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Abstract

We present a novel blended B-spline method to construct bicubic/tricubic splines over unstructured quadrilateral and hexahedral
meshes for isogeometric analysis. C1 and (truncated) C2 B-spline functions are used in regular elements, whereas C0 and
(truncated) C1 B-spline functions are adopted in boundary elements and interior irregular elements around extraordinary
edges/vertices. The truncation mechanism is employed for a seamless transition from irregular to regular elements. The resulting
smoothness of the blended construction is C2-continuous everywhere except C0-continuous around extraordinary edges and
C1-continuous across the interface between irregular and regular elements. The blended B-spline construction yields consistent
parameterization during refinement and exhibits optimal convergence rates. Spline functions in the blended construction form a
non-negative partition of unity, are linearly independent, and support Bézier extraction such that the construction can be used in
existing finite element frameworks. Several examples provide numerical evidence of optimal convergence rates.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Isogeometric analysis (IGA) was introduced to bridge the gap between computer-aided design (CAD) and
traditional finite element analysis (FEA) by utilizing the same basis of a CAD representation in analysis [1,2]. In
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addition to CAD representations, unstructured quadrilateral (quad) and hexahedral (hex) meshes can also serve as
important input control meshes1 for IGA. For instance, many techniques have been developed to convert imaging
data to such meshes [3]. Unstructured quad/hex meshes inevitably involve extraordinary vertices/edges. In the interior
of a quad/hex mesh, an extraordinary vertex/edge is a vertex/edge shared by other than four quad/hex elements,
respectively. Endpoints of extraordinary edges in 3D are also extraordinary vertices. Generally, in a hex mesh, there
exist 3D extraordinary vertices that cannot be obtained by sweeping 2D counterparts. How to deal with extraordinary
vertices/edges is the key to employing unstructured quad/hex meshes in IGA, and developing a spline basis with
desired properties, such as non-negative partition of unity, linear independence, smoothness (preferably G1 or better),
nested spline spaces, and exhibiting optimal convergence rates, is a challenge. We are particularly interested in optimal
convergence rates in this paper.

While advances have been made for unstructured quad meshes, very few methods [4–6] have been studied
for unstructured hex meshes in IGA, and none exhibits optimal convergence rates while maintaining higher-order
smoothness. Catmull–Clark subdivision [4,7–9] has often been used for unstructured quad/hex meshes, where a
patch near an extraordinary vertex is represented by an infinite series of subpatches of uniform bicubic/tricubic
B-splines. Such an infinite representation needs an enormous number of Gauss points in analysis to guarantee
integration accuracy [7–10]. However, optimal convergence has not been observed even with accurate integration [7].
Manifold splines and Hermite-type splines were used in IGA and optimal convergence rates were observed [11,12],
but manifold splines also require many integration points and Hermite-type splines need additional continuity
constraints on derivatives. A template-based C0-parameterization method, taking advantage of T-spline local knot
vectors, was proposed to convert unstructured quad meshes to watertight T-spline representations [5,13]. However,
this method was focused on geometry and convergence behavior was not studied. The multi-patch B-spline/NURBS
methods, including C0-parameterization [14,15] and G1-parameterization methods [16–22], treat the region around
an extraordinary vertex in a multi-patch manner. Although optimal convergence rates can be achieved in both C0 and
G1 constructions, locally splitting an unstructured mesh (especially an unstructured hex mesh) around extraordinary
vertices/edges into multiple B-spline/NURBS patches is not trivial, primarily because many extraordinary vertices
might be in close proximity. Global refinement can separate such adjacent extraordinary vertices, but it introduces
a large number of unnecessary degrees of freedom (DOF). Bézier extraction expresses basis functions around
extraordinary vertices as linear combinations of Bernstein polynomials [6,23–29]. In [28], a dynamic weighted
refinement scheme was proposed to improve the convergence rate, but optimal convergence rates were still not
achieved. With a C1-continuous construction in the vicinity of extraordinary points in 2D, two methods were
proposed based on degenerated bivariate Bézier patches [30]: one in the context of PHT-splines [31] with emphasis on
refinability around extraordinary vertices [24], and the other from the isogeometric analysis point of view [25]. Both
methods have achieved optimal convergence rates.

It is far from a trivial task to generalize a 2D method to 3D that can simultaneously build a smooth parameterization
and achieve optimal convergence rates. In fact, constructing a smooth parameterization on an unstructured hex mesh is
still an open challenging problem, whereas there is no existing method that can achieve optimal convergence rates for
unstructured hex meshes even under a parameterization that is C0 around extraordinary vertices and high-order smooth
elsewhere. We focus on the latter problem in this paper. It is straightforward to construct global C0 parameterization
using Bézier basis functions, which, however, is not favored as it engenders too many DOF, especially in 3D. We
are interested in building a subspace that yields optimal convergence rates, but with substantially fewer DOF. The
challenging problem here is how to construct consistent C0 parameterization for irregular elements that can be
seamlessly connected with regular C2 parameterization. A consistent parameterization maps a given point in the
parametric domain to the same point in the physical domain before and after refinement. Extra DOF need to be added
in irregular elements to maintain consistent parameterization, but the number needs to be minimized. In this paper,
we present a novel blended C0/C1/C2 B-spline parameterization method, referred to as the C012 construction, on
unstructured quad and hex meshes that can achieve optimal convergence rates with minimal extra DOF introduced.
Taking an unstructured quad/hex mesh as the input control mesh, we distinguish two submeshes: an irregular submesh
composed of boundary elements as well as irregular elements that contain extraordinary vertices, and a regular
submesh consisting of regular elements only. We use bicubic/tricubic splines throughout this paper. C0 and (truncated)
C1 B-spline functions are added in the irregular submesh, whereas C1 and (truncated) C2 B-spline functions are

1 The term “control mesh” implies the odd degree case, where each control point corresponds to a mesh vertex.
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adopted in the regular submesh. Across the interface of the two submeshes, the truncation mechanism [32] is
used to connect them. The resulting geometry of a blended B-spline representation is C2-continuous in the regular
subdomain, C1-continuous across the two subdomains, and C0-continuous in the irregular subdomain. Such a blended
construction limits the influence of extraordinary vertices/edges to within their one-ring neighborhoods. Necessary
DOF (i.e., Bézier control points) are introduced in the irregular submesh to guarantee consistent parameterization. The
refinement scheme of the blended construction is simply the knot insertion algorithm [33,34]. The basis functions in
the blended construction form a non-negative partition of unity, are globally linearly independent, and support Bézier
extraction. Optimal convergence rates are observed for this construction in all tested examples with unstructured
quad/hex meshes.

The remainder of the paper is organized as follows. A review of B-splines and Bézier extraction on unstructured
quad and hex meshes is given in Section 2. We then discuss the blended B-spline construction on unstructured quad
and hex meshes in Sections 3 and 4, respectively. Several properties of the blended B-spline construction are proved
in Section 5. We present in Section 6 numerical examples to verify that the proposed method can achieve optimal
convergence rates. Conclusions and future work are presented in Section 7. Two variants of the C012 construction are
given in Appendix.

2. Review of B-splines and Bézier extraction on unstructured quad/hex meshes

In this section, we review B-splines and Bézier extraction on unstructured quad/hex meshes. Related details can be
found in [2,6,34,35].

2.1. B-splines

We start with a brief review to B-splines. A univariate B-spline is defined on a set of non-decreasing real numbers,
the so-called knot vector denoted by Ξ = {ξ1, ξ2, . . . , ξn+p+1}, where ξi is the i th knot, n is the number of B-spline
basis functions and p is the polynomial degree. The interval [ξi , ξi+1] (1 ≤ i ≤ n + p) is called a knot interval. A knot
vector is uniform if all the knot intervals have the same length. B-spline basis functions {Ni,p}

n
i=1 can be obtained by

the Cox–de Boor recursion formula [36], starting from p = 0,

Ni,0(ξ ) =

{
1 if ξi ≤ ξ < ξi+1
0 otherwise (1)

and for p ≥ 1, we have

Ni,p(ξ ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ ). (2)

A B-spline basis function Ni,p is non-negative and has a local support in [ξi , ξi+p+1]. Ni,p is C∞-continuous inside
knot spans (ξi+k, ξi+k+1) and C p−m-continuous across knots with multiplicity m (m ≤ p + 1). Bivariate and trivariate
B-spline basis functions are simply tensor products of univariate ones.

In Fig. 1, we show several cubic C2 and C1 B-spline basis functions. Later we will use them in our blended B-spline
construction. For instance in Fig. 1(a), given a uniform knot vector of degree three, {0, 1, . . . , 7}, there are four C2

B-spline basis functions. With another knot vector also of degree three in Fig. 1(c), {0, 0, 1, 1, . . . , 7, 7}, where every
knot is repeated, twelve C1 B-spline functions are defined. The corresponding C2 and C1 functions with support on
the knot span [3, 4] are shown in Fig. 1(b, d), respectively. We will only consider bicubic and tricubic splines, so in
the rest of the paper p = 3 in each parametric direction.

2.2. Bézier extraction on unstructured quad meshes

With reference to Fig. 2, we introduce several terminologies to facilitate our developments. An unstructured quad
mesh, which can be treated as a T-mesh without T-junctions [37], consists of vertices (or control points), edges and
quad faces (or elements). The number of elements sharing a vertex is called its valence. An interior vertex of valence
other than four, as well as a boundary vertex of valence other than two or one, is called an extraordinary vertex,
where there is no (local) tensor-product mesh structure and special treatment is needed to define spline functions.
Edges touching an extraordinary vertex are called spoke edges. An element is a boundary element if it has at least
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Fig. 1. Cubic C2 and C1 B-spline functions in 1D. (a) C2 B-spline functions defined on a uniform knot vector, (b) the C2 B-spline functions with
support on the knot interval [3, 4], (c) C1 B-spline functions defined on a knot vector with each knot repeated, and (d) the C1 B-spline functions
with support on the knot interval [3, 4].

