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Abstract

This paper introduces S-spline curves and surfaces. Local refinement of S-spline surfaces is much simpler to understand and
to implement than T-spline refinement. Furthermore, no unwanted control points arise in S-spline refinement, unlike T-spline
refinement. The refinement algorithm assures linear independence of blending functions. Thus, for isogeometric analysis, S-
spline surfaces provide optimal degrees of freedom during adaptive local refinement. S-splines are compatible with NURBS
and T-splines, and can easily be added to existing T-spline implementations.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

T-splines and Analysis-Suitable T-Splines have been used widely in Isogeometric Analysis (IGA) [1–14]. One
appeal for using T-splines in IGA is the ability to perform exact local refinement, where exact means that the surface
is not changed when the new control points are added, and local means that the newly-added control points need
not comprise an entire row, as in NURBS refinement.

While T-splines refinement is more local than NURBS refinement, it nonetheless generates additional, unre-
quested control points in all but the simplest cases. Fig. 1.a shows an initial control grid of black control points into
which we desire to insert the red control points via a local refinement algorithm. Fig. 1.b shows the result obtained
from an implementation of the T-splines local refinement algorithm in [15], and Fig. 1.c shows the result using the
analysis-suitable T-spline local refinement algorithm [1]. In both cases, some unrequested control points (shown in
green) must be added to achieve exact refinement. This propagation of unwanted control points in exact refinement
occurs in all previous variations of T-splines, including analysis-suitable T-splines [1,16–19], analysis-suitable++

T-splines [20,21], Modified T-splines [22], Weighted T-splines [23] and Truncated T-splines [24].
This paper introduces a new surface representation called S-splines, along with exact local refinement algorithms

that retain linear independence. S-spline representation includes T-splines and tensor-product B-splines as special
cases. S-spline refinement is quasi-hierarchical in that every refined basis function is replaced by its refinement.
Therefore, S-spline refinement lies under the general framework of CHARMS [25,26].
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Fig. 1. Control point propagation in T-splines local refinement algorithms. Figure a. shows an initial grid of black control points along with
30 red control points that we wish to insert. Figures b. and c. show the refinement produced by the algorithms in [15] and [1] respectively.
We did not request the green control points; they were forced upon us by the refinement algorithms. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Other solutions proposed for locally refinable splines include hierarchical, quasi-hierarchical or T-subdivision.
For example, Hierarchical B-splines [27,28], Hierarchical analysis-suitable T-splines [29] and Truncated Hierarchical
T-splines [24] are hierarchical or quasi-hierarchical. Polynomial splines over T-meshes support local refinement [30]
which are only available with reduced continuity [31–33] or over hierarchical T-meshes [34,35]. LR-splines [36,37]
are defined on a µ-extended LR-mesh (also called T-subdivision) which is constructed by inserting line segments
starting from a tensor product mesh according to certain rules.

S-splines support an exact refinement algorithm that does not generate any additional control points. Thus, for
example, Fig. 1.a shows the final control point topology after exact local refinement with our new algorithm. We
prove that the refinement algorithm preserves linear independence of blending functions. Thus, S-spline surfaces
provide minimal degrees of freedoms during adaptive local refinement.

Section 2 introduces the basic concepts of S-splines in the context of curves. S-spline surfaces are presented in
Section 3. Local refinement of S-spline surfaces is discussed in Section 4, and Section 5 proves conditions under
which linear independence of the blending functions is preserved. IGA examples are presented in Section 6, and
Section 7 offers concluding remarks.

Although the paper only discusses S-spline curves and surfaces, the concepts clearly also apply to trivariate
volumes. And while we focus on bi-cubic surfaces in this paper, the results can be easily extended to any other
degree.

2. S-spline curves

An S-spline curve is given by

P(t) =

∑n
i=1 Pi Bi (t)∑n

i=1 Bi (t)
(1)

where

Bi (t) = βi Bt⃗i (t). (2)

βi is a scalar constant which ensures the property of partition of unity, and can be computed using the knot refine-
ment algorithm. Bt⃗i (t) is a cubic B-spline basis function defined by a local knot vector t⃗i = [tτ0

i
, tτ1

i
, tτ2

i
, tτ3

i
, tτ4

i
].

