
Computer Aided Geometric Design 46 (2016) 16–29
Contents lists available at ScienceDirect

Computer Aided Geometric Design

www.elsevier.com/locate/cagd

On degree elevation of T-splines ✩

Jingjing Zhang, Xin Li ∗

University of Science and Technology of China, Hefei, Anhui, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 July 2015
Received in revised form 4 May 2016
Accepted 19 May 2016
Available online 2 June 2016

Keywords:
T-splines
Analysis-suitable T-splines
Degree elevation

A degree elevation algorithm is presented for T-splines. We also provide two optimized
degree elevation algorithms to restrict the resulting T-splines to be analysis-suitable.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

T-splines (Sederberg et al., 2003, 2004) address many limitations inherent in the NURBS representation, such as local
refinement (Sederberg et al., 2004; Scott et al., 2012), watertightness via merging (Ipson, 2005; Sederberg et al., 2003)
and trimmed NURBS conversion (Sederberg et al., 2008). T-splines have proved to be an important technology across several
disciplines including industrial, architectural and engineering design, manufacturing and engineering analysis. Knot insertion
and degree elevation algorithms are two fundamental algorithms which are used to enrich a spline space (Farin, 2002).
Degree elevation is the process of raising the degree of a curve or a surface while keeping the shape unchanged. For
NURBS, these issues have been well studied (Farin, 2002; Wang and Deng, 2007; Huang et al., 2005). For T-splines, the local
refinement algorithm has also been well studied (Sederberg et al., 2004; Scott et al., 2012; Morgenstern and Peterseim,
2015). However, no previous articles address degree elevation for T-splines.

Another motivation for T-spline degree elevation is from the analysis community. T-splines are attractive not only in
geometric modeling but also in iso-geometric analysis (IGA), which uses the smooth spline basis that defines the geometry
as the basis for analysis. IGA is introduced in Hughes et al. (2005) and described in detail in Cottrell et al. (2009). The use
of T-splines as a basis for IGA has gained widespread attention (Bazilevs et al., 2010; Scott et al., 2012, 2013; Borden et al.,
2012; Benson et al., 2010; Veiga et al., 2011; Buffa et al., 2012; Dimitri et al., 2014; Liu et al., 2014; Schillinger et al., 2014).
While the whole class of T-splines are not suitable as a basis for IGA because of possible linear dependence (Buffa et al.,
2010), a mildly topological restricted subset of T-splines, analysis-suitable T-splines (AS T-splines), are optimized to meet the
needs both for design and analysis (Li et al., 2012; Scott et al., 2012; Veiga et al., 2012, 2013; Li and Scott, 2014). B-spline
based IGA uses the operations of h-refinement (knot insertion), p-refinement (degree elevation) and k-refinement (both h
and p-refinement are preformed) (Cottrell et al., 2007; da Veiga et al., 2011). The k-refinement provides smoother functions

✩ This paper has been recommended for acceptance by Thomas Sederberg.

* Corresponding author. Tel.: +86 551 63607202.
E-mail address: lixustc@ustc.edu.cn (X. Li).
http://dx.doi.org/10.1016/j.cagd.2016.05.010
0167-8396/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cagd.2016.05.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
mailto:lixustc@ustc.edu.cn
http://dx.doi.org/10.1016/j.cagd.2016.05.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagd.2016.05.010&domain=pdf

J. Zhang, X. Li / Computer Aided Geometric Design 46 (2016) 16–29 17
Fig. 1. A bi-degree (2,3) T-mesh. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

and increases the accuracy over the classical C0-continuous p-refinement for the problems of structural vibrations (Cottrell
et al., 2007). Thus, the development of k-refinement or even local k-refinement for T-splines is important both for IGA and
geometric modeling.

Our goal is to develop algorithms for T-spline degree elevation. Given a bi-degree (p, q) T-spline space Sp,q(T) defined
on a T-mesh T, the algorithm finds a new T-mesh T̂ such that Sp,q(T) ⊆ Sp+1,q+1(T̂). If T is a tensor-product mesh, then
the new mesh T̂ is also a tensor-product mesh by increasing the knot multiplicity, which is the mesh D(T) defined in
Section 4.3. However, this is not true for general T-splines because the relationship between T and T̂ is unknown. Thus, we
first provide a recursive algorithm in Section 4 based on degree elevation of each blending function. But in the process of
the algorithm, we need to insert some additional vertices and edges such that the blending functions after degree elevation
correspond to a valid T-mesh. If we restrict the resulting T-spline to be analysis-suitable, then the relation between T-mesh
T and T̂ is simplified (Theorem 5.3), which enables us to develop two optimized algorithms in Section 5. If the original
T-mesh is also analysis-suitable, we can explicitly give the new T-mesh T̂ (Remark 5.4).

The paper is structured as follows. Section 2 provides the background on T-splines and AS T-splines. Section 3 recalls B-
splines degree elevation. Section 4 presents a degree elevation algorithm for generic T-splines. Section 5 gives two optimized
degree elevation algorithms. The last section is discussion.

2. T-splines

2.1. Index T-mesh

An index T-mesh (Bazilevs et al., 2010) T for a bi-degree (p, q) T-spline is a collection of all the elements of a rectangular
partition of the index domain [0, c + p] ×[0, r +q], where all rectangle corners (or vertices) have integer coordinates. Denote
the active region as a rectangle region [[p+1

2], c +[p−1
2]] ×[[q+1

2], r +[q−1
2]], here [d] is the maximal integers equal to or less

than d. The active region carries the anchors that will be associated with the blending functions while the other indices will
be needed for the definition of the local index vector when the anchor is close to the boundary. Fig. 1a shows the active
region that is in gray for a bi-degree (2,3) T-mesh. There are three types of elements in a T-mesh:

• Vertex: vertex of a rectangle, denoted as (δi, τi) or {δi} × {τi}.
• Edge: a line segment connecting two vertices in the T-mesh and no other vertices lying in the interior, denoted as

[δ j, δk] × {τi} or {δi} × [τ j, τk] for a horizontal or vertical edge.
• Face: a rectangle where no other edges and vertices in the interior, denoted as [δi, δ j] × [τk, τl] or (δi, δ j) × (τk, τl),

where the second one is for an open face.