Fig. 2. An unstructured quad mesh with two extraordinary vertices (red squares). Spoke edges are marked in red. Irregular and regular elements
are shaded blue and orange, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 3. Bézier extraction in 2D for a regular element (shaded orange). (a) The 16 Bézier control points (open circles) determined from the local
mesh (black squares), and face points (b), edge points (c) and corner points (d).

one vertex lying on the boundary, and otherwise it is an interior element. An interior element is an irregular element
if any of its four vertices is an extraordinary vertex. Otherwise it is a regular element. Note that a boundary element
may also have certain vertices being extraordinary vertices, but in this paper we do not further distinguish such cases,
and instead we treat all the boundary elements as irregular elements to simplify the implementation. An element and
its one-ring neighboring elements (i.e., elements sharing vertices with it) form a local (control) mesh of the element.
Bézier extraction for an element involves its local mesh. Each edge is assigned with a knot interval, which is used
to define coefficients in Bézier extraction and will be detailed in the following. Uniform knot vectors are assumed in
unstructured meshes to satisfy the condition that knot intervals of opposite edges in each element coincide [37], which
also simplifies Bézier extraction for irregular elements.

We start with an introduction to Bézier extraction on a regular element and later extend the idea to irregular
and boundary elements. As shown in Fig. 3(a), Bézier extraction for a regular element Ωk (shaded orange) involves
calculating 16 Bézier control points (open circles) from the vertices (black squares) of its local mesh Mk . These
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Fig. 4. Calculation of a corner point corresponding to an extraordinary vertex (a), edge points corresponding to a boundary edge (b), and corner
points corresponding to a boundary vertex (c).

16 Bézier control points can be divided into three categories: face points Q f
k,i (i ∈ {5, 6, 9, 10}), edge points Qe

k,i
(i ∈ {1, 2, 4, 7, 8, 11, 13, 14}) and corner points Qc

k,i (i ∈ {0, 3, 12, 15}). Face points are calculated as a convex
combination of four vertices of Ωk , as shown in Fig. 3(b). We have

Q f
k =

⎡⎢⎢⎢⎢⎣
Q f

k,5

Q f
k,6

Q f
k,10

Q f
k,9

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎣
a b c b
b a b c
c b a b
b c b a

⎤⎥⎥⎦
⎡⎢⎢⎣

Pk,0
Pk,1
Pk,2
Pk,3

⎤⎥⎥⎦ = M f
k Pk, (3)

where a = 4/9, b = 2/9, and c = 1/9 are coefficients obtained from the knot insertion algorithm [33] for uniform
knot vectors. Face points are calculated for each element in the local mesh Mk . We have

Q f
= M f P, (4)

where Q f is the vector of all the face points in Mk , P is the vector of all the vertices in Mk , and M f is assembled from
M f

k (Eq. (3)). For uniform knot vectors, edge and corner points are then calculated as an average of their neighboring
face points. In Fig. 3(c), the edge point Qe

i is calculated as

Qe
i =

1
2

(
Q f

i,0 + Q f
i,1

)
, (5)

where Q f
i,0 and Q f

i,1 are the two neighboring face points with respect to Qe
i , and the subscripts (i, 0) and (i, 1) indicate

their indices in Q f . Likewise in Fig. 3(d), the corner point Qc
i is obtained by

Qc
i =

1
n

n−1∑
j=0

Q f
i, j , (6)

where we have valence n = 4 in the regular case.
We next study Bézier extraction for an interior irregular element. Compared to Bézier extraction of a regular

element, the only difference occurs in the calculation of a corner point. In this case we still use Eq. (6), but n ̸= 4;
see Fig. 4(a). Obviously, Bézier extraction for a regular element is a special case of that for an irregular element.
Regarding Bézier extraction for a boundary element, we compute edge/corner Bézier points corresponding to a
boundary edge/vertex by treating it as the 1D Bézier extraction for a cubic B-spline curve. As shown in Fig. 4(b),
two edge points (Qe

i and Qe
j ) are calculated as convex combinations of two endpoints (P0 and P1) of the edge, and we

have [
Qe

i
Qe

j

]
=

[
2/3 1/3
1/3 2/3

] [
P0
P1

]
. (7)

We have two different ways to compute a boundary corner point, depending on desired continuity for the boundary
curve across the corner point. When C2 continuity is desired, the corner point is calculated as an average of its two
neighboring boundary edge points; see Fig. 4(c). Otherwise, when C0 is intended (e.g. sharp features), the corner
point is set as the corresponding vertex.
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From Eqs. (4), (5) and (6), we can observe that all the 16 Bézier points of Ωk , denoted by Q0, can be obtained from
the face points Q f in Mk , and also from the mesh vertices P. We have

Q0
= MaQ f

= MaM f P = MP, (8)

where Ma is filled with the coefficients (1 for face points, 1/2 for edge points, and 1/n for corner points) in Eqs. (5)
and (6) by taking averages of neighboring face points, and M = MaM f is called the Bézier extraction matrix. Note
that Eqs. (4), (5) and (6) cannot be immediately extended to polynomial degrees other than the cubic case. Based on
Eq. (8), we can derive three types of control meshes from an input quad mesh:

• A vertex-based control mesh formed by the input mesh vertices (P), e.g., black squares in Fig. 3(a);
• A face-point-based control mesh formed by the face points (Q f ) from Eq. (4) to each element, e.g., open circles

in Fig. 3(b); and
• A Bézier control mesh formed by all the Bézier points (Q0) of each element, e.g., open circles in Fig. 3(a).

We next introduce three types of basis functions associated with these three types of control meshes: vertex-
associated functions Bv(ξ, η), face-point-associated functions B f (ξ, η) and Bézier functions B0(ξ, η) (note that Bézier
functions are merely C0 B-splines). Given an element (regular or irregular), Bv(ξ, η) can be represented by linear
combinations of B0(ξ, η) through the transpose of the Bézier extraction matrix M. Without loss of generality, we
assume each element is locally parameterized on a unit square [0, 1]2, and we have

Bv(ξ, η) = MT B0(ξ, η), B0(ξ, η) = [B0
0 (ξ, η), B0

1 (ξ, η), . . . , B0
15(ξ, η)]T , (9)

where

B0
i (ξ, η) = bi%4(ξ )bi/4(η), i = 0, 1, . . . , 15. (10)

Here, “%” represents “modulo” and “/” stands for “integer division by”. The functions b j (t) ( j = 0, . . . , 3) are
univariate cubic Bernstein polynomials,

b0(t) = (1 − t)3, b1(t) = 3(1 − t)2t, b2(t) = 3(1 − t)t2, b3(t) = t3. (11)

Face-point-associated functions B f (ξ, η) can also be represented by B0(ξ, η) via the transpose of Ma , and we have

B f (ξ, η) = (Ma)T B0(ξ, η). (12)

Moreover, Bv(ξ, η) can also be expressed by linear combinations of B f (ξ, η) via the transpose of M f , and we have

Bv(ξ, η) = (M f )T B f (ξ, η). (13)

Note that on a regular element, Bv(ξ, η) and B f (ξ, η) are simply C2 and C1 B-splines, respectively, but they are
only C0-continuous across irregular elements. Corresponding to Eqs. (9), (12) and (13), we have three pairs of
parent–child relationships. A Bézier function B0

j is called a Bézier child of a vertex-associated function Bv
i (or a

face-point-associated function B f
i ) if the i th row and j th column element of MT (or (Ma)T ) is nonzero. Likewise, a

face-point-associated function B f
j is a face-point-associated child of a vertex-associated function Bv

i if the i th row
and j th column element of (M f )T is nonzero.

In Eqs. (9) and (12), we can observe that each vertex-associated (or face-point-associated) function is uniquely
determined by a row of coefficients in MT (or (M f )T ), which are referred to as the ordinates of the vertex-associated
(or face-point-associated) function. We illustrate the ordinates of several vertex-associated and face-point-associated
functions defined on a regular element (shaded orange) in Figs. 5 and 6, respectively. In Fig. 5(a–c), we show the
ordinates of three vertex-associated functions Bv(ξ, η) (the black square) in terms of Bézier functions B0(ξ, η) (open
circles). These Bv(ξ, η) are uniform C2 B-splines on the element since it is regular. A vertex-associated function
Bv

i (ξ, η) can also be written as a linear combination of the face-point-associated functions B f (ξ, η) in its one-ring
neighborhood; see the corresponding ordinates in Fig. 5(d), where open circles represent face points. In Fig. 6(a),
B f (ξ, η) with support on a given regular element (shaded orange) are marked with green filled circles, whereas those
marked with black open circles have no support on the orange element. Due to symmetry, we show the ordinates
of three B f (ξ, η) (green filled circles) in Fig. 6(b–d), respectively, where open circles indicate Bézier points. These
B f (ξ, η) are C1 B-splines on the regular element.
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Fig. 5. On a regular element (shaded orange), vertex-associated functions Bv(ξ, η) are expressed as linear combinations of Bézier functions B0(ξ, η)
(a–c) and of face-point-associated functions B f (ξ, η) (d). The black squares represent Bv(ξ, η) of interest. The open circles indicate Bézier points
in (a–c) and represent face points in (d).

Fig. 6. On a regular element (shaded orange), face-point-associated functions B f (ξ, η) are expressed as linear combinations of Bézier functions
B0(ξ, η). (a) Face-point-associated functions B f (ξ, η) (green filled circles) with support on the element shaded orange, and (b–d) the ordinates of
three B f (ξ, η).

Through Bézier extraction of an element Ωk , we have three equivalent representations for the same surface patch
Sk(ξ, η): (1) the vertex-based representation with the local mesh and the vertex-associated functions Bv(ξ, η), (2)
the face-point-based representation with the face points and the face-point-associated functions B f (ξ, η), and (3)
the Bézier representation with the Bézier control points and the associated Bézier functions B0(ξ, η). According to
Eqs. (4), (8), (9), (12) and (13), we have the following equivalent relationships,

S(ξ, η) = PT Bv(ξ, η) = (Q f )T B f (ξ, η) = (Q0)T B0(ξ, η). (14)

Note that even though the face points stay the same in the face-point-based and Bézier representations, their
associated basis functions are different. In the face-point-based representation, a face-point-associated function can
be represented as a linear combination of B0(ξ, η); see Fig. 6(b) for example, whereas in the Bézier representation,
the basis function associated with a face point is merely a Bézier function.

In summary, for each element in an unstructured quad mesh, all its 16 Bézier points can be calculated from
vertices of the local mesh through the Bézier extraction matrix. Three equivalent representations are available through
Bézier extraction and have been utilized in the literature. The vertex-based representation was used for all the
elements in [6,23,27], while the face-point-based representation was adopted in [24]. In [25,26], the face-point-based
representation was adopted around extraordinary vertices whereas the vertex-based representation was used for the
remaining regular region. A global Bézier representation is not favored because it introduces a large number of DOF.