A conventional cubic B-spline curve is a special of an S-spline curve for which

τ 1
i = τ 0

i+1, τ 2
i = τ 1

i+1, τ 3
i = τ 2

i+1, τ 4
i = τ 3

i+1, i = 1, . . . , n − 1. (3)

The string of five increasing integers τi = [τ 0
i , τ 1

i , τ 2
i , τ 3

i , τ 4
i ] is called the knot index vector of t⃗i . Bt⃗i (t) can

be evaluated using the de Boor algorithm, or, using the notation ( j, k) = (t
τ

j
i

− tτ k
i
), (t, j) = (t − t

τ
j

i
), and



666 X. Li and T.W. Sederberg / Computer Methods in Applied Mechanics and Engineering 350 (2019) 664–678

( j, t) = (t
τ

j
i

− t), Bt⃗i (t) can be written explicitly as

Bt⃗i (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 t ≤ tτ0
i

or t ≥ tτ4
i

(t, 0)3

(3, 0)(2, 0)(1, 0)
t ∈ [tτ0

i
, tτ1

i
]

(t, 1)2(4, t)
(4, 1)(3, 1)(2, 1)

+
(t, 1)(t, 0)(3, t)
(3, 0)(3, 1)(2, 1)

+
(2, t)(t, 0)2

(3, 0)(2, 0)(2, 1)
t ∈ [tτ1

i
, tτ2

i
]

(3, t)2(t, 0)
(3, 0)(3, 1)(3, 2)

+
(3, t)(4, t)(t, 1)
(4, 1)(3, 1)(3, 2)

+
(t, 2)(4, t)2

(4, 1)(4, 2)(3, 2)
t ∈ [tτ2

i
, tτ3

i
]

(4, t)3

(4, 1)(4, 2)(4, 3)
t ∈ [tτ3

i
, tτ4

i
]

(4)

where care must be taken for multiple knots.
We now review refinement of B-spline basis functions and knot insertion for a cubic B-spline curve. Recall that

for a B-spline basis function with local knot vector t⃗i = [tτ0
i
, tτ1

i
, tτ2

i
, tτ3

i
, tτ4

i
], a knot ta ∈ (tτ0

i
, tτ4

i
) can be inserted

to yield

B[t
τ0
i

,t
τ1
i

,t
τ2
i

,t
τ3
i

,t
τ4
i

](t) = c1 B[t
τ0
i

,t
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i

,t
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i

,t
τ3
i

|ta ](t) + c2 B[t
τ1
i

,t
τ2
i

,t
τ3
i

,t
τ4
i

|ta ](t), (5)

where [tτ0
i
, tτ1

i
, tτ2

i
, tτ3

i
|ta] denotes inserting ta into its proper position in the knot vector [tτ0

i
, tτ1

i
, tτ2

i
, tτ3

i
], and

c1 =

⎧⎪⎨⎪⎩
ta − tτ0

i

tτ3
i

− tτ0
i

if tτ1
i

< ta < tτ3
i

1 if ta ≥ tτ3
i

c2 =

⎧⎪⎨⎪⎩
tτ4

i
− ta

tτ4
i

− tτ1
i

if ta > tτ1
i
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i

.

Using the shorthand notation ⟨12345⟩ ≡ B[t1,t2,t3,t4,t5](t), a conventional cubic B-spline curve with knot vector
[t1, t2, t3, t4, t6, t7, t8, t9] can be written

P(t) = ⟨12346⟩P1 + ⟨23467⟩P2 + ⟨34678⟩P3 + ⟨46789⟩P4. (6)

If we insert a knot t5, the equation of the refined curve is

P̃(t) = ⟨12345⟩P̃1 + ⟨23456⟩P̃2 + ⟨34567⟩P̃3 + ⟨45678⟩P̃4 + ⟨56789⟩P̃5

To ensure P(t) = P̃(t), the values of the P̃i are determined by applying (5) to each of the blending functions of
P(t) and collecting terms:

P(t)

= ⟨12346⟩P1 = ⟨12345⟩P1 +
t6 − t5
t6 − t2

⟨23456⟩P1

+⟨23467⟩P2 +
t5 − t2
t6 − t2

⟨23456⟩P2 +
t7 − t5
t7 − t3

⟨34567⟩P2

+⟨34678⟩P3 +
t5 − t3
t7 − t3

⟨34567⟩P3 +
t8 − t5
t8 − t4

⟨45678⟩P3

+⟨46789⟩P4 +
t5 − t4
t8 − t4

⟨45678⟩P4 +⟨56789⟩P4

= P̃(t) = ⟨12345⟩P̃1 +⟨23456⟩P̃2 +⟨34567⟩P̃3 +⟨45678⟩P̃4 +⟨56789⟩P̃5

(7)

From (7) we see that P(t) = P̃(t) if P̃1 = P1, P̃2 =
t6−t5
t6−t2

P1 +
t5−t2
t6−t2

P2, P̃3 =
t7−t5
t7−t3

P2 +
t5−t3
t7−t3

P3, P̃4 =
t8−t5
t8−t4

P3 +
t5−t4
t8−t4

P4,
P̃5 = P4. Fig. 2.a shows a B-spline curve with knot vector [0, 0, 0, 0, 2, 2, 2, 2], and Fig. 2.b shows that curve after
conventional B-Spline refinement has been performed by inserting a knot at t = 1, as described in (7).