The valence of a vertex is the number of edges that touch it. While the algorithms can be extended to any T-mesh topology,
for simplicity of the presentation, we do not allow valence one vertices and the only valence two vertices are the four
corners. The valence three interior vertices are called T-junctions. We adopt the notations ‘�’, ‘�’, ‘⊥’ and ‘�’ to indicate the
four possible orientations for the T-junctions.

An anchor is a point in the index T-mesh which corresponds to one blending function. The anchor corresponds to the
vertex, the edge midpoint or the face center depending on the degrees. For the i-th anchor Ai , we define a local index
vector �δi × �τi . The values of �δi = [δ0

i , . . . , δp+1
i] and �τi = [τ 0

i , . . . , τ q+1
i] are determined as follows. From the i-th anchor

in the T-mesh, we shoot a ray in the s and t direction traversing the T-mesh and collect a total of p + 2 and q + 2 knot

indices to form �δi and �τi . If both p and q are odd, then the vertex (δ
p+1

2
i , τ

q+1
2

i) corresponds the anchor. If p is even and q is

odd, then the horizontal edge [δ
p
2

i , δ
p+2

2
i] × {τ

q+1
2

i } corresponds the anchor. If p is odd and q is even, then the vertical edge

{δ
p+1

2 } × [τ
q
2 , τ

q+2
2] corresponds the anchor. If both p and q are even, then the face [δ

p
2 , δ

p+2
2] × [τ

q
2 , τ

q+2
2] corresponds the
i i i i i i i

18 J. Zhang, X. Li / Computer Aided Geometric Design 46 (2016) 16–29
Fig. 2. The extensions for four different kinds of T-junctions.

anchor. For example, the local index vectors for the anchor Ai are marked with orange as shown in Fig. 1a. Besides these,
we have the following notations for an anchor Ai in the T-mesh,

• hS K (Ai) is the union of all the edge segments [δ0
i , δp+1

i] × {τ j
i }, j = 0, 1, . . . , q + 1;

• v S K (Ai) is the union of all the edge segments {δ j
i } × [τ 0

i , τ q+1
i], j = 0, 1, . . . , p + 1;

• S K (Ai) = hS K (Ai) ∪ v S K (Ai);

• An elemental T-mesh Telem =
nA⋃
i=1

S K (Ai), which is a T-mesh formed by all the edges in S K (Ai). Here nA is the number
of anchors.

2.2. Extensions

T-junction extension ext(Ti) is a very important topological issue to define analysis-suitable T-splines, which is a line
segment associated with each T-junction Ti . For example, for a i-th T-junction (δi, τi) of type �, the extension for the
T-junction is the line segment [i, i] × {τi}. i and i are determined such that the edges [i, δi) × {τi} have [p+1

2] intersections
with the T-mesh and the edges (δi, i] × {τi} have [p

2] intersections with the T-mesh. For T-junction of type �, we can
similarly define the extension except the number of intersections is exchanged. Also, we can define the extensions for the
other kinds of T-junctions ⊥, �, where we use degree q instead of p. All these extension examples are illustrated in Fig. 2.

2.3. T-splines and analysis-suitable T-splines

In an index T-mesh, each index δi and τ j corresponds to a knot value sδi and tτ j , which form two global knot vectors
�s = [s0, s1, . . . , sc+p] and �t = [t0, t1, . . . , tr+q]. The end condition knots for �s and �t may have multiplicity p + 1 and q + 1; all
other knots are of multiplicity ≤ p and ≤ q respectively. With the knot vectors, each edge in the T-mesh can be assigned a
knot interval which is the difference of the knot values for the two end vertices.

Now we are ready to define the blending function Ti(s, t) associated with the i-th anchor,

Ti(s, t) = B[s �δi
](s)B[t �τi

](t) (1)

where

s �δi
= [sδ0

i
, sδ1

i
, . . . , s

δ
p+1
i

], t �τi
= [tτ 0

i
, tτ 1

i
, . . . , t

τ
q+1
i

] (2)

and B[s �δi
](s), B[t �τi

](t) are degree p and q B-spline basis functions defined in terms of knot vector s �δi
and t �τi

.
A T-spline space Sp,q(T) is finally given as a linear space spanned by all these blending functions and a T-spline surface

is defined as

J. Zhang, X. Li / Computer Aided Geometric Design 46 (2016) 16–29 19
Fig. 3. The right T-mesh is a bi-cubic AS T-mesh while the left one is not.

T(s, t) =
nA∑
i=1

Ci T i(s, t) (3)

where Ci = (ωi xi, ωi yi, ωi zi, ωi) ∈ P
3 are homogeneous control points, ωi ∈R are weights, Ti(s, t) are blending functions.

Definition 2.1. For a bi-degree (p, q) T-spline, a T-mesh is called analysis-suitable if the extensions for all the T-junctions �
and � don’t intersect the extensions for all the T-junctions ⊥ and �. A T-spline defined on an analysis-suitable T-mesh is
called an analysis-suitable T-spline, for short AS T-spline. See Fig. 3.