Discussion 2.1. Recall that the above three types of basis functions (Bv , B f and B0) are restricted to bicubic or
tricubic degree. Extending them to a higher degree is possible but needs further study especially in the irregular
region. We first check whether a local (control) mesh has a tensor-product structure. If so, the corresponding element
is regular and higher-degree B-splines with higher continuity are defined on it; otherwise it is irregular. Note that in
the higher degree case, a local (control) mesh involves more neighboring elements. Splitting the domain in regular
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Fig. 7. Calculation of Bézier control points for an interior hex element. (a) Locally labeled 64 Bézier points, (b) computing each body point
(8 green circles) as a convex combination of eight vertices of this element, (c) computing each face point (the blue circle) as the average of its
neighboring body points (green circles), (d) computing each edge point (the yellow circle) as the average of its neighboring body points (green
circles), and (e) computing each corner point (the red circle) as the average of its neighboring body points (green circles). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

and irregular regions in this way depends on the degree because a higher degree indicates a larger local mesh and an
element is regular only when this local mesh has a tensor-product structure. Even though extension in this manner is
straightforward in the regular region, defining spline functions in the irregular region needs further study and even/odd
degrees must be treated separately.

2.3. Bézier extraction on unstructured hex meshes

Similar to Section 2.2, we first introduce several necessary terminologies in an unstructured hex mesh. An
unstructured hex mesh consists of vertices (i.e., control points), edges, faces and volumes. Its boundary is a closed
surface or unstructured quad mesh. The number of elements sharing an edge/vertex is called the valence of the
edge/vertex, respectively. An interior edge with valence other than four, or a boundary edge of valence other than
two or one is called an extraordinary edge. Endpoints of an extraordinary edge are extraordinary vertices. A boundary
element is an element with at least one vertex lying on the boundary, and otherwise it is an interior element. An interior
element is called an irregular element if any of its vertices is an extraordinary vertex. Otherwise it is a regular element.
Since extraordinary vertices may also lie on the boundary, we treat all the boundary elements as irregular elements to
simplify the implementation. Bézier extraction for an element involves its local (control) mesh, which is formed by
the element and its one-ring neighboring elements. Uniform knot vectors are also assumed here.

Bézier extraction for a hex element Ωk involves computing 64 Bézier control points from the local mesh Mk . The
element Ωk can be regular or irregular. These Bézier control points are locally labeled in Fig. 7(a) and can be divided
into body points (Qb

i ), face points (Q f
i ), edge points (Qe

i ), and corner points (Qc
i ). Each body point is computed as a
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convex combination of eight vertices (Pk,0, . . . , Pk,7) of Ωk ; see Fig. 7(b). We have

Qb
k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qb
k,21

Qb
k,22

Qb
k,26

Qb
k,25

Qb
k,37

Qb
k,38

Qb
k,42

Qb
k,41

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c b b c d c
b a b c c b c d
c b a b d c b c
b c b a c d c b
b c d c a b c b
c b c d b a b c
d c b c c b a b
c d c b b c b a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pk,0
Pk,1
Pk,2
Pk,3
Pk,4
Pk,5
Pk,6
Pk,7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Mb

kPk, (15)

where

a =
8
27

, b =
4

27
, c =

2
27

, d =
1

27
. (16)

These coefficients (a, b, c and d) are obtained as a tensor-product extension of those in Eq. (3). Body points need to
be computed for all elements in the local mesh Mk to further compute face/edge/corner points. We have

Qb
= MbP, (17)

where Qb and P are the vectors of all the body points and vertices in Mk , respectively, and Mb is assembled by
matrices in Eq. (15). Similar to 2D, we treat interior and boundary elements separately. For a Bézier control point
corresponding to an interior face/edge/vertex, it is calculated as an average of neighboring body points. In Fig. 7(c–e),
face points Q f

i , edge points Qe
i and corner points Qc

i are computed as

Q f
i =

1
2

(
Qb

i,0 + Qb
i,1

)
, Qe

i =
1
Ne

Ne−1∑
j=0

Qb
i, j , Qc

i =
1

Nv

Nv−1∑
j=0

Qb
i, j , (18)

where the subscripts (i, j) indicate indices of neighboring body points in Qb, Ne and Nv are the valence of the edge
and the vertex, respectively. Note that Ne = 4 and Nv = 8 hold for a regular element. Summarizing the relationships
in Eq. (18) in matrix form, we have

Q0
= MaQb, (19)

where Q0 is the vector of all the 64 Bézier control points in Ωk , and Ma is filled with coefficients in Eq. (18) computed
by taking an average of neighboring body points, that is, 1 for body points, 1/2 for face points, 1/Ne for edge points
and 1/Nv for corner points. On the other hand, for a Bézier control point corresponding to a boundary face/edge/vertex,
it is calculated in the same manner as the Bézier extraction on an unstructured quad mesh; see Section 2.2. To this
end, all the 64 Bézier points Q0 can be obtained from the local mesh through the Bézier extraction matrix M, and we
have

Q0
= MP and M = MaMb. (20)

Similar to 2D, we also have three types of control meshes, which are formed by input mesh vertices, body points
and Bézier points. Correspondingly, we have vertex-associated functions Bv(ξ, η, ζ ), body-point-associated functions
Bb(ξ, η, ζ ) and Bézier functions B0(ξ, η, ζ ) that can be defined on a given element (regular or irregular). Bv(ξ, η, ζ )
can be represented by Bb(ξ, η, ζ ) and B0(ξ, η, ζ ), and we have

Bv(ξ, η, ζ ) = (Mb)T Bb(ξ, η, ζ ) = (Mb)T (Ma)T B0(ξ, η, ζ ) = MT B0(ξ, η, ζ ), (21)

where each Bézier function in B0(ξ, η, ζ ) is a tensor product of three univariate Bernstein polynomials. Bb(ξ, η, ζ )
can also be represented by linear combinations of B0(ξ, η, ζ ), and we have

Bb(ξ, η, ζ ) = (Ma)T B0(ξ, η, ζ ). (22)

Three equivalent representations are also available for each hex element, that is, the vertex-based representation, the
body-point-based representation, and the Bézier representation. They have expressions similar to Eq. (14). Based on
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Eqs. (21) and (22), we also have three parent–child relationships similar to 2D, but note that we have body-point-
associated children instead of face-point-associated children for a vertex-associated function.

On a regular element, we show the ordinates of a body-point-associated function, e.g., Qb
k,21 in Fig. 7(a).

Here we write the ordinates in a list of pairs (i, c), where c ∈ R is the ordinate corresponding to the i th
(0 ≤ i ≤ 63) Bézier function. We only list nonzero ordinates, and for the body-point-associated function of Qb

k,21,
we have {(0, 1/8), (1, 1/4), (4, 1/4), (5, 1/2), (16, 1/4), (17, 1/2), (20, 1/2), (21, 1)}. For a body-point-associated
function defined on an interior irregular element, the ordinate corresponding to an extraordinary edge is simply
replaced by 1/Ne, where Ne is the valence of the extraordinary edge. The same argument applies to the ordinate
corresponding to an extraordinary vertex.

Although there are three representations (Eq. (14)) that we can choose from for an unstructured hex mesh,
each of them has its own limitations. When either a vertex-based or body-point-based representation is employed,
refinement in irregular hex elements cannot preserve the parameterization. Refinement schemes such as Catmull–Clark
subdivision do not yield optimal convergence rates [6,38]. If a global Bézier representation is adopted, an enormous
number of DOF needs to be introduced, leading to a huge computation burden for the subsequent refinement. In this
paper, we present a blended B-spline construction to achieve optimal convergence rates with minimal extra DOF
introduced.

3. Blended B-spline construction on unstructured quad meshes

In this section, we present a new blended C0/C1/C2 B-spline construction method (called the C012 construction)
for unstructured quad meshes. We only use the 2D construction for illustration and explanation such that later we
can easily extend the idea to unstructured hex meshes in a tensor-product manner. It is worth emphasizing that
several smooth parameterization methods in 2D that can achieve optimal convergence rates are already available
in IGA [11,17,18,24,25].

3.1. Construction of spline functions

Recall that we have defined several terminologies for an unstructured quad mesh; see Fig. 2. The entire unstructured
quad mesh can be divided into a regular submesh and an irregular submesh, consisting of regular and irregular
elements, respectively. In Fig. 8(a), the regular and irregular submeshes are shaded orange and blue, respectively.
Note that irregular elements also include boundary elements for open surfaces. The interface of these two submeshes
is formed by a set of edges; see the green edges in Fig. 8(a). An element is called a transition element if it contains
one or more vertices on this interface, and a transition element can be regular or irregular.

There are three steps to construct a blended B-spline representation: (1) adding face points and edge/corner Bézier
points to the quad mesh, (2) defining spline functions on each element, and (3) performing truncation for irregular
elements and regular transition elements.

Step 1: Adding face points and edge/corner Bézier points to unstructured quad mesh. We add four face points
to each irregular element, two edge Bézier points to each C0 edge, and one corner Bézier point to each C0 vertex.
C0 edges include spoke edges and boundary edges, whereas C0 vertices are extraordinary vertices and boundary
vertices; see red edges and red squares in Fig. 8(a), respectively. Correspondingly in Fig. 8(b), all the added points
are shown in green and red filled circles. In this way, the boundary curve is represented as a piecewise Bézier curve.
In our blended B-spline construction, extraordinary vertices are allowed on the boundary and multiple extraordinary
vertices are permitted in a single element. Separating extraordinary vertices is usually needed in isogeometric spline
forests [14], which involves global refinement of the input mesh and thus introduces a large number of unnecessary
DOF. Although such separation can be handled locally, it still needs to modify the input mesh [13]. In contrast,
our blended method adds explicit functions without modifying the input mesh, which significantly simplifies the
implementation, especially for 3D.

Step 2: Defining spline functions on each element. Consider vertex-associated functions Bv
i , face-point-

associated functions B f
j and Bézier functions B0

k . We first look at these three types of spline functions from a global
point of view. Bv

i and B f
j have support on a two-ring and one-ring neighborhood, respectively, whereas B0

k only has
support on elements sharing its corresponding Bézier point. To ensure linear independence, we distinguish active and
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Fig. 8. Adding face points and edge/corner Bézier points to an unstructured quad mesh. (a) The input unstructured quad mesh with regular elements
(orange), irregular elements (blue), the interface (green edges), C0 edges (red edges) and C0 vertices (red squares), and (b) adding face points (green
filled circles) and edge/corner Bézier points (red filled circles) on C0 edges/vertices, respectively. The black filled squares represent active vertices,
whereas all the other mesh vertices are passive. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Possible spline functions defined on different types of quad elements.

