some freedom in creating those equations,
the only rigid requirements being that they must reduce to (11)–(13)
when d0 = . . . = dn−1 (the Catmull-Clark case) and to (16)–(18)
when n = 4 (the NURBS case).

We first consider the angles between spoke edges in the eigen poly-
hedron, θi = ∠E0

i V
0E0

i+1. Since all angles are the same in
Catmull-Clark and NURBS eigen polyhedra, i.e.,

θi =
2π

n
, i = 0, . . . , n− 1, (25)

we propose using this equal-angle formula for all eigen polyhedra.

The length of the spoke edges for NURBS eigen polyhedra are
functions of knot intervals. We similarly define the length li of
spoke edge V 0E0

i to be

li =
di + d−i + d+i

3

where

d+i =

i+n−1∑
j=i

di cos(θi,j), if cos(θi,j) > 0

d−i = −
i+n−1∑
j=i

di cos(θi,j), if cos(θi,j) < 0

θi,j =

j−1∑
k=i

θk, i < j

These lengths specialize to both NURBS and Catmull-Clark eigen
polyhedron spoke-edge lengths.

l0
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F00

θ4

l1

l4
E40

F40

E10

E00

Figure 12: Eigen polyhedron for example in Figure 1.d. Red edges
have knot intervals of 10, black edges gave knot intervals of 1.

We now define Ê0
0 = (l0, 0) to lie on the x-axis, so θ0,i is the angle

between spoke edge V̂ 0Ê0
i and the positive x-axis. Then,

Ê0
i = li(cos(θ0,i), sin(θ0,i)). (26)

The points F̂ 0
i are obtained using equation (13). The eigen polyhe-

dron for the surface in Figure 1.d is shown in Figure 12.

6 Deriving M from an Eigen Polyhedron

Denoting a polyhedron created using the procedure in Section 5 by
P̂0, we now discuss how to create a refinement matrixM for which
P̂0 is an eigen polyhedron. We have three requirements:

1. M must satisfy (10)

2. M must specialize to Catmull-Clark refinement if the knot
intervals are all equal

3. M must specialize to NURBS refinement if the valence is four
and the knot intervals are as in Figure 5.

Since the rows of M express the face, edge, and vertex point com-
putations, defining face, edge, and vertex point rules that satisfy
these three requirements is equivalent to creating the desired M .

Equation (10) involves λ and T̂ 0, so we begin by finding equa-
tions for λ and T̂ 0 that specialize to the NURBS and Catmull-Clark
cases. Equation (15) for computing λ meets this requirement.

Vertex point rule

Observe from (21) that T̂ 0 = V̂ 1. This means that our equation for
T̂ 0 must not only specialize to (0, 0) in the Catmull-Clark case and
to (19) in the NURBS case, but that it also will serve as our vertex
point equation. These requirements are met by using (27) as the
vertex point equation. (This is a minor modification of the vertex
point rule from [Sederberg et al. 1998].)

V̂ k+1 =
n− 3

n
V̂ k +

3

n

∑n
i=1(miH

k
i + fiG

k
i )∑n

i=1(mi + fi)
(27)

where

Hk
i = giÊ

k
i + (1− gi)V k,

Gki = gi(1− gi+1)Êki + gi+1(1− gi)Êki+1

+g1g2F
k
i + (1− gi)(1− gi+1)V k,

gi =
di−2 + di+2 + di
di−2 + di+2 + 4di

,

fi =

n∏
j=1,j 6=i,i+1

d+j ,

mi = fi + fi−1.

Since V̂ 0 = (0, 0),

T̂ 0 = V̂ 1 =
3

n

∑n
i=1(miH

0
i + fiG

0
i )∑n

i=1(mi + fi)
. (28)

Labels are illustrated in Figure 13.
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Figure 13: Vertex point computation.



Face point rule

From the definition of an eigen polyhedron (10), we have

F̂ 1
i = V̂ 1 + λF̂ 0

i . (29)

At this stage of the process we know V̂ 1, λ, and F̂ 0
i , so the Carte-

α 1−α

Ei+1
k

E

F

i

i

k

k

V k

V

E
F

E

i

i

i+1

k+1

k+1
k+1

k+1

i,1 i,1

α

1−α

i,2

i,2

(a) Face point rule

V E

E
F

E

F

i

i
i+1

i-1

i-1

k

k
k

k

k

k

V E i
k+1 k+1

Pi,1

Pi,2 Pi,4

Pi,3

β i,1

β i,11−
β i,2 β i,21−

(b) Edge point rule

Figure 14: Face and edge point computation

sian coordinates of F̂ 1
i can be computed.

