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Abstract

We develop an optimized local refinement algorithm for analysis-suitable++ T-splines (AS++ T-splines) which produces less
propagation of control points. We then demonstrate its use as an adaptive framework for isogeometric analysis. AS++ T-splines are
a class of T-splines which include analysis-suitable T-spline as a special case, are linearly independent, form a weighted partition of
unity and are optimal convergent. These properties, coupled with the local refinement algorithm, make the AS++ T-spline appealing
as a better basis both for design and analysis.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

T-splines [1,2] have proved to be an important technology for geometric modeling because of their supporting
several very significant operations, such as local refinement [2,3], watertightness and trimmed NURBS conver-
sion [1,4,5]. T-splines are attractive not only in geometric modeling but also in iso-geometric analysis (IGA), which
uses the smooth spline basis that defines the geometry as a basis for analysis [6,7]. Although the whole class of
T-splines are not suitable as a basis for IGA because of possible linear dependence [8], a mildly topological restricted
subset of T-splines, analysis-suitable T-splines (AS T-splines), are optimized to meet the needs both for design and
analysis [9,3,10–13]. Thus, the use of T-splines as the basis for IGA has gained widespread attention [14–24].

Analysis-suitable++ T-splines (for short, AS++ T-splines) are T-splines which define on a class of T-meshes with
less restriction than AS T-splines, i.e., AS++ T-splines include AS T-splines as a special case. And meanwhile, AS++
T-splines maintain all the good properties as AS T-splines: they are linear independent [25], are NURBS compatible,
obey the convex hull property, provide watertight models, and are weighted partition of unity (the constant function
belongs to the AS++ T-spline space)—all the important properties for isogeometric analysis.

This paper contains two main contributions. First, we prove that the AS++ T-spline space is closed under all the
existing local refinement algorithms, i.e., applying any existing local refinement algorithms in [2,3] on an AS++
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Fig. 1. An example T-mesh and the associated symbolic T-mesh.

T-spline will produce another AS++ T-spline. And second, we develop a highly localized refinement algorithm for
AS++ T-splines which tries to minimize the number of additional control points. As the algorithm in [2] is a recursive
procedure to refine all the possible influence blending functions without any optimization and the AS++ T-spline
spaces are closed under the algorithm in [2], so our new algorithm is an improvement of the algorithm in [2] because
our algorithm is an optimized algorithm for all the possible local refinement results in the AS++ T-spline space. The
numerical examples and comparisons also indicate that our new algorithm has less propagation than that in [2]. On
the other hand, AS++ T-splines have less restrictions than AS T-splines. So the new algorithm is also an improvement
of the algorithm in [3]. And the numerical examples show that the new algorithm produces less propagation in most
cases.

The rest of the paper is structured as follows. In Section 2, we recall some basic notations for bi-cubic T-splines.
In Section 3, we provide the definition of the AS++ T-spline space and prove that the space is closed under the local
refinement algorithm in [2]. In Section 4, we give the details of the new optimized local refinement algorithm. The
comparisons and the application in the IGA will be discussed in Section 5. Section 6 is the conclusion and future
work.

2. T-meshes and T-splines

This section reviews the basic concept for bi-cubic T-splines.

2.1. Index T-mesh

An index T-mesh [14] T for a bi-cubic T-spline is a collection of all the elements of a rectangular partition of
the index domain [−1, c + 2] × [−1, r + 2], where all rectangle corners (or vertices) have integer coordinates. In
the following, (σi , τi ) or {σi } × {τi } denotes a vertex in T, and [σ j , σk] × {τi } ({σi } × [τ j , τk]) denotes a horizontal
(vertical) edge or a set of connected horizontal (vertical) edges. Denote [σi , σ j ] × [τk, τl] ((σi , σ j ) × (τk, τl)) to be a
closed (open) face.