Element type Vertex-associated functions Bv
i Face-point-associated functions B f

j Bézier functions B0
k

Regular non-transition Yes No No
Irregular non-transition No Yes Yes
Regular transition Yes Yes No
Irregular transition Yes Yes Yes

passive functions and only adopt active ones in the blended construction. Bv
i is passive if all its one-ring neighboring

elements are irregular, and otherwise it is active. All B f
j and B0

k corresponding to face/Bézier points added in Step
1 are active. Their associated vertices or face/Bézier points are also distinguished to be active or passive. Note that
each passive Bv

i can be represented as a linear combination of neighboring active B f
j (see Fig. 3(d)) and thus it cannot

be included to ensure linear independence. According to this definition, all the extraordinary vertices and boundary
vertices are passive. A regular vertex may also be passive; see the black open square in Fig. 8(a) as an example. In
Fig. 8(b), only the black squares are associated with active vertex-associated functions, whereas all the other mesh
vertices are passive.

Next, we discuss how spline functions are defined on different types of elements. There are four types of elements:
regular non-transition elements, irregular non-transition elements, regular transition elements and irregular transition
elements. For any element, it suffices to search in its local mesh all the functions with support on it. A regular non-
transition element, whose local mesh is formed by regular elements, only has vertex-associated functions Bv

i defined
on it, and these Bv

i are simply uniform C2 B-splines on it. The local mesh of an irregular non-transition element
only contains irregular elements, so face-point-associated functions B f

j and Bézier functions B0
k are defined on such

elements. On the other hand, there exist both regular and irregular elements in the local mesh of a transition element.
Both Bv

i and B f
j are defined on a regular transition element, where all active Bv

i are uniform C2 B-splines and all B f
j

are C1 B-splines on it. All three types of functions (Bv
i , B f

j , B0
k ) are defined on an irregular transition element; see

blue elements in Fig. 8(b). We summarize in Table 1 the types of spline functions defined on these four different types
of elements.

Step 3: Performing truncation on irregular elements and regular transition elements. After the above two
steps, we need to guarantee that neighboring surface patches join one another seamlessly. This can be achieved by
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Fig. 9. Truncation of a generic face-point-associated function B f
j (green filled circles). (a) The ordinates of B f

j , where three of its Bézier children
(red open circles) may be active, and (b–f) five possible configurations of active Bézier points (red filled circles). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

employing the truncation mechanism [32] in irregular elements and regular transition elements, where different types
of functions are blended together. The truncation mechanism was originally developed in the context of hierarchical B-
splines to form a partition of unity and to reduce support overlapping of basis functions, thus yielding sparser stiffness
matrices [32]. Truncation also improves stability of the hierarchical basis [39] and simplifies the construction of
hierarchical approximation schemes [40]. Later, this idea was extended to Catmull–Clark subdivision functions [8,9],
T-splines [27], and hierarchical splines on unstructured hex meshes [6]. The essential idea of the truncation mechanism
is to discard repeated contributions of active child basis functions. In the following, we explain how to perform the
truncation mechanism in our blended B-spline construction.

Recall that according to Eqs. (12), (13) and (9), we have defined Bézier children of a face-point-associated function
B f

j , as well as face-point-associated children and Bézier children of a vertex-associated function Bv
i . Performing

truncation on a Bv
i (or B f

j ) is to set the ordinates of its active children to be zero. Correspondingly, we have three
types of truncation: the truncation of B f

j with respect to its active Bézier children, and the truncation of Bv
i with

respect to its face-point-associated children or Bézier children.
With reference to Fig. 9(a), we start with the truncation of a generic B f

j (the green filled circle), where a, b and
c are its ordinates and they vary in different elements. These three ordinates correspond to three Bézier points (red
open circles). B f

j needs a truncation when any of these three Bézier points is active. Note that active Bézier points
correspond to C0 edges/vertices only, and this type of truncation is always needed in irregular elements. Fig. 9(b–f)
show all the possible cases of truncated B f

j , where red filled circles are active Bézier points. Particularly in Fig. 9(f),
all three ordinates are zero and B f

j degenerates to a Bézier function. In Fig. 10(a) and (b), we also show contour
plots of B f

j corresponding to Fig. 9(c) before and after truncation, respectively. We can observe C0 continuity across
element boundaries after truncating B f

j .
Instead of distinguishing different cases as in Fig. 9, in practice truncation is performed elementwise by

manipulating related matrices. Given an element Ωk , we first express the parent–child relationship in Eq. (12) by
distinguishing active and passive2 Bézier functions (B0

a and B0
p, respectively). We have

B f
=

[
B f

a

B f
p

]
= (Ma)T B0

=

[
(Ma

aa)T (Ma
ap)T

(Ma
pa)T (Ma

pp)T

][
B0

a

B0
p

]
, (23)

2 Passive face-point-associated functions and passive Bézier functions only serve an auxiliary purpose to explain the truncation mechanism and
they are not used in a blended construction.
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Fig. 10. (a, b) Contour plots of a face-point-associated function B f
j corresponding to Fig. 9(c) before and after truncation, (c) the contour plot of a

vertex-associated function Bv
i , and (d, e) contour plots of truncated Bv

i corresponding to Fig. 11(a, b), respectively.

Fig. 11. Truncation of a vertex-associated function Bv
i (the black filled or open square) with different configurations of irregular elements in

the one-ring neighborhood. Green filled circles and black open circles are associated with active and passive face-point-associated functions B f
j ,

respectively. Black filled squares represent active Bv
i , whereas the black open square represents passive Bv

i .

where B f
a and B f

p are active and passive face-point-associated functions, respectively. Performing truncation is
equivalent to setting the submatrices (Ma

aa)T
= 0 and (Ma

pa)T
= 0. Thus we obtain truncated face-point-associated

functions B f
t on Ωk

B f
t =

[
B f

a,t

B f
p,t

]
=

[
0 (Ma

ap)T

0 (Ma
pp)T

][
B0

a

B0
p

]
=

[
(Ma

ap)T

(Ma
pp)T

]
B0

p. (24)

We next study the two types of truncation for an active Bv
i , which must be associated with an interior regular vertex.

We first introduce the truncation of Bv
i with respect to face-point-associated children. Recall that in Fig. 5(d), Bv

i
(associated with the black square) can be represented by a linear combination of its 16 face-point-associated children
(open circles), which are located within its one-ring neighborhood. If any element in the one-ring neighborhood is
irregular, then all its four face-point-associated children are active and Bv

i is truncated by setting their corresponding
ordinates to be zero. We show all possible configurations of such a truncation in Fig. 11, where irregular elements are
shaded blue, and green filled circles and black open circles represent active and passive face-point-associated children,
respectively. Particularly in Fig. 11(e), all the one-ring neighboring elements are irregular and all the ordinates become
zero, leading to Bv

i zero. Recall that we set such a Bv
i to be passive and do not use it in the blended construction. Also

note that all the active Bv
i (black squares) need to be truncated in Fig. 8(b). Fig. 10(c) shows the contour plot of Bv

i
before truncation, whereas Fig. 10(d, e) shows two examples of truncation corresponding to Fig. 11(a, b), respectively.

Fig. 11 is used to illustrate how the truncation mechanism works. In practice, we only need to deal with related
matrices during truncation. Rewriting Eq. (13) by distinguishing active and passive face-point-associated functions
B f , we have

Bv
=
[
(M f

a )T (M f
p )T ] [B f

a

B f
p

]
. (25)
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Table 2
Truncation types in different elements.

Element type Truncating Bv w.r.t.
face-point-associated children

Truncating Bv w.r.t.
Bézier children

Truncating B f w.r.t.
Bézier children

Regular non-transition No No No
Irregular non-transition No No Yes
Regular transition Yes No No
Irregular transition Yes No Yes

Since in the end we prefer to expressing every function in terms of Bézier functions B0, we further replace B f with
B0 via Eq. (23). Eq. (25) becomes

Bv
=
[
(M f

a )T (M f
p )T ] (Ma)T B0

=
[
(M f

a )T (M f
p )T ] [(Ma

aa)T (Ma
ap)T

(Ma
pa)T (Ma

pp)T

][
B0

a

B0
p

]
. (26)

We set (M f
a )T

= 0 when truncating Bv with respect to face-point-associated children, and (Ma
aa)T

= 0 and
(Ma

pa)T
= 0 when truncating B f with respect to Bézier children; see Eq. (24). After truncating Bv in Eq. (26),

we obtain

Bv
t =

[
0 (M f

p )T ] [0 (Ma
ap)T

0 (Ma
pp)T

][
B0

a

B0
p

]
= (M f

p )T (Ma
pp)T B0

p. (27)

The last type is the truncation of Bv
i with respect to its active Bézier children. Actually it has been included after

performing the other two types of truncation; see Eq. (27), where all the ordinates corresponding to active Bézier
children are already zero. Therefore, there is no need to explicitly truncate Bv

i with respect to their active Bézier
children. Based on Table 1, we list the types of truncation involved in different elements in Table 2.

