
Graphical Models 106 (2019) 101042

Contents lists available at ScienceDirect

Graphical Models

journal homepage: www.elsevier.com/locate/gmod

de Boor-like evaluation algorithm for Analysis-suitable T-splines

Hongmei Kang

a , Xin Li b , ∗

a Soochow University, No.1 Road Shizi, Suzhou, Jiangsu, China
b University of Science and Technology of China, No.96 Road Jinzhai, Hefei, Anhui, China

a r t i c l e i n f o

Keywords:

Analysis-suitable

T-splines

de Boor Evaluation

Control polygons

Bézier extraction

a b s t r a c t

Analysis-suitable T-splines form a practically useful subset of T-splines. They maintain the design flexibility of

T-splines with an efficient and highly localized refinement capability, while preserving the important analysis-

suitable mathematical properties of the NURBS basis. The present paper proposes a new evaluation algorithm for

analysis-suitable T-splines. The algorithm is based on the control polygon directly and it reduces both time and

storage cost comparing with Bézier extraction.

1

e

n

T

c

s

t

n

d

t

t

t

i

N

e

p

i

c

m

T

e

b

o

t

a

p

c

p

u

(

h

p

e

u

t

m

r

t

w

s

c

o

e

2

n

a

2

b

T

e

3

h

R

A

1

. Introduction

T-splines [1,2] have been used to overcome many limitations inher-

nt in the industry standard NURBS representation, such as watertight-

ess [1,3] , trimmed NURBS conversion [4] and local refinement [2,5] .

hese capabilities make T-splines attractive both for CAD and for appli-

ations in iso-geometric analysis (for short, IGA), which uses the smooth

pline basis that defines the geometry as the basis for analysis. IGA is in-

roduced in [6] and described in detail in [7] . However, all T-splines are

ot suitable as a basis for IGA since they are not always linear indepen-

ent [8] . Thus an important development in the evolution of IGA was

he advent of analysis-suitable T-splines(for short, AS T-splines), a mild

opologically restricted subset of T-splines. AS T-splines are optimized

o meet the needs both for design and analysis [5,9] . Such T-splines

nherit all the good properties from T-splines, such as watertightness,

URBS compatible, convex hull, and affine invariant. Unlike the gen-

ral T-splines, such T-splines are guaranteed to be locally linearly inde-

endent [9] , the polynomial blending functions for such T-splines sum

dentically to one for an admissible T-mesh [10] and the T-spline space

an be characterized in terms of piecewise polynomials [11] . Further-

ore, algorithms have been devised whereby local refinement of such

-splines is well contained [5] .

Among all the good properties of T-splines, there is one key prop-

rty which is not well developed, i.e., the evaluation algorithm directly

ased on the T-spline control grid, owing to the topological complexity

f the T-grid. The current evaluation of T-spline is based on Bézier ex-

raction, which first represents the T-spline with a set of Bézier patches

nd use de Casteljau algorithm [12] . Recently, Yang Zhang [13] pro-

osed a subset of AS T-splines, called de Boor-suitable T-splines, which

an be applied de Boor algorithm directly on T-spline control grid. Their
∗ Corresponding author.

E-mail address: lixustc@ustc.edu.cn (X. Li).

ttps://doi.org/10.1016/j.gmod.2019.101042

eceived 29 September 2018; Received in revised form 1 April 2019; Accepted 9 Sep

vailable online 11 September 2019

524-0703/© 2019 Elsevier Inc. All rights reserved.
roposed de Boor-suitable T-spline requires the control points on each

nit element of the underlying AS T-mesh span exactly four columns

or rows) and the control points on the same column (or row) should

ave the same horizontal (or vertical) local knot vector. In this pa-

er, based on an important observation, we develop a de Boor-like

valuation algorithm for analysis-suitable T-splines. In order to eval-

ate a given element, we first find the control points associated with

he nonvanishing T-spline blending functions on the element, then we

odify the control points such that they can be applied de Boor algo-

ithm. When the control points span four columns or rows, the con-

rol points are only scaled and we do not need auxiliary points. Other-

ise, several control points are modified such that the control points

pan four columns or rows by knot insertion. Comparing to [13] , the

onditions imposed on the control points are relaxed and the number

f modified control points is far fewer than that of traditional Bézier

xtraction.

. Preliminaries

In the section, we will introduce some basic notations and prelimi-

ary results for bicubic analysis suitable T-splines [11,14,15] and give

 brief introduction of de Boor algorithm of bicubic B-splines.

.1. Index T-mesh

Similar to the approach of Bazilevs et al. [15] , we define T-splines

ased on the T-meshes in the index domain which are referred as index

-meshes . A T-mesh  for a bicubic T-spline is a connection of all the

lements of a rectangular partition of the index domain [0 , 𝑐 + 3] × [0 , 𝑟 +
] , where all rectangle corners (or vertices) have integer coordinates.
tember 2019

https://doi.org/10.1016/j.gmod.2019.101042
http://www.ScienceDirect.com
http://www.elsevier.com/locate/gmod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gmod.2019.101042&domain=pdf
mailto:lixustc@ustc.edu.cn
https://doi.org/10.1016/j.gmod.2019.101042

H. Kang and X. Li Graphical Models 106 (2019) 101042

Fig. 1. (a) Anchors for a bicubic T-spline, (b) the local index vector for one bicubic T-spline blending function and (c) extensions of T-junctions.