The primary use of B-spline refinement is to create more degrees of freedom. Artists use those degrees of
freedom to create a more detailed design, and IGA uses them to decrease approximation error. Eq. (7) reminds us
that inserting a knot into a cubic B-spline curve involves refining all four blending functions; similarly, refinement of
T-spline surfaces involves refinement of numerous blending functions. The development of S-splines was motivated
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Fig. 2. B-spline curve before and after knot insertion.

Fig. 3. S-spline curves obtained by Class 1 and Class 2 exact refinement.

by the simple but powerful observation that extra degrees of freedom can be obtained by refining as few as one
or two blending functions, and that, while the resulting curve or surface is not a conventional NURBS, it can be
useful for CAD or IGA.

Fig. 3.a shows the result of refining only B2(t) for the B-spline curve in Fig. 2.a, and expressing the resulting
curve in S-spline form. In Fig. 3.b, only B3(t) is refined, and in Fig. 3.c, both B2(t) and B3(t) are refined.

In Figs. 2 and 3, each control point label is followed by the blending function for that control point. By comparing
equations before and after refinement as in (7), we see that the curve in Fig. 3.a is identical to the curve in Fig. 2.a
if P̃1 = P1, P̃2 = P2, P̃3 = P2, P̃4 = P3, P̃5 = P4. Likewise, the curve in Fig. 3.b is identical to the curve in
Fig. 2.a if P̃1 = P1, P̃2 = P2, P̃3 = P3, P̃4 = P3, P̃5 = P4. The curve in Fig. 3.c is identical to the curve in Fig. 2.a
if P̃1 = P1, P̃2 = P2, P̃3 = (P2 + P3)/2, P̃4 = P3, P̃5 = P4.

Note that the curves in Fig. 3 are not expressible in conventional B-spline form because the blending functions
do not satisfy (3), but they are expressible in S-spline form.

Refinement involving the splitting of i = 1, . . . , 4 blending functions will be referred to as Class i refinement,
and subscripts such as in Class 12 and Class 22,3 indicate which blending functions are split to create the S-spline
curve. Conventional B-spline curve refinement is Class 4.

Fig. 4.a shows S-spline curves based on the control polygon but with blending functions from different classes.
The curves from Class 1 and 2 lie further from the control polygon than the B-spline curve, because some of the
blending functions have β = .5. The blending functions for Class 1 are not symmetric, but they have a useful
property that B-spline curves do not: vector P̃3 − P̃2 for Class 12, and vector P̃3 − P̃4 for Class 14, are proportional
to the jump in third derivative across the knot that appears in their respective blending functions only. Thus, if those
vectors are length zero, the knot can be removed.
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Fig. 4. S-spline curves with global knot vector [0, 0, 0, 0, 1, 2, 2, 2, 2]. Same control points, but blending functions from different classes.

Fig. 5. S-spline curves with global knot vector [0, 0, 0, 0, 1, 2, 2, 2, 2]. Same curve, but control points from different classes.

The blending functions for the curves in Figs. 2.b and 3 define the same spline space, so a curve created in any
of these classes has an equivalent representation in each of the other classes. Fig. 5.a shows a B-spline curve, and
Figs. 5.b–d show the same curve represented in different classes. All of these classes obey the convex hull property.

In the examples we have shown for Class i > 1 refinement, i blending functions are split into two new blending
functions, but only i + 1 of those 2i blending functions are unique. For example, (7) shows a Class 4 refinement
in which the four blending functions are each split to create eight blending functions, but only five are unique.
This assures that if an S-spline curve with n control points is refined by inserting a single knot, the refined curve
will have at most n + 1 control points. If the refined curve were to have more than n + 1 control points the new
set of blending functions would not be linearly independent. A set of i blending functions which generate i + 1
unique blending functions upon refinement is called refinement compatible. Any i adjacent blending functions for a
B-spline curve are refinement compatible. In Fig. 3.c, the two adjacent blending functions B[00002](t) and B[00012](t)
are not refinement compatible, because insertion of a knot at, say, 1.5 in each of those blending functions creates
four unique blending functions, not three.