3.2. Spline representation and refinement

Following the above three steps, we obtain spline functions with a prescribed smoothness on the input unstructured
quad mesh. Each spline function is represented as a linear combination of Bézier functions B0, with certain ordinates
set to zero when truncation is needed. Without loss of generality, we write the vector of spline functions B defined on
any element as

B =

⎡⎢⎢⎣ Bv
t

B f
a,t

B0
a

⎤⎥⎥⎦ =

⎡⎢⎢⎣0 (M f
p )T (Ma

pp)T

0 (Ma
ap)T

I 0

⎤⎥⎥⎦
[

B0
a

B0
p

]
= TB0, (28)

where I is an identity matrix and T is the Bézier extraction matrix in the blended construction. Note that for
convenience we include all the vertex-associated functions, where a passive vertex-associated function simply has
all its ordinates equal to zero. Furthermore, note that some subvectors/submatrices in Eq. (28) might be empty
on certain elements. For example, the vector B0

a will be empty on regular elements as there are no active Bézier
functions supported on them, and the vector B f

a,t will be empty on regular non-transition elements as there are no
active face-point-associated functions supported on them. This notation allows us to generally represent the surface
patch corresponding to any element by

S(ξ, η) = PT
allB =

[
PT (Q f

a )T (Q0
a)T ]

⎡⎢⎣ Bv
t

B f
a,t

B0
a

⎤⎥⎦ , (29)

where P, Q f
a and Q0

a are mesh vertices, active face points and active edge/corner Bézier points, respectively. Such
a surface is C2-continuous in the regular regions, C1-continuous across the interfaces between regular and irregular
regions, and C0-continuous in the irregular regions. Eq. (29) is called the C012 blended B-spline representation. Eqs.
(28) and (29) indicate a unified manner for dealing with all types of elements. This unified representation significantly
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Fig. 12. Refinement of elements around an extraordinary vertex, with regular and irregular elements shaded orange and blue, respectively. Red
squares and red edges represent C0 vertices and C0 edges, respectively. Green edges represent the interface between regular and irregular elements.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

simplifies the implementation, where we only need to distinguish irregular from regular elements, together with the
truncation as a separate operation. The relation between the representations in Eqs. (29) and (14) will be discussed in
Section 5; see Lemma 1.

The purpose of building spline functions in such a blended manner is to keep consistent parameterization during
refinement. This property will be proved in Section 5. Here we focus on how to perform refinement in a blended
construction, which involves how to update vertices/Bézier points during refinement and how to define spline
functions on the refined mesh. Overall, the standard knot insertion algorithm [33,34] is used for refinement of all
types of elements to obtain refined vertices or Bézier points. We use the vertex-based representation and the Bézier
representation to refine a regular and an irregular element, respectively. Note that applying the knot insertion algorithm
to a Bézier patch is equivalent to performing the de Casteljau’s algorithm [41]. By refinement, a regular surface patch
results in four uniform B-spline subpatches, whereas a Bézier patch is subdivided into four Bézier subpatches. Next, to
define spline functions on the refined mesh, we only need to discuss how irregular elements and C0 edges/vertices are
updated. Spline functions can be defined in the same way as in Section 3.1 by following the three-step construction.
The key idea of passing irregular elements and C0 information to refined meshes is to maintain the continuity across
initial spoke edges during refinement. We refine elements by splitting them into 2 × 2 sub-elements.3 All the four
sub-elements of an irregular element are marked as irregular. Recall that in the input mesh, spoke edges, boundary
edges, extraordinary vertices and boundary vertices are identified with C0 tags. After refinement, the sub-edges of a
C0 edge remain C0, whereas newly added edges are not C0 edges. The midpoint of a C0 edge is also marked as a C0

vertex. All the C0 vertices stay with C0 tags during refinement. By recursively updating irregular elements, C0 edges
and C0 vertices, we always maintain C0 continuity during refinement across the spoke edges in the input mesh. This
is critical in preserving consistent parameterization as well as achieving optimal convergence rates. An example of
updating C0 information is given in Fig. 12, where Fig. 12(a) and (b) represent a mesh before and after refinement,
respectively. C0 edges and C0 vertices are marked as red edges and red squares, respectively. Regular and irregular
elements are shaded orange and blue, respectively, and their interface is represented by green edges.

Discussion 3.1. Unstructured quad/hex meshes generally involve boundary extraordinary vertices, where several
additional layers of elements need to be created before open knot vectors can be used. In our blended construction,
instead of adopting open knot vectors, we treat boundary elements as irregular elements. In this manner, we do not
need to modify the input mesh and thus can simplify the implementation.

Discussion 3.2. Truncation plays the key role in a blended B-spline construction. It reduces the support of certain
face-point-associated and vertex-associated functions, and ends up with a set of truncated functions that form a
non-negative partition of unity (see Proposition 1 in Section 5). Truncated vertex-associated functions (or truncated

3 Each vertex in the coarse mesh retains its valency along the refinement, and all the newly inserted interior vertices have valency four.
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Fig. 13. Adding face points (green filled circles) and Bézier points (red filled circles) to irregular elements (shaded blue) after refinement under
different constructions. The solid black lines represent the mesh before refinement, and dashed black lines indicate refinement. Red edges are C0

edges after refinement. The red open square is an extraordinary vertex. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Table 3
Additional properties in different blended constructions.

Construction type Linear independence C1 smooth transition Number of DOF

C012 Global Yes +

C02 Local No +++

C02i Local No ++

Note: More “+” means more DOF.

face-point-associated functions) are equivalent to truncated C2 B-splines (or truncated C1 B-splines). In other words,
truncation removes “irregular” child functions from vertex-associated and face-point-associated functions. Essentially,
we blend C0 B-splines and truncated C1/C2 B-splines together to form a basis. It enables a seamless transition from the
irregular submesh to the regular submesh, and provides us the flexibility to blend different types of spline functions.
“Flexibility” here means that we can design various blended constructions with different properties. One can easily
switch to another blended construction by slightly modifying Step 1.

Discussion 3.3. The above discussed blended construction blends C0, truncated C1 and truncated C2 B-splines;
this motivates why we refer to it as the C012 construction. It provides a C1 smooth transition from the irregular
submesh to the regular submesh, but with only global linear independence. Two alternative blended constructions are
given in Appendix, where more Bézier functions are added to the interface of the irregular and regular submeshes
to ensure local linear independence, leading to a C0 transition across the interface. These two alternatives are called
the C02 construction and the C02i construction. The C02 construction only blends vertex-associated functions and
Bézier functions, where all the Bézier points are added in irregular elements in the input mesh as well as subsequent
refined meshes. As an improvement of the C02 construction, the C02i construction introduces face-point-associated
functions within each irregular element in refined meshes and thus yields fewer DOF. For easy comparison, Fig. 13
shows how face points and edge/corner Bézier points are added to the same irregular elements after refinement under
these three constructions. Details can be found in Appendix. In all three constructions (C012, C02 and C02i), spline
functions form a partition of unity, are globally linearly independent, and preserve consistent parameterization during
refinement. These properties will be proved under the C012 construction in Section 5. The proofs under the other two
constructions are very similar. We list several different properties in Table 3 for easy reference.

Discussion 3.4. Refinement schemes for unstructured quad meshes with C1 continuity are available in [24,25,30].
However, to the best of our knowledge, extending such refinement schemes to unstructured hex meshes is far from a
trivial task. Focusing only on quad meshes, C1 and C2 functions are blended in [25] by properly scaling certain C1

functions. In [26], an intermediate C0 space is constructed for unstructured quad meshes using face-point-associated
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Table 4
Dimensions of different basis functions in 2D.

Bv B f B0 B

Dimension Narv 4Nie 2Ned0 + Nv0 Narv + 4Nie + 2Ned0 + Nv0

functions with necessary Bézier functions; this space is later modified into a C1 space. In this paper, we focus on
a blended C0 construction that can be extended to 3D. We use not only face-point-associated and Bézier functions,
but also vertex-associated functions to reduce the number of DOF, which is beneficial especially in 3D. Moreover,
we introduce the truncation mechanism to conveniently blend these three types of functions, such that extension to
unstructured hex meshes can be straightforward.

Discussion 3.5. From the global point of view, the dimensions of different basis functions depend on the number
of irregular elements (Nie), the number of edges with C0 tags (Ned0), the number of vertices with C0 tags (Nv0) and
the number of active regular vertices (Narv). Note that in different constructions (i.e., C012, C02 and C02i), edges
and vertices with C0 tags are defined differently. Let B denote the basis of a blended B-spline construction. We have
B = Bv

∪ B f
∪ B0, where Bv , B f and B0 represent active vertex-associated functions, active face-point-associated

functions and active Bézier functions, respectively. According to the previous discussion on the blended B-spline
construction, we summarize the dimensions of different basis functions in Table 4.

4. Blended B-spline construction on unstructured hex meshes

Following the construction idea of unstructured quad meshes, in this section we extend our discussion to
unstructured hex meshes. In addition to the notations we have introduced in Section 2.3, we here introduce several
more as an extension from 2D. An unstructured hex mesh is decomposed into a regular submesh and an irregular
submesh, which contain regular and irregular elements, respectively. The interface of these two submeshes consists
of a set of faces, edges and vertices. An interface face must be shared by two elements, one being regular and the
other being irregular. Elements containing one or more vertices on this interface are transition elements, which can be
either regular or irregular. Similar to 2D, there are three steps in our blended B-spline construction for unstructured hex
meshes: (1) adding body points and face/edge/corner Bézier points to the hex mesh, (2) identifying spline functions
with support on each element, and (3) performing truncation for irregular elements and regular transition elements.
The main difference from 2D lies in Step 1.

In Step 1, C0 tags are assigned to extraordinary vertices, extraordinary edges, spoke faces and boundary
faces/edges/vertices in the input mesh. A spoke face is a face touching an extraordinary edge. Body points are added
to each irregular element, and Bézier points are added to faces, edges and vertices with C0 tags. An irregular element
is shown in Fig. 14(a) with one of its edges being an extraordinary edge (marked in red). According to the definition,
its two endpoints are extraordinary vertices (black circles) and two faces (shaded dark gray) sharing the extraordinary
edge are spoke faces. In Fig. 14(b), the added face points and face/edge/corner Bézier points are marked with green
and red circles, respectively. We show two examples in Fig. 14(c, d) explaining how Bézier points are added to a spoke
face, where red edges and red open squares represent extraordinary edges and extraordinary vertices, respectively. A
spoke face may have other configurations of extraordinary edges, where Bézier points can be added analogously.

The next two steps are very similar to those in 2D. In Step 2, given an element Ωk , we loop through all the elements
in its local mesh and collect active vertex-associated functions Bv

i , body-point-associated functions Bb
j as well as

Bézier functions B0
k . A Bv

i is passive if all of its one-ring neighboring elements are irregular. Regarding types of
spline functions defined on different elements, we can obtain similar results as Table 1 in 2D, where we only need
to change “face-point-associated functions B f

j ” to “body-point-associated functions Bb
j ”. In Fig. 15, we use three

configurations to show neighboring Bb
j with support on an element of interest (orange elements). A neighboring

element (shaded gray) may share a face (Fig. 15(a)), an edge (Fig. 15(b)), or a vertex (Fig. 15(c)) with the orange
element. If a neighboring element is irregular, eight Bb

j (green circles and black circles) are added. However, only
those associated with green circles have support on the orange element.