Analysis-suitable T-splines are optimized to meet the needs of both design and analysis. AS T-splines have the following
properties: local linear independence (Li et al., 2012; Veiga et al., 2012, 2013; Li, 2015), partition of unity (Li and Scott, 2014;
Zhang and Li, 2015), local refinement (Sederberg et al., 2003; Scott et al., 2012), dual basis (Veiga et al., 2012, 2013),
characterization and approximation (Li and Scott, 2014). Besides these, one interesting property for AS T-meshes is given in
the following lemma from Veiga et al. (2012, 2013), Li (2015). This property tells us that an AS T-mesh can be created from
its elemental T-mesh by decreasing extensions.

Lemma 2.2. For an AS T-mesh T, Telem = T ∪ {ext(Ti)|for all T-junctions Ti}.

3. Degree elevation of B-splines curves

This section recalls degree elevation for a B-spline curve and a tensor-product B-spline surface.
Given a knot vector �s = [s0, s1, . . . , sn+p+1], si ≤ si+1, i = 0, 1, . . . , n + p, a set of degree p B-spline basis functions

B p[�si](s) can be defined in terms of the local knot vector �si = [si, . . . , si+p+1]. If we rewrite the knot vector by getting rid of
the multiplicities as {si0 < si1 < . . . , sim }, here μk = ik+1 − ik is the multiplicities of knots uik . Then the B-spline space can
also be defined as

Sp[�s] :=
{

f (s)
∣∣∣ f (s)|[uik

,uik+1
] ∈ Pp, f is C p−μk at uik

}
,

where Pp is the space of all the degree p polynomials.
In order to degree elevate a B-spline curve, we can directly degree elevate each curve segment and keep the continuity

at each interior knot, which means that we need to increase the multiplicity of each knot by one to get a new knot
vector {si0 < si1+1 < . . . , sim+m}. The new degree p + 1 basis functions can be defined in terms of the new knot vector.
And the new control points can be computed via blossom or the fast degree elevation algorithm (Huang et al., 2005;
Farin, 2002).

The same idea can be generalized to perform degree elevation of a tensor-product B-spline surface directly. However,
this is not the situation for T-splines because the T-spline space is general a linear space spanned by the blending functions
defined from the knots and the T-mesh. There is no characterization for the general T-spline space in terms of the piecewise
polynomial space with some continuity constrains. In the following sections, we will provide a recursive algorithm to degree
elevation of general T-splines and two optimized degree elevation algorithms if we restrict the resulting T-spline to be
analysis-suitable.

4. Degree elevation of T-splines

In this section, we provide a recursive degree elevation for general T-splines.

20 J. Zhang, X. Li / Computer Aided Geometric Design 46 (2016) 16–29
4.1. Blending function refinement

For a degree d B-spline basis function B[�s](s), where �s = [s0, s1, . . . , sd+1], insert a single knot s∗ into �s, then B[�s](s) can
be written into a linear combination of two degree d B-splines:

B[�s](s) = c1 B[�sl](s) + c2 B[�sr](s), (4)

where �sl = [s0, . . . , si, s∗, si+1, . . . , sd], �sr = [s1, . . . , si, s∗, si+1, . . . , sd+1],

c1 =
{

s∗−s0
sd−s0

if s∗ < sd

1 if s∗ ≥ sd
c2 =

{
sd+1−s∗
sd+1−s1

if s∗ > s1

1 if s∗ ≤ s1
(5)

If �s = [s0, s1, . . . , sd+1] is a knot vector which is a subsequence of another knot vector �̃s of length n, then B[�s](s) can
be written as a linear combination of n − d − 1 B-spline basis functions defined over substrings of length d + 2 in �̃s. The
coefficients can be computed by repeating the above equation.

4.2. Degree elevation for a blending function

For a degree p B-spline basis function B p[�s](s) defined on knot vector �s, where

�s = [s0, s1, . . . , sp+1] = [s0, . . . , s0︸ ︷︷ ︸
ω0

, sz0+1, . . . , sz0+1︸ ︷︷ ︸
ω1

, . . . , szm−1+1, . . . , szm−1+1︸ ︷︷ ︸
ωm

],

zr = ∑r
j=0 ω j , then, B p[�s](s) can be written as a linear combination of (m + 1) degree (p + 1) B-spline basis functions,

B p[�s](s) =
m∑

i=0

αi B p+1[�si](s), (6)

here, �si is a substring of length d + 3 in

�s2 = [s2
0, s2

1, . . . , s2
p+m+2] = [s0, . . . , s0︸ ︷︷ ︸

ω0+1

, sz0+1, . . . , sz0+1︸ ︷︷ ︸
ω1+1

, . . . , szm−1+1, . . . , szm−1+1︸ ︷︷ ︸
ωm+1

].

We will compute each coefficient αi in (6) by using the fast degree elevation algorithm described in Huang et al. (2005),
which includes the following main steps:

1. Compute P j
j−(p+1−ω0)

(p + 1 −ω0 ≤ j ≤ p) and P j
zr+ j−(p+1−ω0)

(p + 1 −ωr ≤ j ≤ p) according to the following equation.

P j
i =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = 0 and j = 0
P j−1

i+1 −P j−1
i

si+p+1− j−si
if j > 0, si+p+1 > si

0 if j > 0, si+p+1 = si

(7)

2. Compute α j
j−(p+1−ω0)

, p + 1 − ω0 ≤ j ≤ p, α j
zr+r+ j−(p+1−ω0)

, p + 1 − ωr ≤ j ≤ p via the following equations:

α
j
j−(p+1−ω0)

= (
p + 1 − j

p + 1
)P j

j−(p+1−ω0)
, p + 1 − ω0 ≤ j ≤ p

α
j
zr+r+ j−(p+1−ω0)

= (
p + 1 − j

p + 1
)P j

zr+ j−(p+1−ω0)
, p + 1 − ωr ≤ j ≤ p

α
p
zr+r−(p−ω0) = α

p
zr+r−(p+1−ω0).