Lemma 1. Given an S-spline curve S that has linearly independent blending functions, an S-spline curve S′ is
obtained by inserting a knot ta into S using Class 1, 2, 3, or 4 compatible refinement. Denote by r1 the largest
multiplicity with which ta occurs in any blending function of S, and by r2 the multiplicity of ta in the blending
function(s) that are split during the refinement (r1 = 0 means that ta does not occur in any blending function). If
r1 = r2 < 4, S′ has linearly independent blending functions.

Proof. We prove that the lemma holds for Class 2 refinement. The proofs for the other classes follow the same
structure.

The blending functions before refinement are Bi (t) = B[t
τ0
i

,t
τ1
i

,t
τ2
i

,t
τ3
i

,t
τ4
i

](t), i = 1, . . . , m and the central knots

before refinement are thus {tτ2
1
, tτ2

2
, . . . , tτ2

m
}, not necessarily in numerical order. Arrange the Bi (t) such that the

two upon which we perform Class 2 refinement are Bm−1(t) and Bm , and insert the new knot ta into Bm−1(t) and
Bm . Since Bm−1(t) and Bm are refinement compatible, Bm(t) = B[t

τ1
m−1

,t
τ2
m−1

,t
τ3
m−1

,t
τ4
m−1

,t
τ4
m

](t). Denote the blending

functions after refinement as B̂i (t), where B̂i (t) = Bi (t), i = 1, . . . , m − 2, B̂m−1(t) = B[t
τ0
m−1

,t
τ1
m−1

,t
τ2
m−1

,t
τ3
m−1

|ta ](t),

B̂m(t) = B[t
τ1
m−1

,t
τ2
m−1

,t
τ3
m−1

,t
τ4
m−1

|ta ](t), and B̂m+1(t) = B[t
τ2
m−1

,t
τ3
m−1

,t
τ4
m−1

,t
τ4
m

|ta ](t).

Bm−1(t) = cm−1
1 B̂m−1(t) + cm−1

2 B̂m(t), Bm(t) = cm
1 B̂m(t) + cm

2 B̂m+1(t) (8)

where the c j
i are given in (5). From (8),

B̂m−1(t) = D1 Bm−1(t) + D2 Bm(t) + D3 B̂m+1(t), B̂m(t) = D4 Bm(t) + D5 B̂m+1(t)

where D1 =
1

cm−1
1

̸= 0, D4 =
1

cm
1

̸= 0, and the other Di are similar functions of the c j
i .
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We prove that the B̂i (t) are linearly independent by showing that
∑

B̂i (t)di = 0 only if all di = 0.

0 =

m+1∑
i=1

di B̂i (t)

=

m−2∑
i=1

di Bi (t) + dm−1 B̂m−1(t) + dm B̂m(t) + dm+1 B̂m+1(t)

=

m−2∑
i=1

di Bi (t) + dm−1 D1 Bm−1(t) + (dm−1 D2 + dm D4)Bm(t) + (dm−1 D3 + dm D5 + dm+1)B̂m+1(t)

Since the multiplicity of knot ta in blending function B̂m+1(t) is r2 + 1 and its multiplicity is < r2 + 1 in all other
B̂i (t), the coefficient of B̂m+1(t) must be zero, else the sum could not be zero because it would not be C3 at ta .
The remaining m terms in the sum form a linear combination of the original m blending functions Bi (t), but they
are assumed to be linearly independent, so all of the remaining coefficients of the sum must be zero. Hence,

dm−1 D1 = 0, dm−1 D2 + dm D4 = 0, dm−1 D3 + dm D5 + dm+1 = 0.

But, D1 ̸= 0, so dm−1 = 0. Likewise, D4 ̸= 0, so dm = 0, and this forces dm+1 = 0. Thus, the only solution to the
sum is for all di = 0, so the B̂i (t) are linearly independent.

3. S-spline surfaces

An S-spline surface is given by

P(s, t) =

n∑
i=1

Pi Bi (s, t) (9)

where Pi = ωi (xi , yi , zi , 1) ∈ P3 is a control point with Cartesian coordinates (xi , yi , zi ) and weight ωi ∈ R. Bi (s, t)
is a bivariate blending function defined

Bi (s, t) = βi Bs⃗i (s)Bt⃗i (t) (10)

where Bs⃗i (s) and Bt⃗i (t) are univariate B-spline blending functions defined as in (4), with knot vectors s⃗i =

[sσ 0
i
, sσ 1

i
, sσ 2

i
, sσ 3

i
, sσ 4

i
] and t⃗i = [tτ0

i
, tτ1

i
, tτ2

i
, tτ3

i
, tτ4

i
]. The blending function weight βi is computed algorithmically

to ensure partition of unity, while the control point weight ωi can be user specified. As in the curve case, knot
vectors s⃗i and t⃗i are associated with knot index vectors σi = [σ 0

i , σ 1
i , σ 2

i , σ 3
i , σ 4

i ] and τi = [τ 0
i , τ 1

i , τ 2
i , τ 3

i , τ 4
i ],

which are sequences of increasing integers. s⃗i and t⃗i are subsequences of global knot vectors s⃗ = [s0, s1, . . . , sc]
and t⃗ = [t0, t1, . . . , tr ] respectively.