A symbolic T-mesh [9] is created by assigning a symbol to each element in a 2-D array formed from the index
T-mesh T, see Fig. 1 as an example. The symbol is chosen to match the mesh topology of T. We adopt the symbol
‘+’ to indicate valence four vertex, corner vertex, or valence three boundary vertex, symbols ‘⊢’, ‘⊣’, ‘⊥’ and ‘⊤’ to
indicate the four possible orientations for the T-junctions, symbols ‘∥’ and ‘=’ to indicate two possible orientations of
the I-junctions, symbols ‘|’ and ‘−’ to indicate a vertical and a horizontal edge, and symbol ‘.’ to indicate no vertices
and edges. In the following, the interior vertices can only be I-junctions, T-junctions and valence four vertices.

For the i th vertex Vi = (σi , τi ) in the rectangle [1, c] × [1, r ], we define a local index vector σ⃗i × τ⃗i , where
σ⃗i = [σ 0

i , . . . , σ 4
i ] and τ⃗i = [τ 0

i , . . . , τ 4
i ]. From the vertex, we shoot a ray in both directions traversing the T-mesh

and collect a set of knot indices {σ
j

i } and {τ k
i } in both directions such that σ 2

i = σi and τ 2
i = τi , as shown in Fig. 2.
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Fig. 2. Define the local index vector σ⃗i , τ⃗i , the skeleton SK (Vi ) and the vertex of the skeleton V K (Vi ) for a vertex Vi in a T-mesh.

For the vertex Vi , let hSK (Vi ) be the union of all the edge segments [σ 0
i , σ 4

i ] × {τ
j

i }, j = 0, 1, . . . , 4 and vSK (Vi )
is the union of all the edge segments {σ

j
i } × [τ 0

i , τ 4
i ], j = 0, 1, . . . , 4. Denote SK (Vi ) = hSK (Vi ) ∪ vSK (Vi ) and

V K (Vi ) = {(σ j
i , τ k

i ), j, k = 0, 1, . . . , 4}.

2.2. T-splines

Let T be an index T-mesh, s⃗ = [s−1, s0, . . . , sc+2] and t⃗ = [t−1, t0, . . . , tr+2] be two non-decreasing global knot
vectors in [0, 1], where s−1 = · · · = s2 = t−1 = · · · = t2 = 0, sc−1 = · · · = sc+2 = tr−1 = · · · = tr+2 = 1 and
0 < si , t j < 1 for 2 < i < c − 1, 2 < j < r − 1. Then for the i th vertex in the rectangle [1, c] × [1, r ], we associated
it with a blending function Ti (s, t) = B[sσ⃗i ](s)B[tτ⃗i ](t), where B[sσ⃗i ](s), B[tτ⃗i ](t) are cubic B-spline basis functions
defined in terms of knot vector sσ⃗i = [sσ 0

i
, sσ 1

i
, . . . , sσ 4

i
] and tτ⃗i = [tτ0

i
, tτ1

i
, . . . , tτ4

i
].

A T-spline space S(T, s⃗, t⃗) defined on a T-mesh T with the knot vectors s⃗ and t⃗ is finally given as the linear space
spanned by all these blending functions and a T-spline surface is defined as

T(s, t) =

n A∑
i=1

Ci Ti (s, t) (1)

where Ci = (ωi xi , ωi yi , ωi zi , ωi ) ∈ P3 are homogeneous control points, ωi ∈ R are weights, Ti (s, t) are blending
functions, and n A is the number of the T-mesh vertices in the rectangle [1, c] × [1, r ].

2.3. Extensions and analysis-suitable T-splines

Analysis-suitable T-splines are defined in terms of T-junction extension, which is a line segment associated
with each T-junction. For example, for a T-junction Ti of type ⊢, the edge extension exte(Ti ) is a line segment
[σ 2

i , σ 3
i ] × {τ 2

i } and the face extension ext f
a (Ti ) with an integer a is a line segment [σ 2−a

i , σ 2
i ] × {τ 2

i }. If Ti is
type of ⊣, then exte(Ti ) = [σ 1

i , σ 2
i ] × {τ 2

i } and ext f
a (Ti ) = [σ 2

i , σ 2+a
i ] × {τ 2

i }. And if Ti is type of ∥, then
ext f

a (Ti ) = [σ 2−a
i , σ 2+a

i ] × {τ 2
i }. Similarly, we can define the face extension for T-junctions of type ⊥ or ⊤ and

=. The extension of a T-junction Ti is ext(Ti ) = exte(Ti )
⋃

ext f
2 (Ti ).