In Step 3, following the same manner as in 2D, we perform three types of truncation in irregular elements and
regular transition elements: body-point-associated functions Bb

j with respect to Bézier children, and vertex-associated
functions Bv

i with respect to body-point-associated or Bézier children. By truncation, we set ordinates corresponding
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Fig. 14. (a) An irregular element with an extraordinary edge (the red edge) and two extraordinary vertices (black circles), (b) adding body points
(green circles) and face/edge/corner Bézier points (red circles) to the element in (a), (c, d) two examples of adding Bézier points (red circles) to
spoke faces, and (e, f) adding Bézier points to C0 faces after refining the spoke faces in (c, d), respectively. Spoke faces and C0 faces are shaded
dark gray in (a, b). In (c–f), C0 edges and C0 vertices are represented by red edges and red open squares, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Three different configurations of neighboring body-point-associated functions Bb
j with support on an element of interest (shaded orange).

Neighboring irregular elements are shaded gray. Only those Bb
j associated with green circles have support on the orange element. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)

to active children to be zero. In Fig. 16(a), we first show the truncation for Bb
j (the green circle), which has eight

Bézier children (black circles in Fig. 16(b)). We assume that the red edge in Fig. 16(c) is an extraordinary edge, so
two faces (dark gray) touching it are spoke faces. Due to the presence of this extraordinary edge, four active Bézier
points (red circles) are added, whose corresponding ordinates are set to be zero when truncating Bb

j (the green circle).
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Fig. 16. Truncation of a body-point-associated function Bb
j with respect to active Bézier children. (a) A body-point-associated function Bb

j of
interest (the green circle), (b) the eight Bézier children (black circles) of Bb

j , and (c) active Bézier children (red circles) due to presence of an
extraordinary edge (the red edge) and two spoke faces (dark gray faces). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Truncating Bv
i with respect to body-point-associated children is a direct extension from 2D, where we only need to

check if there exists any irregular element in its one-ring neighborhood. Truncating Bv
i with respect to Bézier children

is straightforward and has been included when performing the other two types of truncation. Eq. (28) also works for
truncation in 3D, where we replace “B f

a,t ” with “Bb
a,t ” and replace “M f

p ” with “Mb
p”.

The above three-step procedure gives us a set of spline functions on the input unstructured hex mesh. Next, we
discuss how to perform refinement. It is a tensor-product extension from 2D, where a regular volume patch is refined
in the same way as a tricubic uniform B-spline and an irregular patch employs the de Casteljau’s algorithm for a
tricubic Bézier patch. Similar to 2D, tracking C0 tags is again the key to maintain C0 continuity across the initial
spoke faces during refinement. A hex element is subdivided into 8 sub-elements with one center vertex, 6 edges and
12 faces generated in the interior. All the sub-elements of an irregular element are tagged “irregular”, although some
of them do not have any extraordinary edge. Sub-faces of a C0 face and sub-edges of a C0 edge inherit C0 tags. The
newly generated center vertex and four edges of a C0 face as well as the middle vertex of a C0 edge are also tagged
C0. The given C0 vertices stay the same. In Fig. 14(e, f), we show two cases how C0 tags are assigned after refining
a spoke face in Fig. 14(c, d), respectively. C0 faces/edges/vertices are denoted by gray shade, red edges and red open
squares, respectively.

Discussion 4.1. The truncation mechanism provides a convenient way to seamlessly connect regular and irregular
patches, where we only need to manipulate the Bézier extraction matrix T in Eq. (28). Although T-spline local knot
vectors can be used as well in 2D to connect regular and irregular patches [13,15], the underlying mesh needs to be
modified by inserting edges around extraordinary vertices. Extending this idea to 3D becomes very difficult due to the
complex connectivity of an unstructured hex mesh.

Discussion 4.2. The vertex-based representation is employed for every hex element for truncated hierarchical
splines in [6], with the solid Catmull–Clark subdivision rule [4] used for refinement. A suboptimal convergence
behavior was observed. Special treatment is also needed to construct hierarchical splines due to the lack of refinability.
Refinability can be enabled in our blended construction but requires enlargement of the irregular region as well as
assigning C0 tags to additional faces/edges/vertices at each refinement step. We postpone the detailed discussion as
part of our future work in the context of hierarchical refinement.

Discussion 4.3. The dimensions of different basis functions can be obtained in a similar manner as in 2D; see
Table 4. We summarize the 3D result in Table 5, with N f 0 representing the number of faces with C0 tags.

Discussion 4.4. It is straightforward to use C0 Bézier functions throughout an unstructured hex mesh, but it would
introduce too many DOF especially in 3D. Later in Section 6 we can observe that the C02 construction already adds
many more DOF than the C012 construction (Table 8), not to mention the fact that Bézier functions are only added
to irregular elements in the C02 construction. The goal of a blended construction is to introduce minimal DOF while
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Table 5
Dimensions of different basis functions in 3D.

Bv Bb B0 B

Dimension Narv 8Nie 4N f 0 + 2Ned0 + Nv0 Narv + 8Nie + 4N f 0 + 2Ned0 + Nv0

maintaining optimal convergence rates, and it is particularly beneficial when a given hex mesh is dominant with
regular elements. Moreover, in the future we will incorporate local refinement to the blended construction, where it is
desired to start with a mesh with minimal DOF, leaving the remaining to be added based on simulation results.

5. Properties of blended B-spline construction

In this section, we prove several important properties under the C012 blended B-spline construction, including
non-negative partition of unity, (global) linear independence, and consistent parameterization. These properties also
hold for the other two constructions (the C02 construction and the C02i construction) and they can be proved in a
similar manner. Local linear independence is a property only available for the C02 and C02i constructions, which
will be discussed in Appendix. Here we start with the proof of non-negative partition of unity.

Proposition 1. The (active) spline functions in the C012 blended B-spline construction form a non-negative partition
of unity.

Proof. We prove this proposition elementwise. Recall that Eq. (28) is a unified expression of spline functions defined
on all types of elements and it is also generic in both 2D and 3D. In the 2D case we have B = TB0 where

T =

⎡⎢⎢⎣0 (M f
p )T (Ma

pp)T

0 (Ma
ap)T

I 0

⎤⎥⎥⎦ . (30)

Each spline function in B is non-negative because all entries in the Bézier extraction matrix T are non-negative. The
next step is to prove that the spline functions in B form a partition of unity. With Bézier functions B0 forming a
partition of unity, we only need to verify that each column sum of T equals 1. Any column sum of the identity matrix
is one, so we only need to verify each column sum of the remaining two submatrices, (M f

p )T (Ma
pp)T and (Ma

ap)T .
Note that in 3D, Mb

p is used instead of M f
p . We define

M1 :=

[
0 (M f

p )T

I 0

]
(31)

and

M2 := M1(Ma)T
=

[
0 (M f

p )T

I 0

][
(Ma

aa)T (Ma
ap)T

(Ma
pa)T (Ma

pp)T

]
=

[
(M f

p )T (Ma
pa)T (M f

p )T (Ma
pp)T

(Ma
aa)T (Ma

ap)T

]
. (32)

Each column sum of (M f
p )T equals 1 because its transpose M f

p is used to compute passive face points as convex
combinations4 of element corners. Therefore, each column sum of M1 is 1. Similarly, each column sum of (Ma)T

equals 1 since Ma is used to compute face/edge/corner Bézier points as convex combinations of neighboring face (or
body) points. We can then easily obtain that each column sum of their multiplication M2 also equals 1. Comparing
T and M2 in Eqs. (30) and (32), especially their second columns of submatrices, we can conclude that each column
sum of T is also 1. Therefore, spline functions in the C012 blended construction form a non-negative partition of
unity. □

We now prove the linear independence of spline functions in the C012 blended B-spline construction. In particular,
they are (globally) linearly independent on the entire domain, but may be locally linearly dependent on certain
elements individually. In Appendix, we will discuss local linear independence of the alternative C02 and C02i
constructions.

4 A convex combination is defined to be a linear combination where all the coefficients are non-negative and their sum equals 1.
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Fig. 17. Five possible cases in 2D where linear dependence may occur. Bv
t,i , Bv

t, j and their face-point-associated children in Eq. (33) are associated
with the red open square, black open squares and green open circles, respectively. The irregular region is shaded blue. The dimension of the
underlying matrix M in (a–e) is 9 × 16, 8 × 12, 6 × 8, 7 × 8 and 4 × 4, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Proposition 2. The (active) spline functions in the C012 blended B-spline construction are linearly independent on
the entire domain.

Proof. We use 2D terminologies for explanation, but the arguments are the same in 3D. We first restrict ourselves
to the regular subdomain determined by the regular submesh, where only vertex-associated functions and face-point-
associated functions have support. These functions are actually uniform C2 B-splines and C1 B-splines, respectively,
with certain C2 B-splines truncated with respect to C1 B-splines. Linear dependence occurs only when a (truncated)
vertex-associated function Bv

t,i can be represented by a linear combination of other (truncated) vertex-associated
functions Bv

t, j and active face-point-associated functions B f
a,k . Under the assumption of linear dependence, we have

Bv
t,i =

∑
j ̸=i

ci j Bv
t, j +

∑
k

dik B f
a,k, (33)

where ci j and dik are the corresponding coefficients.
Recall that a vertex-associated function can be expressed in terms of its face-point-associated children (here only

C1 B-splines), where we only need to study its one-ring neighborhood. Because of the local linear independence
of classical B-splines, a necessary condition for Eq. (33) to hold is that, on the regular subdomain, the face-point-
associated children of Bv

t,i coincide with B f
a,k and the face-point-associated children of Bv

t, j . We actually do not need
to include B f

a,k since all dik must be zero according to the truncation mechanism. Next, we only consider Bv
t,i and Bv

t, j
and we represent them using their face-point-associated children in matrix form Bv

t = MB f , where all the face-point-
associated children B f are C1 B-splines and they are linearly independent, and M can be obtained by looping through
regular elements and assembling matrices in Eqs. (3) and (15). We then only need to check the rank of M. Depending
on the number and positions of irregular elements (shaded blue) in the one-ring neighborhood of Bv

t,i , we have five
cases in 2D (Fig. 17) and twenty cases in 3D (Fig. 18) where linear dependence may occur. In Fig. 17, Bv

t,i , Bv
t, j and

their face-point-associated children are marked with red open squares, black open squares and green open circles,
respectively. In Fig. 18, Bv

t,i is marked with red circles and Bv
t, j are associated with all the corners of white elements.