As with T-splines, the control points Pi are arranged topologically in a control mesh called a T-mesh. The
pre-image of an S-spline surface can be diagrammed in the (s, t) parameter plane using what we will call a domain
T-mesh. Fig. 6 shows an illustration of a domain T-mesh with c = r = 10. The region A = [2, c − 2] × [2, r − 2] is
highlighted in yellow. The domain T-mesh is a rectangular decomposition of A. Vertices Pi , shown as black filled
circles in Fig. 6, lie at rectangle corners. Each Pi in the domain T-mesh corresponds to a control point Pi in the
control mesh.

In Fig. 6, the strings of five horizontal and vertical integers next to several control points are the index vectors
σi and τi . For example, vertex P10 has Cartesian coordinates (7, 3) and blending function

Bi (s, t) = B[s3,s5,s7,s8,s9](s)B[t1,t2,t3,t5,t7](t).

In the local knot vectors s⃗i and t⃗i , sσ 2
i

and tτ2
i

are called the central knots, and σ 2
i and τ 2

i are the central knot indices.
In a T-spline, s⃗i and t⃗i are inferred from the domain T-mesh [38]. In an S-spline surface, the only relationship that
s⃗i and t⃗i have with the domain T-mesh is that Pi = (σ 2

i , τ 2
i ). In a typical setting, prior to refinement for IGA, the

values of the s⃗i and t⃗i are those for the initial NURBS or T-spline CAD model (such as in Fig. 9.a). The s⃗i and t⃗i

values are then altered by the local refinement algorithm.
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Fig. 6. Example of a domain T-mesh. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

4. Exact refinement

We chose the name S-splines because exact refinement for S-spline surfaces is significantly more Simple to
understand and implement than for T-splines. Section 4.1 discusses the insertion of a single control point, and
Section 4.2 discusses how to split one or more faces into four faces.

4.1. Inserting a single control point

Fig. 7.a shows a region of a T-mesh into which we wish to insert a new control point P̃4 with knot index
coordinates (4, 4). There are three ways we can do this using Class 1 refinement. Fig. 7.b shows the result of
splitting the blending function B1(s, t) = B[s1,s2,s3,s5,s6](s)B[t2,t3,t4,t5,t6](t) by inserting a knot s4 into B[s1,s2,s3,s5,s6](s).
To assure exact refinement (i.e., that the refined surface is identical to the initial surface), we require

P1 B1(s, t) = P̃1 B̃1(s, t) + P̃4 B̃4(s, t) (11)

where B̃1(s, t) = β1 B[s1,s2,s3,s4,s5](s)B[t2,t3,t4,t5,t6](t) and B̃4(s, t) = β4 B[s2,s3,s4,s5,s6](s)B[t2,t3,t4,t5,t6](t). From (5),

B[s1,s2,s3,s5,s6](s) =
s4 − s1

s5 − s1
B[s1,s2,s3,s4,s5](s) +

s6 − s4

s6 − s2
B[s2,s3,s4,s5,s6](s),

so (11) is satisfied if P̃1 = P̃4 = P1, β1 =
s4−s1
s5−s1

, and β4 =
s6−s4
s6−s2

. Figs. 7.c and d show two alternatives for adding a
control point at (4, 4) via Class 1 refinement. The blue arcs in each of Figs. 7.b–d originate at the “child” control
point (the new control point) and points at their “parent” control point, or the one whose blending function was
split. For exact Class 1 refinement, both child and parent should be positioned at the original coordinates of the
parent.

Class 2 refinement can be performed on two blending functions Bi (s, t) = βi Bs⃗i (s)Bt⃗i (t) and B j (s, t) =

β j Bs⃗ j (s)Bt⃗ j
(t) that are refinement compatible. This means either that t⃗i and t⃗ j have four knots in common, and

s⃗i = s⃗ j ; or that s⃗i and s⃗ j have four knots in common, and t⃗i = t⃗ j . In Fig. 7.a, B1(s, t) and B2(s, t) are not refinement
compatible because t⃗i ̸= t⃗ j , but they are refinement compatible in Fig. 8.a.