3. Compute αi = α0
i via the following equation:

α
j
i =

{
ω0

p+1

∏p+1−ω0
l=1 (s2

p+2−l − s2
0) if i = 0 and j = 0

α
j
i−1 + (s2

i+p− j − s2
i−1)α

j+1
i−1 if j > 0, si+p+1 > si

(8)

In the same way, we can get Bq[�t](t) written as a linear combination of (q + 1)-degree B-spline basis functions:

Bq[�t](t) =
n∑

βi Bq+1[�ti](t) (9)

i=0

J. Zhang, X. Li / Computer Aided Geometric Design 46 (2016) 16–29 21
Fig. 4. Rules to create D(T), T in black and D(T) in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Thus, we have

T(s, t) = B p[�s](s)Bq[�t](t) (10)

=
m∑

i=0

n∑
j=0

αiβ j B p+1[�si](s)Bq+1[�t j](t) (11)

=
N∑

i=0

Ci T̂
∗
i (s, t) (12)

where N = (m +1) ×(n +1) −1, T̂ ∗
i (s, t) is a blending function of degree (p +1, q +1) and T̂ ∗

i (s, t) = B p+1[�s j1](s)Bq+1[�t j2](t),
j1 = [i

n+1], j2 = i mod (n + 1) = i − j1(n + 1).

4.3. Dual T-meshes

For a T-mesh T with associated knot intervals, if there are no zero knot intervals in the interior, then the dual T-mesh
D(T) is constructed as follows.

1. Vertex:
• Split each interior vertex V i into four vertices V jk

i , j, k = 1, 2. If the vertex is valence four, then the four new vertices
are also valance four. If the vertex is a T-junction, then the four new vertices are two valence four vertices and two
T-junctions of the same type. These two cases are illustrated in Figs. 4a and 4b, where the original vertices are shown
as black points, and the new vertices in D(T) are colored orange.

• Split each boundary vertex into two valence four vertices and two boundary vertices, see Fig. 4c as an example. If the
boundary vertex is on the left side of the T-mesh, then the new vertices V 00

i and V 01
i are boundary vertices. Split

each corner into one corner, two boundary vertices and one valence four vertex, see Fig. 4d.
2. Faces: Each vertex, edge, and face in T maps to a face in D(T), as follows:

• A v-face in D(T), corresponding to each vertex in T, has corners V jk
i , j, k = 1, 2, see Fig. 4a–d.

• An e-face in D(T), corresponding to each edge in T, is created by connecting the vertices associated with the two end
vertices of the edge.

22 J. Zhang, X. Li / Computer Aided Geometric Design 46 (2016) 16–29
Fig. 5. Rules for D(T) with multiple knots in T, T in black and D(T) in red. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. A bi-degree (2,3) T-mesh T and its dual T-mesh D(T), where is in black in the right figure while the original T-mesh is marked as gray.

• An f-face in D(T), corresponding to each face in T, is created by connecting the four valence-four vertices associated
with the four vertices of the original face. Noticed that we also need to connect the T-junctions in the edge of an
f-face.

3. Knot intervals:
• For a v-face, the knot intervals for the four edges are all zeros;
• For an e-face corresponding to a horizontal edge, the knot intervals for the two horizontal edges are the same as the

original knot interval for the original edge and the knot intervals for the two vertical edges are zeros;
• For an f-face, the knot intervals are replicated from the original edges of the face.

If zero knot intervals exist in the interior, the rules for creating the dual T-mesh are modified slightly. As illustrated in
Fig. 5, a face that has zero knot intervals in one direction maps to an edge, and a face that has zero knot intervals in both
directions maps to a vertex. Fig. 6a presents bi-degree (2, 3) T-mesh T and its dual T-mesh D(T).

4.4. Degree elevation algorithm

The degree elevation on a blending function Ti(s, t) in T(s, t) with a knot vector �si × �ti can be written as a linear
combination of a set of bi-degree (p + 1, q + 1) blending functions T̂ ∗

i j
(s, t),

Ti(s, t) =
ni∑

j=1

c
i j

i T̂ ∗
i j
(s, t) (13)

From (13),

T(s, t) =
nA∑
i=1

ni∑
j=1

c
i j

i Ci T̂
∗
i j
(s, t) (14)

The degree elevation algorithm finds a T-mesh T̂ such that each function T̂ ∗
i j
(s, t) belongs to the bi-degree (p + 1, q + 1)

T-spline space Sp+1,q+1(T̂). According to the discussion in section 4.2 and 4.3, the dual T-mesh is always a sub-mesh of T̂.

J. Zhang, X. Li / Computer Aided Geometric Design 46 (2016) 16–29 23
Fig. 7. An example for a bi-cubic T-spline. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Based on these ideas, Algorithm 1 presents a recursive algorithm for degree elevation. An important key to understand-
ing the algorithm is that the blending functions and anchors are tightly coupled, every anchor corresponds to a blending
function, and the blending function’s knot vectors are uniquely determined from the position of the anchor.

Algorithm 1: T-spline degree elevation algorithm.