We have built the matrix in each case and verified that M has full rank for all the cases in both 2D and 3D using
Mathematica. Therefore, Bv

t,i and Bv
t, j are linearly independent, which contradicts the assumption in Eq. (33). This

concludes that (truncated) vertex-associated functions and face-point-associated functions are linearly independent on
the regular subdomain.

Then we only need to verify linear independence of the spline functions with support fully contained in the irregular
subdomain, which are face-point-associated functions and Bézier functions. Actually, linear independence of these
functions has been proved in Proposition 4.2 in [26]. This concludes the proof. □

Last but not least, we show consistent parameterization during refinement. To this end, we need the following
lemma to assist the proof. The result can be regarded as the analogue of coefficients preservation known in the
hierarchical spline context [39]. For convenience, the lemma and its proof are just formulated using 2D terminology,
but its extension to 3D is straightforward.
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Fig. 18. Thirteen cases in 3D with possible linear dependence, where the vertex-associated function of interest is associated with the red circle and
irregular elements are shaded blue. Seven cases that involve more than four irregular elements can still be shown using these figures (Cases 1, 2a,
2b, 2c, 3a, 3b and 3c), where irregular and regular elements are shaded white and blue, respectively.

Lemma 1. For a fixed element, the C012 blended B-spline representation in Eq. (29) is equivalent to the
representations in Eq. (14), provided that the active vertices Pa , face points Q f

a and Bézier points Q0
a from Eq. (29)

are the same in the respective representations in Eq. (14).

Proof. It suffices to prove that the C012 blended B-spline representation PT
allB is equivalent to the vertex-based

representation PT Bv , as the others (face-point-based representation and Bézier representation) are the same. For a
fixed element, we start from its vertex-based representation PT Bv and express the vertex-associated functions Bv in
terms of active and passive face-point-associated children according to Eq. (25). We have

PT Bv
= PT [(M f

a )T (M f
p )T ] [B f

a

B f
p

]
=
[
(M f

a P)T (M f
p P)T ] [B f

a

B f
p

]
=
[
(Q f

a )T (Q f
p )T ] [B f

a

B f
p

]
, (34)

where Q f
a = M f

a P and Q f
p = M f

p P are active and passive face points, respectively. We further substitute face-point-
associated functions (B f

a and B f
p ) with Bézier functions (B0

a and B0
p) according to Eq. (23). We have

PT Bv
=
[
(Q f

a )T (Q f
p )T ] [(Ma

aa)T (Ma
ap)T

(Ma
pa)T (Ma

pp)T

][
B0

a

B0
p

]
=(Ma

aaQ f
a + Ma

paQ f
p )T B0

a + (Ma
apQ f

a + Ma
ppQ f

p )T B0
p

=(Ma
aaQ f

a + Ma
paQ f

p )T B0
a + (Q f

a )T (Ma
ap)T B0

p + PT (M f
p )T (Ma

pp)T B0
p.

(35)



X. Wei et al. / Comput. Methods Appl. Mech. Engrg. 341 (2018) 609–639 631

Table 6
Statistics of input control meshes.

Models # Vertices # Elements # Extraordinary points (interior) # Irregular elements (interior)

Square 143 120 8 13
Manifold 161 128 23 99
Cube 517 448 24 56
Rod 2011 1376 24 56
Hook 6327 5121 2572 3952

From Eq. (8), we have Q0
a = Ma

aaQ f
a + Ma

paQ f
p , where Q0

a represent active Bézier points. From Eq. (28), we have
Bv

t = (M f
p )T (Ma

pp)T B0
p and B f

a,t = (Ma
ap)T B0

p. Therefore, Eq. (35) becomes

PT Bv
= (Q0

a)T B0
a + (Q f

a )T B f
a,t + PT Bv

t =
[
PT (Q f

a )T (Q0
a)T ]⎡⎣ Bv

t

B f
a,t

B0
a

⎤⎦ . (36)

Comparing Eqs. (36) and (29), we immediately deduce PT Bv
= PT

allB. This concludes that the blended representation
is equivalent to the vertex-based representation. □

We are now ready to prove consistent parameterization during refinement with the aid of Lemma 1.

Proposition 3. The parameterization corresponding to any element in the C012 blended B-spline construction stays
the same during refinement.

Proof. We use 2D terminologies for explanation, but the arguments are the same in 3D. From Lemma 1 we know
how the C012 blended B-spline representation PT

allB relates to the vertex-based representation PT Bv , face-point-based
representation (Q f )T Bv and Bézier representation (Q0)T B0. Recall that the face points stay the same in the face-point-
based and Bézier representations. In the following, we use “∼” to denote all objects (points as well as spline functions)
related to the refined mesh. Refinement of PT

allB is computed by applying the standard knot insertion algorithm, where
we refine a regular element on its vertex-based representation (PT Bv

= P̃T B̃v) and refine an irregular element on
its Bézier representation ((Q0)T B0

= (Q̃0)T B̃0). This implies that the refined version P̃T
allB̃ shares the active vertices

P̃a , face points Q̃ f
a and Bézier points Q̃0

a with the respective representations P̃T B̃v , (Q̃ f )T B̃ f and (Q̃0)T B̃0. Using
Lemma 1, we conclude that P̃T

allB̃ = PT
allB. □

6. Numerical examples

In this section, we apply the blended B-spline construction to two quad meshes in Fig. 19 and three hex meshes in
Figs. 20–22 and verify that the blended construction yields optimal convergence rates. We summarize the statistics of
these five input meshes in Table 6.

We first test the C012 construction by solving Poisson’s equation on planar unstructured quad meshes. Two input
control meshes are studied: one discretizing a square domain and the other defining a manifold domain; see Fig. 19(a,
d), respectively. We adopt the same exact solution for both meshes,

u(x, y) = xy(1 − x)(1 − y)(1 + y sin(x) + x sin(y)). (37)

For each model, Dirichlet boundary conditions are imposed on the entire boundary. The boundary conditions can be
strongly or weakly imposed. Since only Bézier functions are defined on the boundary and they are non-interpolatory,
we perform a least-square fitting for a strong imposition to approximate the given Dirichlet data. Nitsche’s method is
adopted for a weak imposition [42]. We observe that strong imposition and weak imposition yield almost the same
results (i.e., the L2 and H 1 error). We create a series of meshes through global refinement, and build blended spline
functions on each of them. In Fig. 19(b, e), we plot the convergence curves of the L2- and H 1-norm errors with respect
to the maximum element size (hmax). We observe optimal convergence rates for both models. Note that when bicubic
splines are used as a basis, the expected optimal convergence rate is 4 for the L2-norm error and 3 for the H 1-norm
error. Plotting convergence curves in terms of the square root of DOF in Fig. 19(c, f) shows optimal rates as well.
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Fig. 19. Solving Poisson’s equation on a square domain (a–c) and on a manifold domain (d–f). (a, d) Input control meshes, (b, e) convergence
curves with respect to the maximum element size (hmax), and (c, f) convergence curves with respect to the square root of DOF (DOF1/2).

Fig. 20. Solving Poisson’s equation on a cube model. (a) The input control mesh, (b, c) convergence to the exact solution in Eq. (38), and (d, e)
convergence to the exact solution in Eq. (39). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Next for 3D models, we first perform a patch test by solving Poisson’s equation on a unit cube domain [0, 1]3. The
input control mesh is shown in Fig. 20(a), where general 3D extraordinary vertices (not generated by sweeping 2D
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Fig. 21. Solving Poisson’s equation on a rod model. (a) The input control mesh, (b, c) convergence to the exact solution in Eq. (38), and (d, e)
convergence to the exact solution in Eq. (39). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

ones) are allowed; see the red circle for example. The solution field is given as u(x, y, z) = x . Dirichlet boundary
conditions are strongly imposed at boundary faces x = 0 and x = 1. We solve the problem using three blended
constructions: C012, C02 and C02i constructions. We point out that C02 and C02i constructions are identical on an
input mesh. The patch test is passed with machine precision under all three constructions, with the overall L2 and
H 1 errors in the order of 10−15 and 10−14, respectively. Similar results are observed for patch tests along y and z
directions.

We further study the convergence behavior on three 3D models; see their corresponding input control meshes in
Figs. 20(a), 21(a) and 22(a). Poisson’s equation is again adopted with the following two exact solutions,

u(x, y, z) = sin(πx) sin(πy) sin(π z) (38)

and

u(x, y, z) = e(x+y+z)/3. (39)

As in 2D, only Dirichlet boundary conditions are considered. They can be strongly or weakly imposed, yielding
almost the same results (L2 and H 1 error) in our tests. For each model, we apply all three constructions (C012, C02
and C02i). Global refinement is performed for each model. All the computations of the 3D models were carried out
in the Bridges system at the Pittsburgh Supercomputing Center [43,44]. In Figs. 20–22, the convergence curves are
plotted with respect to the maximum element size (hmax) as well as the cube root of DOF (DOF1/3). The L2-norm
error is shown in solid lines whereas the H 1-norm error is shown in dashed lines. Red, blue and green curves indicate
the results using C012, C02 and C02i constructions, respectively. We can observe even faster convergence rates than
the expected ones (4 for the L2-norm error and 3 for the H 1-norm error) when the rates are plotted with respect to
hmax. We also observe that given the same element size, C02 and C02i constructions introduce more DOF and thus
yield smaller error compared to the C012 construction.

When plotting them with respect to DOF1/3, the convergence rates are slightly different from those computed in
terms of hmax. This is because the change of DOF1/3 is not the same as the change of hmax during refinement. We
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Fig. 22. Solving Poisson’s equation on a hook model. (a) The input control mesh, (b, c) convergence to the exact solution in Eq. (38), and (d, e)
convergence to the exact solution in Eq. (39). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 7
The ratio γ in unstructured hex meshes.