Definition 2.1. A T-mesh is called an analysis-suitable T-mesh (for short, AS T-mesh) if and only if for any two
T-junctions whose extensions are not parallel, the extensions of the two T-junctions do not intersect. An AS T-spline
is a T-spline defined on an AS T-mesh.

2.4. Local refinement algorithm for T-splines

As we know, the local refinement algorithm is one of the most important algorithms for the geometric modeling
and IGA with T-splines. There are two main local refinement algorithms for T-splines, the local refinement algorithm
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Algorithm 1: T-spline local refinement algorithm

Require: A T-spline space defined on T-mesh T1 and the insertion control points {N j };
Ensure: A T-spline defined on T2 such that T1 ⋃

{N j } ⊆ T2 and S(T1) ⊆ S(T2);
1: Insert all the insertion control points into T1

2: Put all the blending functions into a queue L
3: while L is not empty do
4: Pop a blending function from L
5: if The blending function has missing knots then
6: Insert the missing knots into the blending function and put all the refined B-splines into L
7: end if
8: if The blending function has a knot that is not dictated then
9: Add an appropriate control point associated with the knot

10: end if
11: end while

in [2] and the AS T-spline local refinement algorithm in [3]. The algorithm in [2] is a recursive procedure to refine all
the possible influence blending functions. Particularly, the algorithm in [2] is summarized in Algorithm 1.

[3] develops an optimized local refinement algorithm to enforce the T-spline after knot insertion to be an analysis
suitable T-spline. The basic steps of the algorithm are described as follows Algorithm 2, for more details, please refer
to [3].

Algorithm 2: AS T-spline local refinement algorithm

Require: A T-spline space defined on an AS T-mesh T1 and the insertion control points {N j };
Ensure: A T-spline defined on an AS T-mesh T2 such that T1 ⋃

{N j } ⊆ T2 and S(T1) ⊆ S(T2);
1: Insert all the control points {N j } into T1

2: Convert the T-mesh after insertion into an AS T-mesh by minimizing the number of
new insertion control points using a greedy strategy;

3: Compute the positions for the control points.

3. AS++ T-splines

Before giving the definition of AS++ T-splines, we first introduce some notations. An extended T-mesh for a
T-mesh T is a new T-mesh from the extended T-mesh set ext(T), where

ext(T) = {T1 ∥ T1 =

⋃
Ti ∈T

ext f
ai

(Ti )
⋃

T, ai ≥ 0 is an integer associated with the T-junction Ti }.

The edges in the extended T-mesh but not in the original T-mesh are called the extended edges. Two T-junction
extensions maybe overlapping. Thus, the multiplicity of an extended edge is the number of T-junction face extensions
that contain the extended edge, which is two if the edge belongs to two overlapping extensions and is one for the other
cases. For two extended T-meshes T1, T2 ∈ ext(T), we said T1 = T2 if and only if all the extended edges are same
and the multiplicities for the corresponding extended edges are also the same. Denote

Text =

⋃
Ti ∈T

ext f
2 (Ti )

⋃
T, Telem =

⋃
Vi ∈T

SK (Vi )
⋃

T.

The T-mesh Text is a T-mesh that contains the origin T-mesh and all the face extensions, while the T-mesh Telem is
a new T-mesh formed by all the local Bézier meshes for each blending function. Figs. 3 and 4 show two example
T-meshes and the associated Text and Telem . In the first example, the T-meshes Text and Telem are shown in Fig. 3b and
c. We can see that the two T-meshes are different because there is an edge that belongs to Telem but does not belong
to Text . In the second example, the T-mesh Text (Fig. 4b) is also different from the T-mesh Telem (Fig. 4c) because



36 J. Zhang, X. Li / Comput. Methods Appl. Mech. Engrg. 342 (2018) 32–45

Fig. 3. The extended T-mesh Text (b) is different from the element T-mesh Telem (c).