Inserting the knot s4 into Bs⃗1 (s) and Bs⃗2 (s) and collecting terms, we achieve exact refinement by setting

P̃1 = P1, P̃2 = P2, P̃4 =
(s6 − s4)P1 + (s4 − s2)P2

s6 − s2
, β1 =

s4 − s1

s5 − s1
, β2 = 1, β4 =

s7 − s4

s7 − s3
.

As in Fig. 7, the blue arcs in Fig. 8.b indicate which blending functions were split to create the new blending
function. If there are three or four refinement-compatible blending functions, it is possible to perform Class 3 or 4
refinement.
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Fig. 7. Inserting a control point at knot index coordinates (4, 4) using Class 1 refinement.

Fig. 8. Inserting a control point at knot index coordinates (4, 4) using Class 2 refinement.

4.2. Splitting a face into fourths

As illustrated in Figs. 15.d–f, refinement for IGA applications typically consists of recursively splitting faces
into fourths. This is easily accomplished using Class 1 refinements. Fig. 9.a shows a B-spline control grid and
knot index vectors for seven blending functions. In Fig. 9.b, four new control points were created using Class 1
refinements, and in Fig. 9.c, six additional control points were created.

For exact refinement, i.e., the geometry is not altered, none of the original control points in Fig. 9.c are moved,
and P2 = P4 = P5 = P1, P6 = P3, P8 = P7, etc.

An alternative refinement strategy is to insert each new control point using the maximum class possible. In
Fig. 10.b, four new control points are inserted using Class 4 refinements. In Fig. 10.c, two control points are
inserted using Class 2 refinement, and four are inserted using Class 1.
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Fig. 9. Splitting control mesh faces into fourths using Class 1 refinements.

Fig. 10. Splitting control mesh faces into fourths using maximum possible classes.

Fig. 11. Inserting a row of control points.

5. Linear independence

As illustrated in Figs. 9 and 15, the pattern of refinement typically used in IGA is to split faces into fourths. Our
proof of linear independence of the blending functions is facilitated if all new control points along a new knot line
are inserted simultaneously, such as the six new control points in Fig. 11.a. Our discussion focuses on new rows,
but applies to new columns as well.
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Definition 1 (Row Linear Independence). Expanding the equation of a blending function (10),

Bi (s, t) = βi Bs⃗i (s)Bs⃗i (t) = βi B[s
σ0

i
,s

σ1
i

,s
σ2

i
,s

σ3
i

,s
σ4

i
](s)B[t

τ0
i

,t
τ1
i

,t
τ2
i

,t
τ3
i

,t
τ4
i

](t),

each Bi (s, t) associated with a row with knot index k or a column with knot index l if the central knot index
τ 2

i = k or τ 2
i = l. Define BR

k = {Bs⃗i (s)|τ 2
i = k} for all rows. Likewise, define BC

k = {Bt⃗i (t)|σ
2
i = k} for all

columns. An S-spline is said to be row linearly independent if the blending functions in each set BR
k and BC

k are
linearly independent.

Any T-spline (or NURBS) surface is row linearly independent, because the rules for inferring blending functions
from a T-mesh [38] yield blending functions Bs⃗i (s) along any row of control points (or, Bt⃗i (t) along any column
of control points) that are equivalent to blending functions for a NURBS curve.

Interestingly, an S-spline surface that has linearly independent blending functions is not necessarily row linearly
independent. But, if we start with a NURBS or T-Spline surface and repeatedly perform Row Insertion operations,
the resulting S-spline surface will be both row linearly independent and have linearly independent blending
functions, as Lemma 2 and Theorem 1 show.

Definition 2. Row Insertion is the operation of inserting a row of new control points, as in Fig. 11.a, with the
following conditions:

1. r2 ≥ r1, where r1 the largest multiplicity with which the new knot (t4 in Fig. 11.b) occurs in any local knot
vectors t⃗i , and r2 is the multiplicity of that knot in local knot vectors t⃗i of the blending functions that are
split during the refinement (r1 = 0 means that ta does not occur in any blending function).

2. Referring to Fig. 11.b, the local knot vectors s⃗i for P4, P5, and P6 must either be the same as those for P1, P2,
and P3, respectively, or for those of P7, P8, and P9, respectively. In the example in Fig. 11.b, this condition
is met by doing Class 1 refinements on Row 3. It could also have been met by doing Class 1 refinements
on Row 5. If blending functions on Row 3 are refinement compatible with blending functions on Row 5, the
condition could also be satisfied by performing refinements of Class ≥ 2.

Lemma 2. If Row Insertion is performed on an S-spline P(s, t) that is row linearly independent, the resulting
S-spline P̂(s, t) is row linearly independent.