Input: A bi-degree (p, q) T-spline T(s, t) = ∑nA
i=1 Ci T i(s, t) defined on a T-mesh T;

Output: A bi-degree (p + 1, q + 1) T-spline defined on a T-mesh T̂ with control points Ĉ such that it is identical to T(s, t);

Degree elevate each blending function as in Section 4.2;
Add all the functions after degree elevation into a list L;
Create the dual T-mesh D(T) as discussed in Section 4.3;
repeat

Remove any blending function B from list L;
if D(T) has a knot k (in either parameter direction) that lies in the support of B but that is not contained in the knot vectors for B then
Split B into two blending functions by inserting a knot at k (Section 4.1)
Add those two functions into the list L.
if B has a knot that is not dictated then
Add an appropriate vertex and edge associated with the knot into the T-mesh D(T).

until L is empty;

We illustrate the algorithm with an bi-cubic example in Fig. 7. The two global knot vectors are �s = {s0, s1, . . . , s7} and
�t = {t0, t1, . . . , t7}. There are eight anchors which are marked in blue. In order to degree elevate the T-spline, we first
degree elevate each blending function. For example, for the blending function T2(s, t) = B[�s2](s)B[�t2](t) at (s3, t4), where
�s2 = [s1, s2, s3, s4, s5] and �t2 = [t2, t3, t4, t5, t6], it can be written into a linear combination of 20 bi-quartic basis functions
T̂ ∗

j (s, t), where the knot vector is a subsequence of knot vectors from the degree elevation of the local knot vector �s2 and �t2.
However, only 12 basis functions (marked in red in Fig. 7d) are coupled with the dual T-mesh D(T) without the violations.
There are 4 basis functions which correspond anchors are not in D(T) (marked in blue in Fig. 7d) and the other 4 basis
functions have knots that are not in the mesh D(T) (marked in green). So we need to insert some edges and vertices (blue
edges in Fig. 7e) into D(T). The process is ended with the T-mesh in Fig. 7e.

This algorithm is always guaranteed to terminate because the only blending function refinements and edges (vertices)
insertions must involve knot values that initially exist in the T-mesh. In the worst case, the algorithm would extend all
partial rows of T-junctions to cross the entire surface. After creating the T-mesh T̂, it is obvious that every blending function
in (14) can be represented as the linear combination of some blending functions T̂ i(s, t) in the resulting T-mesh T̂:

T̂ ∗
i j
(s, t) =

n̂A∑
αk T̂k(s, t). (15)
k=1

24 J. Zhang, X. Li / Computer Aided Geometric Design 46 (2016) 16–29
Fig. 8. Degree elevation of a bi-degree (2, 3) T-spline defined on the left T-mesh, which is the bi-degree (3, 4) T-spline defined on the right T-mesh (the
anchors are marked as circle and black). The red edges are added from the dual T-mesh. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Thus,

nA∑
i=1

Ci T i(s, t) =
nA∑
i=1

ni∑
j=1

n̂A∑
k=1

Ciαkc
i j

i T̂k(s, t) =
n̂A∑

k=1

Ĉk T̂k(s, t) (16)

where Ĉk = ∑nA
i=1

∑ni
j=1 c

i j

i αkCi .
Fig. 8 shows another bi-degree (2, 3) T-spline degree elevation example. The resulting T-mesh is illustrated on the right.

We can see that we also need to insert some additional vertices and edges (red edges) into the dual T-mesh.

5. Analysis suitable degree elevation

Because AS T-splines possess many desirable good properties for geometric modeling and iso-geometric analysis, in this
section, we develop two algorithms such that the T-spline after degree elevation is analysis-suitable.

5.1. Theorem foundation

The basic theoretical foundation for the two degree elevation algorithms in the next two sections is based on the fol-
lowing two lemmas. And we will use them to construct a T-mesh for which T-spline space is a super space of the original
T-spline space.

Lemma 5.1. If T is a bi-degree (p, q) analysis-suitable T-mesh, then D(T) is a bi-degree (p + 1, q + 1) analysis-suitable T-mesh.

Proof. In T, each index δi corresponds two indices D1(δi) and D2(δi) in D(T). It is obvious that if δi < δ j , then
D1(δi), D2(δi) < D1(δ j), D2(δ j). For each T-junction extensions [δi, δi] × {τi} in T, it is also corresponding two T-junction
extensions, denoted as [δ∗

i , δ∗
i] × {D1(τi)} and [δ∗

i , δ∗
i] × {D2(τi)}. It is also obvious that [δ∗

i , δ∗
i] ⊆ [D1(δi), D2(δi)]. Because T

is analysis-suitable, so for any two T-junction extensions, [δi , δi] × {τi} and {δ j} × [τ j, τ j], don’t intersect. Each T-junction in
T corresponds to two new T-junctions of the same type in D(T). Based on the above observation, the extensions of the four
T-junctions in D(T) don’t intersect either. Thus, D(T) is also analysis-suitable. �
Lemma 5.2. If T1 ⊆ T2 , T1

elem ⊆ T2
elem and T2 is analysis-suitable, then S(T1) ⊆ S(T2).

Proof. For the simplicity of the paper, we omit the proof here. Because you can reach this lemma from Li and Scott (2014)
for the bi-cubic case, which can be generalized to arbitrary degree AS T-splines very easily. �
5.2. AS T-mesh conversion algorithm

In this section, we give the AS T-mesh conversion algorithm, i.e., for a T-mesh T, we find an AS T-mesh Tas with as less
as possible vertices such that Telem ⊆ Tas

elem . Finding the minimal number is an NP-hard problem. Thus for efficiency, our
algorithm uses the following greedy strategy that only provides an approximate minimum.

Similar as Scott et al. (2012), for each T-junction ρi at (δi, τi) in the mesh Telem , if it is �, we define its extension ei as
an edge-line segment [i, δi] × {τi} such that the edges [i, δi) × {τi} have (p + 1) intersections with the T-mesh Telem . If it
is �, we define its extension ei as edge-line segment [δi, i] × {τi} such that the edges (δi, i] × {τi} have (p + 1) intersections
with Telem . The cases for T-junction of � and ⊥ can be defined similarly.