Fig. 4. The extended T-mesh Text (b) is different from the element T-mesh Telem (c) because the multiplicities for some extended edges in Text
and Telem are different. The multiplicity for all the extended edges in Text is one but the multiplicity for two extended edges in Telem is two.

the multiplicities for some extended edges in Text and Telem are different. In order to make the figure to be easily
understood, we move one of the T-junctions a little bit such that we can count the multiplicities easier.

Definition 3.1. A T-mesh is called an analysis-suitable++ T-mesh (for short, AS++ T-mesh) if and only if:

1. For any two T-junctions Ti , T j whose extensions are not parallel, denote V = ext f
2 (Ti ) ∩ ext f

2 (T j ), then either
ext f

2 (Ti ) ∩ ext f
2 (T j ) = ∅ (no V exists) or for any Vk , V ̸∈ V K (Vk);

2. Text = Telem .

An AS++ T-spline is a T-spline defined on an AS++ T-mesh.

Lemma 3.2 (a) and (b) in [12] state that AS T-meshes satisfy the requirement of AS++ T-meshes, i.e., AS T-meshes
are always AS++ T-meshes. On the contrary, AS++ T-meshes are not always AS T-meshes. For example, the T-mesh
in Fig. 5a. is an AS++ T-mesh but is not an AS T-mesh because the extensions of two red T-junctions intersect. We
can check that any two non-parallel face extensions do not intersect and Text = Telem . The T-mesh in Fig. 5b. is also
an AS++ T-mesh but is not an AS T-mesh. In this example, there are many T-junction intersections including two face
extensions intersection at the vertex V . But we can check that for any vertices Vi , V ̸∈ V K (Vi ), which states that the
T-mesh is an AS++ T-mesh. The cases of the red T-junctions in Fig. 5c are very popular in the real applications.

3.1. Properties for AS++ T-splines

The following properties have been discovered for AS++ T-splines according to the requirement from IGA.

• The blending functions for the AS++ T-splines are linearly independent for all the knots [25] while the blending
functions for AS T-splines are locally linear independent.
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Fig. 5. Three example AS++ T-meshes which are all not AS T-meshes.

Fig. 6. The four possible cases for the face extension intersection.

• The basis functions are weighted partition of unity [25], i.e., there exist some weights ωi which are function of
knot intervals and the T-mesh, such that

n A∑
i=1

ωi Ti (s, t) = 1.

And the weights can be very easily computed through dual basis.
• AS++ T-splines obey the convex hull property.
• A dual basis can be constructed [25].
• The AS++ T-Spline space can be characterized in terms of piecewise polynomials [26].

3.2. AS++ T-spline space under local refinement algorithms

As AS T-splines are always AS++ T-splines, we can guarantee that the AS++ T-spline space is closed under the
local refinement algorithm for AS T-splines in [3]. In the following, we prove that the AS++ T-spline space is also
closed under the local refinement algorithm in [2].

Theorem 3.2. Given a T-spline defined on an AS++ T-mesh T1, we insert a set of control points into T1 via local
refinement Algorithm 1 and produce a T-spline defined on a T-mesh T2, then T2 is an AS++ T-mesh.

Proof. Denote N = {Ni , i = 1, . . . , n} to be the set of vertices which are in T-mesh T2 but not in the T-mesh T1. In
order to prove that the T-mesh T2 is an AS++ T-mesh, we only need to prove that T2 satisfies the two conditions for
AS++ T-splines one by one.