Proof. Refer to Fig. 11.b and consider the step of inserting points P4, P5, and P6 along knot line t4. By the
definition of Row Insertion, t4 does not appear in any previous blending functions, and the Bs⃗i (s) functions for
P4, P5, and P6 are simple scales of the Bs⃗i (s) functions for P1, P2, and P3. Therefore, the blending functions for
P4, P5, and P6 are linearly independent. The new Bs⃗i (s) functions for P1, P2, and P3 are simple scales of their
initial values, so the blending functions along t3 remain linearly independent. Since the insertion operation does
not change the Bs⃗i (s) values for any other row, the blending functions along all other horizontal knot lines are also
linearly independent.

The only columns whose Bt⃗i (t) blending functions change are those with knot indices 2, 4, and 6. But the
refinements of those blending functions amount to refinement of S-spline curves, so by Lemma 1, the blending
functions along those columns are linear independent. All other columns remain unchanged, and thus the blending
functions remain linear independent.

Theorem 1. If Row Insertion is performed on an S-spline P(s, t) with linearly independent blending functions and
that is also row linearly independent, the blending functions of the resulting S-spline surface P̃(s, t) are linearly
independent.

Proof. Let tλ be the t knot value along which the new row of control points is inserted. Denote the initial n
blending functions Bi (s, t) = βi Bs⃗i (s)Bt⃗i (t). After Row Insertion, these blending functions are changed to B̂i (s, t).
The blending functions for the m new control points are B̃i (s, t) = β̃i B̃s⃗i (s)B̃t⃗i (t).

Denote S1 = {B1(s, t), . . . , Bn(s, t), B̃1(s, t), . . . , B̃m(s, t)} and S2 = {B̂1(s, t), . . . , B̂n(s, t), B̃1(s, t), . . . ,
B̃m(s, t)} and let S1 and S2 be the linear space spanned by the sets S1 and S2, respectively.
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Fig. 12. An infinite plate with a circular hole under a far-field constant in-plane tension.

We prove that the blending functions in S1 are linearly independent by seeking ci and d j such that
n∑

i=1

ci Bi (s, t) +

m∑
j=1

d j B̃ j (s, t) ≡ 0. (12)

Using r2 as defined in Definition 2, take the partial derivative,

∂3−r2
∑m

j=1 d j B̃ j (s, t)

∂t

⏐⏐⏐⏐⏐
t+λ

t−λ

= −
∂3−r2

∑n
i=1 ci Bi (s, t)
∂t

⏐⏐⏐⏐t+λ

t−λ

. (13)

where |
t+λ
t−λ

denotes the difference in the limits of the partial derivatives at tλ as approached from the left and from
the right. Since all Bi (s, t) have continuous derivatives of order 3 − rd at t = tλ, the right side of (13) equals zero
so

∂3 ∑m
j=1 d j B̃ j (s, t)

∂t

⏐⏐⏐⏐⏐
t+λ

t−λ

=

m∑
j=1

d j β̃ j B̃s⃗ j (s)

⎛⎜⎝ ∂3 B̃t⃗ j
(t)

∂t

⏐⏐⏐⏐⏐
t+λ

t−λ

⎞⎟⎠ =

m∑
j=1

d j β̃ j ẽ j B̃s⃗ j (s) = 0, (14)

where ẽ j =

⎛⎝ ∂3 B̃t⃗ j
(t)

∂t

⏐⏐⏐⏐t+λ

t−λ

⎞⎠. Since B̃t⃗ j
(t) always has a discontinuous derivative of order 3 − rd at t = tλ for any t⃗ j ,

all ẽ j ̸= 0. Since β̃ j is only assigned by the refinement algorithm, all β̃ j ̸= 0. By Lemma 2, P̃(s, t) is row linearly
independent, and since the B̃s⃗ j (s), i = 1, . . . , m are the blending functions on the row t = tλ, they are linearly
independent. Therefore, the only way (14) can be satisfied is for (d j β̃ j ẽ j ) = 0, j = 1, . . . , m. But since β̃ j and
ẽ j are never zero, we must have d j = 0, j = 1, . . . , m and (12) leaves us

∑n
i=1 ci Bi (s, t) = 0. According to the

hypothesis, the Bi (s, t) are linearly independent, so we must have ci = 0, i = 1, . . . , n. Therefore, the blending
functions in S1 are linearly independent and dim(S1) = n +m. Since any blending function in S1 can be represented
as a linear combination of the blending functions in S2, S1 ⊆ S2, which implies dim(S2) ≥ n + m. However, since
S2 is a linear space spanned by n + m blending functions, dim(S2) ≤ n + m. Thus, dim(S2) = n + m and the
blending functions in S2 are also linearly independent.