J. Zhang, X. Li / Computer Aided Geometric Design 46 (2016) 16–29 25
Fig. 9. An example for AS T-mesh conversion algorithm. (For interpretation of the colors in this figure, the reader is referred to the web version of this
article.)

1. Denote all T-junctions in Telem by NT = {ρ1, ρ2, . . . , ρnT } and their extensions by ET = {e1, e2, . . . , enT }.
2. If all the edge-line segments in ET of different directions have no intersections, then go to step 4;
3. Else, let ninter be the number of intersection. For each T-junction ρi , extend one bay to create a new T-mesh Ti

elem ,
denote the number of intersections for T-junction extensions by ni

inter . For all ni
inter , find the index k such that nk

inter is
minimal. If there are more than one such index, choose the first one. Now, we use Tk

elem to replace Telem and repeat
Step 2 to 3.

4. Suppose the final T-mesh is Tas
elem , then, decrease the extensions from Tas

elem to get Tas .

Fig. 9 illustrates a bi-cubic T-spline example. Fig. 9a shows a bi-cubic T-mesh T (solid edges) and its elemental mesh Telem
(with dotted edges). There are five T-junctions NT = {ρ1, ρ2, ρ3, ρ4, ρ5} in Telem . In Fig. 9b, the edge-line segments of ρ1 and
ρ3, ρ1 and ρ4, ρ2 and ρ5 insert. First we extend ρ1 one bay (red edge), there are only one intersection which is minimal.
So, in the first iterator, we extend ρ1. And in the second iterator, we extend ρ2 (yellow edge) and no extensions insert. Then
we get the elemental mesh of an AS T-mesh, Tas

elem as shown in Fig. 9b. The final AS T-mesh Tas is shown in Fig. 9c.

5.3. Analysis-suitable degree elevation

Algorithm 2 presents an algorithm for analysis-suitable degree elevation.

Algorithm 2: Analysis-suitable T-spline degree elevation algorithm one.

Input: A bi-degree (p, q) T-spline T(s, t) = ∑nA
i=1 Ci T i(s, t) defined on a T-mesh T;

Output: A bi-degree (p + 1, q + 1) T-spline defined on an analysis-suitable T-mesh Tas1 with some control points such that it is identical to T(s, t);

Create the elemental T-mesh Telem;
1 Create the dual T-mesh D(Telem) as discussed in Section 4.3;
2 Create an analysis-suitable T-mesh Tas1 such that D(Telem) is a sub-mesh of Tas1 ’s elemental T-mesh using the algorithm in Section 5.2;

Compute the new control points by basis functions refinement in (4) and degree elevation for one blending function in (5) for Tas1.

In fact, in the Algorithm 2, we can achieve the degree elevation if we exchange the order of Line 1 and 2. Then, we get
the following degree elevation Algorithm 3. According to the discussion in Section 5.2, for both analysis-suitable T-spline
degree elevation algorithms, we can guarantee that the resulting T-splines are analysis-suitable and the resulting spline
spaces are super space of the original T-spline space (Theorem 5.3).

Algorithm 3: Analysis-suitable T-spline degree elevation algorithm two.

Input: A bi-degree (p, q) T-spline T(s, t) = ∑nA
i=1 Ci T i(s, t) defined on a T-mesh T;

Output: A bi-degree (p + 1, q + 1) T-spline defined on an analysis-suitable T-mesh Tas2 with some control points such that it is identical to T(s, t);

Create the elemental T-mesh Telem;
1 Create an analysis-suitable T-mesh Tas such that Telem is a sub-mesh of its elemental T-mesh using the algorithm in Section 5.2;
2 Create the dual T-mesh D(Tas

elem) as discussed in Section 4.3;
3 Decrease extensions of D(Tas

elem) to get Tas2.
Compute the new control points by basis functions refinement in (4) and degree elevation for one blending function in (5) for Tas2.

Theorem 5.3. In Algorithm 2 and Algorithm 3, the resulting T-splines are analysis-suitable and the resulting spline spaces are super
spaces of the original T-spline space, i.e. S(T) ⊆ S(Tas1), S(T) ⊆ S(Tas2).

Proof. Telem ⊆ D(Telem). According to step 2 in Algorithm 2, D(Telem) is a sub-mesh of Tas1’s elemental T-mesh, D(Telem) ⊆
Tas1 . Then Telem ⊆ Tas1 . According to Lemma 5.2, S(T) ⊆ S(Tas1).
elem elem

26 J. Zhang, X. Li / Computer Aided Geometric Design 46 (2016) 16–29
Fig. 10. The two AS algorithms for a (2,3) T-spline.

According to Lemma 5.1, Tas2 is a bi-degree (p + 1, q + 1) analysis-suitable T-mesh. According to step 2 in Algorithm 3,
Telem is a sub-mesh of Tas ’s elemental T-mesh, Telem ⊆ Tas

elem . And Tas
elem ⊆ D(Tas

elem). So Telem ⊆ D(Tas
elem). According to

Lemma 5.2, S(T) ⊆ S(Tas2). �
5.4. Comparison

Although the two algorithms are very similar and they both create a super space (Theorem 5.3), they will produce dif-
ferent resulting T-splines for most general T-meshes. First, we show a very simple example and illustrate all the intermedial
T-meshes created by the two algorithms in Fig. 10.

Fig. 12 and Fig. 13 show the other two examples that the second AS degree elevation algorithm produces less control
points. In Fig. 12, the number of the control points in original T-mesh is 127, while the number of control points in the
resulting mesh by the first AS degree elevation algorithm is 924, and that by the second algorithm is 913. In the Fig. 13,
the number of the original control points is 167, and the numbers of the control points by the two AS degree elevation
algorithm are 996 and 866 respectively. In our experiences, the second algorithm create the T-splines with less control
points on more examples with similar efficiency. However, if the initial T-spline is an analysis-suitable T-spline, then the
resulting T-splines created by both algorithms will be exactly the same, see Remark 5.4 for more details.