First, we prove that the T-mesh T2 satisfies the first condition. Otherwise, referring to Fig. 6 there at least exist two
T-junctions Ti = (σi , τi ) and T j = (σ j , τ j ) such that V = ext f

2 (Ti ) ∩ ext f
2 (T j ) and V ∈ V K (Vk) for some vertex

Vk . Without loss of generalization, we assume that σi = σ 2
i < σ 2

j and τi = τ 2
i < τ 2

j , then we only need to prove that
the following four cases are impossible.
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• σ 2
j ∈ [σ 2

i , σ 3
i ] and τ 2

i ∈ [τ 1
j , τ

2
j ]: In this case, we consider the blending function for Vk , since T1 is an AS++

T-mesh, so there is at least one of Ti or T j that belongs to the set N . Without loss of generalization, we assume
that T j ∈ N . Then the blending function for Vk has a missing knot σ 2

j during refinement, so we need to refine
the blending function at the missing knots σ 2

j , which will cause that V ∈ T2. However, this contradicts the
assumption.

• σ 2
j ∈ [σ 2

i , σ 3
i ] and τ 2

i ∈ [τ 0
j , τ

1
j ): In this case, we can prove the theorem similarly as the first case. We still

consider the blending function for Vk and we assume T j ∈ N . Then the blending function for Vk has a missing
knot σ 2

j during refinement, so we need to refine the blending function at the missing knot σ 2
j , which will cause

that V ∈ T2. However, this contradicts the assumption.
• σ 2

j ∈ (σ 3
i , σ 4

i ] and τ 2
i ∈ [τ 1

j , τ
2
j ]: There are two possible cases to prove this one. If σ 3

i ∈ {σ
p

k , p = 0, . . . , 4},
then we can similarly prove that (σ 3

i , τ 2
i ) ∈ T2. And then we replace vertex Ti with vertex (σ 3

i , τ 2
i ), which is

converted into the first case. Otherwise, if (σ 3
i , τ 2

i ) ̸∈ T2, then this is exactly same as the first case. So in both
cases, we can conclude it is impossible.

• σ j ∈ (σ 3
i , σ 4

i ] and τi ∈ [τ 0
j , τ

1
j ): This is similar as third case which can be reduced to second case by considering

the vertex (σ 3
i , τ 2

i ).

Now, we prove that the T-mesh T2 satisfies the second condition, i.e., T2
ext = T2

elem . Let Vk
i = (σ 2

i , τ 2
i ), k = 1,2 be

the i th vertex in T-mesh Tk . Then for any blending function for T-spline defined on the T-mesh T1, it can be written
into the linear combinations of the blending functions for T-spline defined on the T-mesh T2 through B-spline basis
functions refinement. Suppose that a blending function associated with the vertex V1

i is refined into two blending
functions associated with vertices V2

i and V2
j , then it is obvious that SK (V2

i ) ∪ SK (V2
j ) ⊆ SK (V1

i )
⋃

Tk∈T2ext f (Tk).
Thus we can conclude that

⋃
V2

i ∈T2 SK (V2
i ) = T1

elem
⋃

Tk∈T2ext f (Tk). According to the assumption, T1
elem = T1

ext .
So T2

elem =
⋃

V2
i ∈T2 SK (V2

i ) = T1
ext

⋃
Tk∈T2ext f (Tk) = T2

ext . In the summary, we can conclude that T2 is an AS++
T-mesh. □

4. Local refinement for AS++ T-splines

In this section, we first provide a concise numerical framework for refinement and then develop a specific local
refinement algorithm. By restricting the T-spline being an AS++ T-spline, we can develop a simple local refinement
algorithm which introduces a minimal number of superfluous control points and preserves the mathematical properties
of the AS++ T-spline space.

Similar as AS T-spline space, the nesting behavior between a T-spline space and an AS++ T-spline space can be
characterized in the following lemma whose proof is given in the forthcoming paper [26].

Lemma 4.1. For a T-spline space S(T1) and an AS++ T-spline space S(T2), if T1
elem ⊆ T2

elem and the multiplicity
of any extended edges in T1

elem is less than or equal to that of the corresponding extended edges in T2
elem , then

S(T1) ⊆ S(T2).

The main objective is to devise an algorithm for finding the fewest additional control points automatically. However,
finding the minimal number of additional control points is an NP-hard problem. So for efficiency, our algorithm uses
the following greedy strategy that only provides an approximate minimum.