To devise a face point rule, we create an equation for F̂ 1
i in terms

of the four vertices of its generating face (see Figure 14.a). A rea-
sonable way to do this is using a bi-linear equation:

F̂ 1
i = (1− αi,1)(1− αi,2)V̂ 0 + αi,1(1− αi,2)Ê0

i

+ (1− αi,1)αi,2E
0
i+1 + αi,1αi,2F̂

0
i . (30)

The two bilinear equations in (30) can be solved via the following
method from [Floater 2015]. Denote v1 = F̂ 1

i −V̂ 0, v2 = F̂ 1
i −Ê0

i ,
v3 = F̂ 1

i − F̂ 0
i , v4 = F̂ 1

i − Ê0
i+1. And let Si = 1

2
vi × vi+1,

Ti = 1
2
vi−1 × vi+1, then

αi,1 =
2S4

2S4 − T1 + T2 +
√
D

(31)

αi,2 =
2S1

2S1 − T1 − T2 +
√
D
, (32)

where D = T 2
1 + T 2

2 + 2S1S3 + 2S2S4. Solving this for nu-
merical values of αi,1 and αi,2, the face point rule is (30). It can
be shown that (30) satisfies (10) and specializes to NURBS and
Catmull-Clark.

Edge point rule

From the definition of an eigen polyhedron, we have

Ê1
i = V̂ 1 + λ(Ê0

i − V̂ 0)= V̂ 1 + λÊ0
i . (33)

Since we know V̂ 1, λ, and Ê0
i , the Cartesian coordinates of Ê1

i can
be computed.

Edge points are a linear combination of the six vertices of the two
adjacent faces for the associated edge (see Figure 14.b). Inspired
by the non-uniform B-spline refinement rules, we first denote

Pi,1 = (1− αi−1,1)V̂ 0 + αi−1,1Ê
0
i−1; (34)

Pi,2 = (1− αi,2)V̂ 0 + αi,2Ê
0
i+1; (35)

Pi,3 = (1− αi−1,1)Ê0
i + αi−1,1F̂

0
i−1; (36)

Pi,4 = (1− αi,2)Ê0
i + αi,2F̂

0
i . (37)

then the edge point is computed via the following equation

Ê1
i =(1− βi,2)(

1− βi,1
2

Pi,1 +
βi,1
2
Pi,2 +

1

2
V̂ 0)+

βi,2(
1− βi,1

2
Pi,3 +

βi,1
2
Pi,4 +

1

2
Ê0
i ). (38)

It is easy to see that Ê1
i is also a bi-linear combination of four

points Pi,1+V̂
0

2
, Pi,2+V

0

2
, Pi,3+Ê

0
i

2
and Pi,4+Ê

0
i

2
with coefficients

βi,1 and βi,2. Thus, we can solve the coefficients using the same
method as above. After solving the βi,1 and βi,2, the edge point
rule is defined via equation (38). It can be shown that (38) satisfies
(10) and specializes to NURBS and Catmull-Clark.

6.1 M in the Overall Mesh Refinement Process

While the M we have just described was created in reference to a
special planar polyhedron, applying M to arbitrary control meshes
in R3 yields excellent results. We now describe howM fits into the
overall mesh refinement process. The creation of M assumes that
extraordinary points are separated by more than one face. If not,
perform an initial refinement using any CCNURBS formulation.

In Figure 15, the gray mesh is obtained after a single CCNURBS
refinement, so the two extraordinary points are not adjacent. Re-
fining the gray mesh yields the mesh whose vertices are either red
or green. In Figure 15, the red control points are obtained by ap-
plying the appropriate M to the 1-neighborhood of each respective
extraordinary point. In general, each extraordinary point has its
own refinement matrix, since knot intervals will generally not be
the same for each extraordinary point.

Figure 15: Refinement in the 2-neighborhood

The green vertices are obtained with conventional NURBS refine-
ment rules using face, edge, and vertex point equations (5)–(7).

7 Results and Discussion

Figure 1.f and Figures 16—18 show several examples of blending
functions produced by our method. Notice that the angles between
spoke edges are non-zero using our method.

(a) Using Cashman et al. 2009 (b) Using Our Method

Figure 16: Valence 6, with knot intervals 1, 10, 10, 1, 1, 10.

For smaller knot interval ratios, wrinkles are more minor but the
surface imperfection is still evident using zebra stripes, as illus-



(a) Using Sederberg et al. 1998 (b) Using Our Method

Figure 17: Valence 7, with knot intervals 1, 8, 8, 1, 1, 1, 8.