Remark 5.4. If the original T-mesh T is analysis-suitable, then the resulting T-splines created by the two AS degree elevation
algorithms are the same. Actually, the resulting T-mesh can be explicitly defined. Because D(Telem) is the elemental T-mesh
of an analysis-suitable T-mesh, so the Tas1’s elemental T-mesh in Line 2 of Algorithm 2 is D(Telem). And the T-mesh Tas

in Line 1 of Algorithm 3 is T. Thus the two algorithms give exactly the same resulting T-meshes and the T-mesh can
be directly given because we don’t need the greedy optimized algorithm to convert some T-meshes into analysis-suitable.
Fig. 11 illustrates an example for the process.

6. Results and conclusion

We conclude by presenting some numerical experimentations about these three degree elevation algorithms for T-splines.
The key issue to compare the algorithms is the number of resulting anchors. Thus all the examples are shown with the index
T-meshes in this section.

The first example is a T-spline defined on a T-mesh refined from a tensor-product T-mesh along the diagonal faces. Using
the general T-spline degree elevation (Fig. 12b), just similar as the behavior of local refinement algorithm in Sederberg et
al. (2004), the resulting T-spline is almost a tensor-product B-spline. However, for both analysis-suitable T-spline degree
elevation algorithms, the resulting T-splines are very reasonable (Fig. 12c and d).

J. Zhang, X. Li / Computer Aided Geometric Design 46 (2016) 16–29 27
Fig. 11. Degree elevation for an AS T-spline.

Fig. 12. The three degree elevation algorithms on a bi-cubic T-spline defined on the T-mesh in a.

The second example is a T-spline defined on a T-mesh which is refined a tensor-product mesh with random faces. We
can see the similar behavior through this example. The resulting T-spline with general T-spline degree elevation algorithm
(Fig. 13b) is also almost a tensor-product B-spline, while the analysis-suitable T-spline degree elevation algorithms preserve
the resulting T-splines in the localized regions (Fig. 13c and d).

In this paper, we present an degree elevation algorithm for arbitrary bi-degree T-splines. We also develop two analysis-
suitable T-splines degree elevation algorithms. Similar as the behavior of local refinement algorithm, the degree elevation
for general T-splines also suffers the problem of global propagation. But if we restrict the resulting T-spline to be analysis-
suitable, then the propagation will be kept in a much more localized region. A very interesting topic of future work is to
develop the iso-geometric analysis application with the current degree elevation algorithm and local refinement algorithm.
Another interesting topic is to define multi-degree T-splines such that we can develop the associated local degree elevation

28 J. Zhang, X. Li / Computer Aided Geometric Design 46 (2016) 16–29
Fig. 13. The three degree elevation algorithms on a bi-cubic T-spline defined on the T-mesh in a.

algorithm or local k-refinement algorithm by combining the existing local refinement algorithm. This is also left as future
work.

Acknowledgements

The authors are supported by the NSFC (No. 11031007, No. 60903148, No. 11371341), a NKBRPC (2011CB302400), the
Chinese Universities Scientific Fund, SRF for ROCS SE, and the Youth Innovation Promotion Association CAS.

References

Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg, T.W., 2010. Isogeometric analysis using T-splines. Comput.
Methods Appl. Mech. Eng. 199 (5–8), 229–263.

Benson, D.J., Bazilevs, Y., De Luycker, E., Hsu, M.C., Scott, M.A., Hughes, T.J.R., Belytschko, T., 2010. A generalized finite element formulation for arbitrary
basis functions: from isogeometric analysis to XFEM. Int. J. Numer. Methods Eng. 83, 765–785.

Borden, M.J., Verhoosel, C.V., Scott, M.A., Hughes, T.J.R., Landis, C.M., 2012. A phase-field description of dynamic brittle fracture. Comput. Methods Appl.
Mech. Eng. 217–220, 77–95.

Buffa, A., Cho, D., Sangalli, G., 2010. Linear independence of the T-spline blending functions associated with some particular T-meshes. Comput. Methods
Appl. Mech. Eng. 199 (23–24), 1437–1445.

Buffa, A., Cho, D., Kumar, M., 2012. Characterization of T-splines with reduced continuity order on T-meshes. Comput. Methods Appl. Mech. Eng. 201–204,
112–126.

Cottrell, J.A., Hughes, T.J.R., Reali, A., 2007. Studies of refinement and continuity in isogeometric structural analysis. Comput. Methods Appl. Mech. Eng. 196,
4160–4183.

Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y., 2009. Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester.
da Veiga, L.B., Buffa, A., Rivas, J., Sangalli, G., 2011. Some estimates for h-p-k-refinement in isogeometric analysis. Numer. Math. 118 (2), 271–305.
Dimitri, R., Lorenzis, L.D., Scott, M.A., Wriggers, P., Taylor, R.L., Zavarise, G., 2014. Isogeometric large deformation frictionless contact using T-splines. Comput.