The first step in generating an algorithm to approximate the minimal T-mesh is to quantify all violations of the two
AS++ T-spline conditions. In the following, we call it a violation of intersection if two T-junctions face extensions
intersect and the intersection belongs to some V K (Vk). And we call it a violation of equivalence if Text ̸= Telem . The
main steps for AS++ local refinement are Algorithm 3.

4.1. Remove the intersection violations

Similar as the approach in [3], we use the extension graph to guide the removal of the intersection violations. The
difference between our algorithm and [3] is that the extension graph we are using only contains the face extensions
while the AS T-spline local refinement algorithm requires all the T-junctions extensions. The extension graph for a
T-mesh T is denoted by E(T). Each node in E(T) corresponds to a single T-junction in T. If two face extensions in
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Algorithm 3: AS++ T-spline local refinement algorithm

Require: A T-spline space defined on T-mesh T1 and a set of control points {Ni };
Ensure: A T-spline defined on an AS++ T-mesh T such that T1 ⋃

{Ni } ⊆ T and S(T1) ⊆ S(T);
1: Insert all the {Ni } into T1 to get T2

2: while Tk is not AS++ T-spline do
3: Remove the intersection violations for Tk ;
4: Remove the equivalence violations for the T-mesh created from the last step;
5: Set Tk+1 to be the T-mesh in the last step;
6: end while
7: return Tk+1

T intersect and the intersection belongs to some V K (Vi ), then an edge is drawn between the corresponding nodes
in E(T). For example, for the T-mesh in Fig. 7a, the corresponding extension graph is drawn in Fig. 7b. In the
T-mesh, there are seven T-junctions, which means the number of nodes in the extension graph is seven. Each edge in
the extension graph corresponds to one pair of violation of intersections. We can see that there exists one T-junction
whose face extension has no intersection with the other face extensions. So there are no edges connecting the node in
E(T).

Our basic idea to remove the intersection violations is using a greedy strategy. Our basic objective is to extend as
less as possible T-junctions such that the new T-mesh has no intersection violations. Suppose the current T-mesh is T
and let k be the number of nodes in the extension graph which has at least one edge connecting the node. Denote the
T-mesh Ti to be the T-mesh by extension the T-junction corresponding to the i th node one bay in the original T-mesh.
We check the number of edges in the corresponding extension graph of all the possible T-meshes Ti and pick the
one that has smallest number of edges. If there are more than one such T-mesh, then we pick any of them. And then
we perform the same process for the picking T-mesh until there are no intersection violations in the current mesh. It
should be noted that the algorithm will always be terminated, because in the worst case, if all T-junctions are extended
all the way to a boundary edge, a NURBS is created.

Now we demonstrate the algorithm on the following simple example in Fig. 8. Suppose we insert the red edges in
the T-mesh in Fig. 8a, which cause two face extension intersections. In the T-mesh, there are three T-junctions. If we
extend the first T-junction and get the new T-mesh as shown in Fig. 8b, there are still two edges in the extension graph.
If we extend the second T-junction, then there is only one edge in the corresponding extension graph as illustrated in
Fig. 8c. And if we extend the third T-junction, then there are no edges in the extension graph. So we will pick the last
T-mesh which removes the intersection violations.

4.2. Remove the equivalence violations

The next step is to remove the equivalence violations. Because Text ⊆ Telem and according to the assumption,
Text ̸= Telem , so there are existing some vertices Vi j , j = 1, 2, . . . , k such that SK (Vi j ) ̸⊆ Text . Now we will
remove all the equivalence violations by considering all the T-junctions on the SK (Vi j ), j = 1, 2, . . . , k. For each
equivalence violation, we check all the possible ways to extend the T-junctions on the SK (Vi j ) such that it removes
the equivalence violations. For the i th possible way, denote the number of the new control points to be nn

i and the
number of edges in the extension graph after extension to be ne

i , we will pick the one in which the number of nn
i + ne

i
is to be minimal. Same as the last step, the algorithm will also be terminated.