(a) Using Kovacs et al. 2015 (b) Using Our Method
Figure 18: Valence 8, with knot intervals 1, 5, 5, 1, 1, 1, 5, 1.

trated in Figure 19.a. Our method smooths out the kinked zebra
stripes.

(a) Using Kovacs et al. 2015 (b) Using Our Method

Figure 19: Zebra Stripes for valence 5 blending function with knot
intervals 1,3,1,3,3.

Improved blending functions lead to improved models. Figures 20
and 21 show the result of applying our refinement method to the
model in Figure 2.a and Figure 22 shows our method applied to the
guitar neck model from Figure 2.b.

We did not study valences greater than eight because high valence
extraordinary points are rarely used in practice. However, the study
of how well the method works for higher valences is of mathemati-
cal interest and would be worth exploring.

In the examples shown, the extraordinary point blending functions
have a single local maximum and are G1. A good problem for
future study is to prove whether this is true for any choice of knot
intervals and valance. We do not have an analytical proof of this, but
we did test a million different extraordinary points with randomly
generated knot intervals ∈ [10−6, 1] and valences of n = 3, 5, 6,
7 and 8 and found that, in every case, the blending function had a
single local maximum and was G1.

To verify the existence of a single local maximum, we performed
five levels of refinement on each test case and confirmed that the
resulting control mesh had a single vertex whose z-coordinate was
larger than all neighbors. We believe that five refinements is suf-
ficient because we have observed that the twin peak phenomenon
usually manifests itself in the control grid of the second refinement.

An extraordinary point is tangent continuous if the characteristic
ring is regular and injective [Peters and Reif 2008]. To verify reg-
ularity and injectivity, we need to examine the characteristic map
defined by three rings of control points. To determine those 12n+1
control points, form the (12n+1)×(12n+1) refinement matrix for
those points, and compute the second and third eigenvectors. The

Figure 20: Ring model from Figure 2.a using our method.

(a) Using Kovacs et al. 2015 (b) Using Our Method

Figure 21: Zebra Stripes for Ring Model in Figure 2.a.

Figure 22: Guitar neck model from Figure 2.b using our method.

(a) Using Sederberg et al. 1998

(b) Using the method in this paper

Figure 23: Helmet model.



Figure 24: Characteristic Map Control Points for the Example in
Figure 12

x-coordinates of the points are the values in the second eigenvec-
tor, and the y-coordinates in the third eigenvector. Figure 24 shows
three rings of control points for the characteristic map for the eigen
polyhedron in Figure 12. We verified regularity and injectivity by
subdividing the control mesh of the characteristic map several times
and performing numerical tests to confirm that the determinant of
the Jacobian matrix does not change sign and that there are no non-
local intersections.

In all million test cases, the first ring of control points for the char-
acteristic map is a translation of the eigen polyhedron. In other
words, the value of λ used in creating the eigen polyhedron always
turned out to be the second and third eigenvalue of M . We have
no mathematical proof that this will always be the case, and sug-
gest that this is an interesting problem for future research. There
exists some related literature on this general topic under the name
“inverse eigenvalue problem.”

In Section 5, equation (25) defines the θi for our eigen polyhedra
to all be equal. We experimented with using different values of θi
for cases where n 6= 4 and the di are not equal and found that
minor changes in surface quality can occur. For example, if all
knot intervals are the same except for one knot interval of zero, we
observed slightly improved surface quality when angles next to the
zero-knot-interval edge are 90◦ and the other angles are the same.
While our preliminary results did not seem significant enough to
report in this paper, this is worth studying further.

Another topic that invites future research is zero knot intervals.
The algorithm requires a modification to handle a zero knot in-
terval: splitting a zero knot interval produces two zero knot inter-
vals, so one should be removed. Things are more complicated if
several spoke edges have zero knot intervals because two adjacent
zero knot intervals create a crease so there is not a unique tangent
plane. In such cases, our method cannot be applied to the entire
one-neighborhood, but could be applied piecewise to each domain
bounded by creased spoke edges. There are numerous such cases
to consider, and more theory to work out.

A closed-form equation for the Cartesian coordinates of the extraor-
dinary point, as well as for tangent vectors for the spoke curves, can
be developed from the eigen vectors. This would be helpful in per-
forming exact evaluation of extraordinary limit points, and in de-
veloping an improved patching solution for non-uniform Catmull-
Clark surfaces.
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