6. Examples of using S-splines for IGA

This section reports the results of applying S-spline local refinement to an IGA analysis. The first example will
show the convergence behavior of S-splines and the second one will compare the local refinement behavior with
the algorithms in [15] and [1].

We first study a 2D linear elasticity benchmark problem: an infinite plate with a circular hole under a far-field
constant in-plane tension. As shown in Fig. 12a, we only need to study a finite quarter plate due to symmetry. The
exact solution can be found in [39]. The circular arc is modeled as a cubic NURBS curve by degree elevating the
corresponding quadratic curve. We perform both uniform and adaptive refinement. In the adaptive case, the elements
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Fig. 13. Sequences of refined T-meshes for the problem of infinite plate with a circular hole under a far-field constant in-plane tension.

Fig. 14. Implicit gradient damage problem over an L-shaped domain.

with larger error than a given threshold are refined. We evaluate the L2 error of the stress (σxx ) on each element
and on the entire domain. The meshes are shown in Fig. 13. The convergence curves are plotted with respect to
degrees of freedom in Fig. 12b, under both uniform and adaptive refinement. In uniform refinement, the optimal
convergence rate of 3

2 is achieved, and the adaptive refinement can save some of the degrees of freedom which is
also observed in [2,8,24,40,41].

We next consider an implicit gradient damage model. Continuum damage models are widely used for the
simulation of diffuse fracture processes [42]. Among the gradient damage formulations, the implicit gradient
enhancement is considered the most successful [43]. This issue is improved using isogeometric finite elements to
overcome the problems associated with the use of mixed formulations and meshless methods for gradient damage
formulations [4]. In this section, we will consider the L-shaped specimen shown in Fig. 14 using the gradient
damage formulations in [4]. In this example Young’s modulus is 10 GPa and Poisson’s ratio is 0.2. The left and
bottom edges are modeled as rigid plates. Pinned roller supports are placed at the left and bottom ends of the bottom
and left rigid plates respectively. This ensures that only a rigid rotation is allowed at the support. The supports are
then displaced symmetrically in the x and y directions as shown. The problem configuration and loading ensures
that the damage field starts developing at the concave corner and migrates at a forty-five degree angle towards the
upper right corner of the domain. Increasing resolution only in the vicinity of the damage field is accomplished
using S-spline local refinement.

We compare the efficiency of the old and new refinement algorithms in Fig. 15 in terms of the number of
control points. At each refinement level, we split the neighboring five faces along the diagonal edges into four
faces. Additional T-mesh topology is then added by the refinement algorithms to ensure nestedness in the resulting
refined space. The resulting T-meshes generated by the algorithm in [15] are shown in Fig. 15a, b, and c; those
generated by the algorithm in [1] are shown in Fig. 15d, e, and f; and those generated by the refinement algorithms
in this paper are shown in Fig. 15g, h, and i respectively. We can see that the new algorithm converges to an optimal
refinement. The contour plot of the damage field is shown in Fig. 16.

7. Conclusions and future work

S-spline surfaces show promise for use in IGA. A major advantage that S-splines have over T-splines is that
exact local refinement can be performed without propagating unwanted control points. Furthermore, the refinement
algorithm for S-splines is significantly more simple to understand and to implement than for T-splines.
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Fig. 15. Sequences of refined T-meshes. Images a, b, and c are meshes generated by the algorithm in [15]; d, e, and f were generated by
the algorithm in [1]; and g, h, and i were generated by the algorithm in this paper.

Fig. 16. Contour plot of the sixth-order damage field obtained using the new S-spline refinement algorithm.
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Future IGA-related research is needed to study the conditioning of the matrices, extend S-splines to handle
extraordinary points, and run performance tests against competing local refinement strategies such as AS-T-splines
and hierarchical B-splines. Trivariate S-splines should have the same minimal-degree-of-freedom advantages for
volumetric IGA as S-spline surfaces have for shell elements.

S-splines also show promise for use in CAD. An ongoing complaint that users of T-splines have expressed is the
extra control points that usually arise when doing T-splines local refinement. Designers often find these extra control
points confusing. Since S-splines avoid this problem, they might be attractive to designers in the CAD industry. A
drawback of Class 1 refinement is that it results in two control points having the same Cartesian coordinates and
with smaller weights. It remains to be seen if a friendly user interface can mitigate this problem.

The use of S-splines for shape optimization problems is an obvious application that should also be explored.
Since control points are manipulated algorithmically in shape optimization, a friendly user interface is not needed.
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