For example, for the T-mesh created by Fig. 8, the skeleton of the star vertex violates the equivalence violations.
And there are two T-junctions (the two blue rectangle control points) on the skeleton of the star vertex. For the first
T-junction, if we extend the T-junction as shown in Fig. 9b and it will remove the equivalence violations but leads
one edge in the extension graph. And if we do not extend the first T-junction, and in order to remove the equivalence
violations, we need to extend the second T-junction one way as shown in Fig. 9c. And in this case, we need to add one
additional control point and it has no edges in the extension graph. So we will the pick the T-mesh in Fig. 9c. as the
final T-mesh.
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Fig. 7. A T-mesh and the extension graph.

Fig. 8. Remove the intersection violations. a is the T-mesh after insertion of the red edges whose extension graph has two edges. b, c, and d are the
T-meshes which extended three possible T-junctions whose extension graph has 2, 1, and 0 edges.

Fig. 9. Remove the equivalence violations. Figure b and c are two possible ways to remove the equivalence violation for the pentagram control
point. And Figure b will lead one intersection violation and Figure c will not lead any intersection violation. So the algorithm will choose the way
to extend as Figure c.

Remark 4.2. Although the local refinement algorithm for AS T-splines produces less additional control points than
the algorithm in [2], but we cannot regard the algorithm in [3] as an improvement of that in [2] because the T-splines
created from the algorithm in [2] are generally not AS T-splines. There are many examples for which the algorithm
in [2] is better than that in [3], for example the T-meshes in Fig. 5. Theorem 3.2 states that the new optimized local
refinement algorithm can be regarded as an improvement of that in [2].
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Table 1
Comparisons of AS++ refinement and AS refinement.

nas++ < nas nas++ = nas nas++ > nas

N∗

N 86.7% 4.2% 9.1%
di f f

nc
13.2% 1.4%

Fig. 10. Comparisons of AS++ refinement and AS refinement.

5. Applying AS++ T-spline local refinement algorithm

In this section, we demonstrate the superiority of the algorithm over the original T-spline local refinement algorithm
in [2] and the AS T-spline local refinement algorithm in [3].

5.1. Comparisons of the propagation

We first compare our algorithm with the local refinement algorithm in [2] and the AS T-spline local refinement
algorithm in [3] on the propagations of the control points. The basic framework for the comparisons is from a m × m
(m = 10, 20, . . . , 50) tensor-product mesh, randomly select n faces and split each face into four small faces by bisection
the face. Suppose the number of control points in this process is nc. And then, we run the three algorithms and count
the number of control points after insertion respectively. Suppose the number of control points for the algorithm
in [2], the AS refinement in [3] and the algorithm in the present paper are nold , nas and nas++ respectively. Let N
be the number of tests which is set to be 104. Now, we first compute the number of tests, denoted as N+ where
nas++ > nas . Let N 0 and N− be the number of tests where nas++ = nas and nas++ < nas respectively. Then, we
measure how many of the tests which the AS++ refinement algorithm is prior than the AS refinement algorithm. We
also measure the difference of the number of control points compared with the number of control points we wish to
insert. The statistics are connected in Table 1. For the comparisons with the original algorithm in [2], we find the new
algorithm has less or equal number of control points in all the testing examples.

Fig. 10 shows a simple example of above tests. We try to insert some edges (red) into a tensor-product mesh. By
applying the local refinement algorithm in the present paper, we do not need to insert any additional control points
and if we apply the AS T-spline local refinement algorithm, the resulting T-mesh is shown on the right. All the blue
control points are the propagation control points. Fig. 11 shows another example for the comparisons which inserts
only one single control point into a given T-spline. As shown in Fig. 11, given a T-mesh (the black one), we insert
one single control point (the red one) into the T-mesh. If we apply the AS T-spline refinement algorithm, we need to
insert all the blue control points, which are shown on the right of Fig. 11. However, if we apply the AS++ T-spline
refinement algorithm, then we only need to insert one more control point, as shown on the left of Fig. 11.