Methods Appl. Mech. Eng. 269, 394–414.
Farin, G., 2002. NURBS Curves and Surfaces: From Projective Geometry to Practical Use, fourth edition. A.K. Peters, Ltd., Natick, MA.
Huang, Q.-X., Hu, S.-M., Martin, R.R., 2005. Fast degree elevation and knot insertion for B-spline curves. Comput. Aided Geom. Des. 22 (2), 183–197.
Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y., 2005. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput. Methods

Appl. Mech. Eng. 194, 4135–4195.
Ipson, H., 2005. T-spline merging. Master’s thesis. Brigham Young University.
Li, X., 2015. Some properties for analysis-suitable T-splines. J. Comput. Math. 33 (4), 427–440.
Li, X., Scott, M.A., 2014. Analysis-suitable T-splines: characterization, refineability and approximation. Math. Models Methods Appl. Sci. 24 (06), 1141–1164.
Li, X., Zheng, J., Sederberg, T.W., Hughes, T.J.R., Scott, M.A., 2012. On the linear independence of T-splines blending functions. Comput. Aided Geom. Des. 29,

63–76.
Liu, L., Zhang, Y., Hughes, T.J.R., Scott, M.A., Sederberg, T.W., 2014. Volumetric T-spline construction using boolean operations. Eng. Comput. 30, 425–439.
Morgenstern, P., Peterseim, D., 2015. Analysis-suitable adaptive T-mesh refinement with linear complexity. Comput. Aided Geom. Des. 34, 50–66.
Schillinger, D., Dede, L., Scott, M.A., Evans, J.A., Borden, M.J., Rank, E., Hughes, T.J.R., 2014. An isogeometric design-through-analysis methodology based

on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline cad surfaces. Comput. Methods Appl. Mech. Eng. 249–252,
116–150.

Scott, M.A., Li, X., Sederberg, T.W., Hughes, T.J.R., 2012. Local refinement of analysis-suitable T-splines. Comput. Methods Appl. Mech. Eng. 213–216, 206–222.
Scott, M.A., Simpson, R.N., Evans, J.A., Lipton, S., Bordas, S.P.A., Hughes, T.J.R., Sederberg, T.W., 2013. Isogeometric boundary element analysis using unstruc-

tured T-splines. Comput. Methods Appl. Mech. Eng. 254, 197–221.
Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A., 2003. T-splines and T-NURCCSs. ACM Trans. Graph. 22 (3), 477–484.
Sederberg, T.W., Cardon, D.L., Finnigan, G.T., North, N.S., Zheng, J., Lyche, T., 2004. T-spline simplification and local refinement. ACM Trans. Graph. 23 (3),

276–283.

http://refhub.elsevier.com/S0167-8396(16)30065-6/bib42617A696C65767332303039s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib42617A696C65767332303039s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib42654261446548735363487542653039s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib42654261446548735363487542653039s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib426F53634C61487556653131s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib426F53634C61487556653131s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib427543686F53613130s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib427543686F53613130s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib6275666661s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib6275666661s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib636F747472656C6C3037s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib636F747472656C6C3037s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib436F747472656C6C3A323030397270s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib646132303131736F6D65s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib6465666F726D32303134s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib6465666F726D32303134s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib466172696E3032s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib6875616E673230303566617374s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib4875436F42613034s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib4875436F42613034s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib49703035s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib6C6F63616C6C69s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib4C6953633130s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib4C695A685365487553633130s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib4C695A685365487553633130s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib626F6F6C32303134s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib6C7463616764s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib64657369676E32303132s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib64657369676E32303132s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib64657369676E32303132s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib53634C69536548753130s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib6172625F74s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib6172625F74s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib53655A6842614E613033s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib5365436146694E6F5A684C793034s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib5365436146694E6F5A684C793034s1

J. Zhang, X. Li / Computer Aided Geometric Design 46 (2016) 16–29 29
Sederberg, T.W., Finnigan, G.T., Li, X., Lin, H., Ipson, H., 2008. Watertight trimmed NURBS. ACM Trans. Graph. 27 (3), 79.
Veiga, L.B., Buffa, A., Sangalli, D.C.G., 2011. Isogeometric analysis using T-splines on two-patch geometries. Comput. Methods Appl. Mech. Eng. 200,

1787–1803.
Veiga, L.B., Buffa, A., Sangalli, D.C.G., 2012. Analysis-suitable T-splines are dual-compatible. Comput. Methods Appl. Mech. Eng. 249–252, 42–51.
Veiga, L.B., Buffa, A., Sangalli, G., Vazquez, R., 2013. Analysis-suitable T-splines of arbitrary degree: definition and properties. Math. Models Methods Appl.

Sci. 23, 1979–2003.
Wang, G., Deng, C., 2007. On the degree elevation of B-spline curves and corner cutting. Comput. Aided Geom. Des. 24 (2), 90–98.
Zhang, J., Li, X., 2015. On the linear independence and partition of unity of arbitrary degree analysis-suitable T-splines. Commun. Math. Stat. 3 (3), 353–364.

http://refhub.elsevier.com/S0167-8396(16)30065-6/bib5365646572626572673038s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib627566666131s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib627566666131s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib627566666132s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib627566666133s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib627566666133s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib77616E6732303037646567726565s1
http://refhub.elsevier.com/S0167-8396(16)30065-6/bib78696E6C695F617262697472617279s1

	On degree elevation of T-splines
	1 Introduction
	2 T-splines
	2.1 Index T-mesh
	2.2 Extensions
	2.3 T-splines and analysis-suitable T-splines

	3 Degree elevation of B-splines curves
	4 Degree elevation of T-splines
	4.1 Blending function reﬁnement
	4.2 Degree elevation for a blending function
	4.3 Dual T-meshes
	4.4 Degree elevation algorithm

	5 Analysis suitable degree elevation
	5.1 Theorem foundation
	5.2 AS T-mesh conversion algorithm
	5.3 Analysis-suitable degree elevation
	5.4 Comparison

	6 Results and conclusion
	Acknowledgements
	References