Models C012 construction C02 construction C02i construction

Cube 1.18 1.2 1.06
Rod 1.12 1.2 1.06
Hook 1.32 1.46 1.23

define a ratio to measure these changes

γ = log

(
DOF1/3 of refined mesh
DOF1/3 of given mesh

)
/ log

(
hmax of given mesh

hmax of refined mesh

)
. (40)

For each 3D model, the ratio γ is constant for a specific blended construction; see Table 7. We can observe that γ is
always larger than 1, which is caused by introducing extra DOF in the blended constructions. It implies that in 3D,
DOF change faster than hmax. In other words, more than twice the number of DOF (i.e., γ + 1) are introduced when
the element size decreases by half. The additional portion of DOF (γ + 1 − 2 = γ − 1) further improves the solution
accuracy, which helps yield a faster convergence rate than the expected one when plotting using hmax. We can also
observe that γ is particularly large in the hook model, where there is a large portion of irregular elements with many
extra DOF introduced. Note that in the rod model shown in Fig. 21, all the extraordinary vertices can be obtained by
sweeping 2D counterparts.

We define another ratio called the DOF/element ratio as the total DOF divided by the number of elements. In
Table 8, we summarize this ratio for each hex model in three blended constructions. Compared to the cube and rod
models, the hook model contains the most extraordinary vertices where many extra DOF are introduced in irregular
elements. Therefore, its DOF/element ratio is also the largest. In each construction, the DOF/element ratio decreases
as global refinement proceeds, and the change of the ratio between two consecutive refinement steps becomes smaller
and smaller. As expected, a C02 blended construction generally needs a lot more DOF than a C012 construction. We
also observe that even though C02 and C02i constructions have the same DOF/element ratio in the input mesh, the
ratio decreases much faster in a C02i construction because it introduces many fewer DOF in each refinement step.
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Table 8
The DOF/element ratio during refinement.

C012 construction C02 construction C02i construction

Refinement step 0 1 2 3 0 1 2 3 0 1 2 3

Cube 9.6 7.7 6.4 5.7 20.0 17.6 16.5 16.0 20.0 13.4 9.4 7.2
Rod 14.3 10.2 8.0 6.9 24.0 21.2 20.0 19.2 24.0 16.1 11.3 8.6
Hook 18.2 13.8 10.8 N/A 26.6 25.1 24.4 N/A 26.6 18.5 13.2 N/A

Moreover, the DOF/element ratio becomes large even in a C012 construction if an input hex mesh is unstructured with
many extraordinary vertices (e.g. the hook model), where many Bézier points are introduced in irregular elements.

Discussion 6.1. In our numerical examples, all the three blended constructions can yield the expected optimal
convergence rates with respect to the maximum element size. C02 and C02i constructions generally exhibit slightly
higher convergence rates than the C012 construction, so they are better options when only global refinement is needed.
However, they introduce many more DOF to the input mesh than the C012 construction; see the DOF/element ratio
at refinement step 0 in Table 8. When local refinement is desired, the C012 construction serves as the most efficient
candidate, because it introduces the minimal extra DOF and minimum C0 faces/edges/vertices to the input mesh. We
will further study local refinement based on the blended B-spline construction in the future.

7. Conclusion and future work

In this paper, we have presented a new blended B-spline method exhibiting optimal convergence rates when
unstructured quad/hex meshes are taken as control meshes in IGA. Various spline functions are defined on different
types of elements, with the truncation mechanism employed to connect regular and irregular patches. Three blended
constructions (C012, C02 and C02i) were studied, each introducing a different number of DOF and possessing
different properties (Table 3). In all these blended constructions, the proposed spline functions form a non-negative
partition of unity, are linearly independent, and preserve consistent parameterization in refinement. We investigated
these three blended constructions in IGA and observed optimal convergence rates in all the tested 2D and 3D models.

In the future, applying the blended B-spline construction to the Kirchhoff–Love shell would be promising [45],
where we need to impose G1 continuity around 2D extraordinary vertices instead of C0. Building hierarchical splines
based on a blended B-spline construction would also be interesting, where we can rigorously study local refinement on
unstructured hex meshes. Another problem worthy of investigation is the memory-efficient storage of Bézier extraction
matrices in 3D. When tricubic splines are used, the dimension of such matrices for each element is in the order of
64 × 64. Currently such matrices are stored as dense matrices in our implementation. Switching to sparse matrices
could significantly reduce memory consumption. Another challenging problem is how to impose G1 continuity across
spoke faces in an unstructured hex mesh. This problem has not been studied in the literature.
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Appendix. Alternative blended B-spline constructions

In addition to the C012 blended construction in Sections 3 and 4, we here present two alternatives. One is the C02
construction, which only involves vertex-associated functions Bv

i and Bézier functions B0
k . The other, called the C02i

construction, is an improvement of C02 by introducing fewer DOF in refinement.
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Table 9
Possible spline functions defined on different types of elements in C02
and C02i constructions.

Construction type C02 construction C02i construction

Element type Bv
i B f

j B0
k Bv

i B f
j B0

k

Regular non-transition Yes No No Yes No No
Irregular non-transition No No Yes No Yes Yes
Regular transition Yes No Yes Yes No Yes
Irregular transition No No Yes No Yes Yes

Fig. 23. (a) C0 edges (red edges) and a C0 vertex (the red open square) in the C012 construction, (b) C0 edges (red edges) and C0 vertices (red
open squares) in the C02 construction, and (c, d) two cases of Bézier functions B0

k with support on a regular transition element (shaded orange). In
(a, b), the blue shade is an irregular element and red circles represent added B0

k . In (c, d), the black filled squares and black open squares represent
truncated vertex-associated functions Bv

i with and without support on the orange element, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Compared to the C012 construction, the C02 construction utilizes different ways to address: (1) how C0 tags
are assigned in Step 1, and (2) how C0 tags pass on in refinement. Recall that in a C012 construction, C0 tags
are assigned to extraordinary edges/vertices, spoke faces/edges and boundary faces/edges/vertices. In contrast, the
C02 construction assigns C0 tags to all the faces, edges and vertices of an irregular element; see Fig. 23(a, b) for a
comparison, where the red open square and red edges represent a C0 vertex and C0 edges, respectively. As a result,
more Bézier points are introduced in the C02 construction and all face-point-associated functions B f

j (or body-point-
associated functions Bb

j ) are essentially Bézier functions B0
k after truncation. Therefore, only B0

k have influence on
each irregular element. In other words, the Bézier representation is employed for each irregular element. On the other
hand, only uniform C2 B-splines are defined on a regular non-transition element, whereas both Bv

i and B0
k are defined

on a regular transition element. Given an irregular element (shaded blue) in Fig. 23(b), all its edges and vertices
are assigned with C0 tags in the C02 construction, so all the corresponding 16 B0

k (red circles) are added. Some of
these B0

k also have support on neighboring regular transition elements. As shown in Fig. 23(c, d), a regular transition
element (shaded orange) may share either an edge (Case 1) or only a vertex (Case 2) with this irregular element, where
those B0

k associated with red circles have support on the orange element. In Table 9, we summarize the types of spline
functions (Bv

i , B f
j and B0

k ) defined on different elements for the C02 and C02i constructions in 2D.
Truncation is only needed in regular transition elements, where certain Bv

i are truncated with respect to active
Bézier children. Compared with Fig. 5(b, c), after truncation of involved Bv

i in Fig. 23(c, d), the ordinates of the
functions associated with black open squares are all zero on the orange element. In other words, these truncated
Bv

i do not have support on it. Therefore, only the remaining truncated Bv
i (black filled squares) and added B0

k (red
circles5) are defined on a regular transition element, and the total number of these functions is always 16. Moreover,
it is easy to verify that these 16 functions are locally linearly independent on the regular transition element (shaded
orange) since the underlying Bézier extraction matrix (with truncation) is a 16 × 16 matrix of full rank. The same
argument can be easily extended to 3D, where a regular transition element may share a face, an edge or a vertex with

5 Note that two red circles overlay with black filled squares in Fig. 23(c) and one red circle overlays with a black filled square in Fig. 23(d).
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Fig. 24. A regular transition element (shaded orange) sharing a face (a), an edge (b) or a vertex (c) with a neighboring irregular element (shaded
blue). Red circles represent added Bézier functions B0

k to the orange element, whereas black circles represent vertex-associated functions Bv
i that

no longer have support on the orange element after truncation. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

a neighboring irregular element. We show these three cases in Fig. 24 where the regular transition element and its
neighboring irregular element are shaded orange and blue, respectively. Red circles represent added B0

k to the orange
element, whereas black circles represent Bv

i that no longer have support on the orange element after truncation. In all
cases, there are always 64 functions defined on a regular transition element. Furthermore, it can be verified that the
Bézier extraction matrix (with truncation) in each case is a 64 × 64 matrix of full rank.

Refinement in the C02 construction is the same as that of the C012 construction, except the step of how to update
C0 tags in the refined mesh. In the C02 construction, all the sub-elements of an irregular element are irregular and all
the newly generated faces/edges/vertices involving refinement of an irregular element are assigned with C0 tags. As a
result, the Bézier representation is also used for all the sub-elements of an irregular element; see Fig. 13(b). Passing
C0 tags in such a “dense” manner is easy for implementation, where every patch is determined by either a Bézier
control mesh or a uniform B-spline control mesh.

We now describe the C02i construction, an improved version of the C02 construction that introduces fewer DOF
during refinement. During refinement, instead of assigning all the newly generated faces/edges/vertices of an irregular
element with C0 tags, we follow the same way as in the C012 construction to assign C0 tags to: (1) sub-faces, newly
generated edges and the center vertex of each C0 face, (2) sub-edges and the midpoint of each C0 edges, and (3)
existing C0 vertices. As a result, the C02i construction introduces B f

j or Bb
j within the irregular submesh, while

leaving B0
k on the interface of irregular and regular submeshes. Fig. 13(c) shows an example of the C02i construction

on the refined mesh of Fig. 23(a). C0 edges are marked in red, whereas B f
j and B0

k are represented by green circles
and red circles, respectively. The types of functions defined on different elements are also summarized in Table 9.
Performing truncation in a regular transition element is the same as the C02 construction, while truncating B f

j with
respect to active Bézier children is the same as in the C012 construction. Local linear independence can be verified in
a manner similar to the C02 construction.

Discussion A.1. Both C02 and C02i constructions give rise to locally linearly independent spline functions. This
is an advantage over the C012 construction, which only features (global) linear independence. Compared to the C012
construction, the implementation of C02 and C02i constructions is easier because they have at most two types of
functions defined on a particular element, whereas all three types of functions are involved in the C012 construction
(e.g., on an irregular transition element). On the other hand, C02 and C02i constructions require more DOF as
illustrated in the testing examples in Section 6.
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