5.2. Advection dominated advection–diffusion problem

We now explore the application and behavior in IGA of the new AS++ T-spline space and the corresponding local
refinement algorithm. We solve the advection–diffusion equation

κΣu + a∇u = 0 (2)

in the unit square with discontinuous Dirichlet boundary conditions as shown in Fig. 12.
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Fig. 11. Comparisons of AS++ refinement and AS refinement.

Fig. 12. Setup for the advection dominated advection–diffusion problem.

Table 2
Comparisons of the elements.

Refinement 1 Refinement 2 Refinement 3

AS++ refinement 222 637 1744
Refinement in [2] 256 1017 3757

In this example, the Peclet number, which characterizes competition between advection and diffusion, is set to be
10−3. This makes the problem strongly advection dominated and gives rise to a sharp interior layer and two sharp
boundary layers at the outflow. This is an ideal benchmark problem to exercise the capabilities of our new refinement
algorithm. This is due to the anisotropic orientation of the interior layer with respect to the linear parameterization of
the geometry. It was noted in [27,14] that employing the original T-spline refinement scheme for this problem (when
the degree is greater than 1) produced nearly global propagation of refinement.

We begin with a cubic uniform B-spline mesh with 8 × 8 elements (10 × 10 control grid). Note that in all cases the
interior element edges are C2 while boundary edges are C0. We employ an automatic refinement scheme that makes
use of a simple gradient-based error indicator. At each step, the Bézier elements are identified for refinement based on
the magnitude of the indicator. Each of these Bézier elements is then bisected by inserting knots into the governing
T-mesh at the appropriate locations. In all cases, the standard SUPG formulation [28] is used with stabilization
parameter τ =

ha
2a , where ha is the Bézier element length in the direction of the flow velocity. For the problem

considered, a = |a| = 1 and ha =
√

2h, where h is the element edge length. The number of elements for the
algorithm in [2] and the algorithm in the present paper are listed in Table 2.

The Bézier meshes and corresponding solutions for each refinement step are shown in Fig. 13. The Bézier meshes
and solutions generated using the new algorithm are on the right. The Bézier meshes generated using the new algorithm
show a sharp change in mesh density in the areas corresponding to the interior and boundary layers. The meshes
generated using the old algorithm suffer from nearly global refinement. We find that using either refinement scheme



J. Zhang, X. Li / Comput. Methods Appl. Mech. Engrg. 342 (2018) 32–45 43

Fig. 13. The Bézier meshes and corresponding solutions for refinements one, two and three. The first row is the Bézier meshes generated from
the old local refinement algorithm in [2], the second row is the corresponding solutions, the third row is generated from the new algorithm in the
present paper and the fourth row is the corresponding solutions.
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the layers become sharper, and the overshoots and undershoots about the layers are attenuated in a nearly identical
manner. However, the solution in the third level is obtained with less than half the number of basis functions as that
in Fig. 13. This discrepancy widens with more refinement.

We should mention that in IGA application example, our new algorithm produces exactly the same result as those
for the AS T-spline local refinement algorithm. The reason for this is that all the extension intersections in this example
are face extension intersections. If we consider the conditions for the AS T-splines and AS++ T-splines, we can find
that although the AS++ T-splines allow face extension intersection (see the second T-mesh in Figure 5 in [25]), the
main advantage for AS++ T-splines is that they allow edge extension intersections while the AS T-splines do not
allow. Thus, in the random insertion tests, the AS++ T-splines have less propagations in most cases than AS T-splines.

6. Conclusion

We have developed an efficient adaptive framework to preform local refinement for AS++ T-splines. The sequence
of refined spaces is nested and exactly preserves the initial geometry. The basis of the refined T-spline spaces maintains
the smoothness of the initial basis. We have demonstrated its effectiveness on a randomly selected example and the
benchmark problem in IGA. The procedures described provide a powerful methodology for instantiating the vision of
isogeometric analysis. In future work, we plan to describe the approaches to handle arbitrary degrees and the treatment
for extraordinary points.
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