T

v

j

⊣

T

j

a

f

r

a

f

t

t

i

u

a

a

5

T

𝑇

w

s

2

s

t

o

h

i

t

o

i

o

⊢

j

I

s

D

s

a

s

T

z

s

e

n

d

o

l

e

a

2

𝑐

w

𝑈

[

b

⎧⎪⎨⎪⎩

𝑆

w

f

{

s

d

f

p

e
hree types of elements are

• Vertex: Vertex of a rectangle, denoted as (𝜉i , 𝜂i) or 𝜉i × 𝜂i .
• Edge: A line segment connecting two vertices in the T-mesh and

no other vertices lying in the interior, denoted as [𝜉j , 𝜉k] × { 𝜂i } or

{ 𝜉i } × [𝜂j , 𝜂k] for a horizonal or vertical edge.
• Face: A rectangle where no other edges and vertices in the interior,

denoted as [𝜉i , 𝜉j] × [𝜂i , 𝜂j] or (𝜉i , 𝜉j) × (𝜂i , 𝜂j). The second notation

is for an open face.

The valence of a vertex is the number of edges connecting to this

ertex. For the interior vertices, we only allow valence three (called T-

unctions) or four vertices (called cross vertices). We adopt the notation ⊢,

, ⊥, and ⊤ to indicate the four possible orientations for the T-junctions.

he T-junctions of type ⊢ and ⊣ are called horizontal T-junctions , and T-

unctions of type ⊥ and ⊤ are called vertical T-junctions .

Denote the active region as a rectangle region [2 , 𝑐 + 1] × [2 , 𝑟 + 1] . An

nchor is a point in the index T-mesh which corresponds one blending

unction. For bicubic T-splines, an anchor is exactly a vertex in the active

egion of the T-mesh. The active region carries the anchors that will be

ssociated the blending functions while the other indices will be needed

or the definition of the blending functions when the anchors close to

he boundary. Fig. 1 (a) shows an index T-mesh of degree (3,3), where

he small solid rectangles are used to label anchors and the grey domain

s the active region in a T-mesh.

For the i -th anchor A i , we define a local index vector 𝜉𝑖 × 𝜂𝑖 which is

sed to define the blending function T i (s, t). The values of 𝜉𝑖 = [𝜉0
𝑖
, ⋯ , 𝜉4

𝑖
]

nd 𝜂𝑖 = [𝜂0
𝑖
, ⋯ , 𝜂4

𝑖
] are determined as follows. Starting from A i , we shoot

 ray in the s and t direction traversing the T-mesh and collect a total of

 and 5 knot indices to form 𝛿𝑖 and 𝜂𝑖 , as shown in Fig. 1 (b). Then the

-spline blending function T i (s, t) is defined as

 𝑖 (𝑠, 𝑡) = 𝑁[𝜉0 𝑖 , 𝜉
1
𝑖 , 𝜉

2
𝑖 , 𝜉

3
𝑖 , 𝜉

4
𝑖](𝑠) ⋅𝑁[𝜂0 𝑖 , 𝜂

1
𝑖 , 𝜂

2
𝑖 , 𝜂

3
𝑖 , 𝜂

4
𝑖](𝑡) ,

here 𝑁[𝜉0
𝑖
, 𝜉1

𝑖
, 𝜉2

𝑖
, 𝜉3

𝑖
, 𝜉4

𝑖
](𝑠) and 𝑁[𝜂0

𝑖
, 𝜂1

𝑖
, 𝜂2

𝑖
, 𝜂3

𝑖
, 𝜂4

𝑖
](𝑡) are the cubic B-

pline functions in 𝑠 − direction and 𝑡 − direction respectively.

.2. Analysis-suitable T-splines

The extension of a T-junction is defined as a closed line segment as-

ociated with the T-junction. For a i -th T-junction (𝜉i , 𝜂i) of type ⊢ or ⊣,

he extension is the line segment [𝜉𝑖 0 , 𝜉𝑖 1] × { 𝜂𝑖 } . When the T-junction is

f type ⊢, 𝜉𝑖 0 and 𝜉𝑖 1 are determined such that the edges [𝜉𝑖 0 , 𝜉𝑖) × { 𝜂𝑖 }
ave 1 intersection with the T-mesh and the edges (𝜉𝑖 , 𝜉𝑖 1] × { 𝜂𝑖 } have 2

ntersections with the T-mesh. Here [𝜉𝑖 0 , 𝜉𝑖) × { 𝜂𝑖 } is called the edge ex-

ension while (𝜉𝑖 , 𝜉𝑖 1] × { 𝜂𝑖 } is called the face extension . For a T-junction

f type ⊣, we can similarly define the extension except the number of

ntersections are exchanged. Also, we can define the extensions for the

ther kinds of T-junctions ⊥, ⊤. The extension of a T-junction of type

or ⊣ is called the horizontal extension (HE for short) and that of a T-

unction of type ⊥ or ⊤ is called the vertical extension (VE for short).
n Fig. 1 (c), the yellow line segments are edge extensions and red line

egments are face extensions.

efinition 2.1. For a bicubic T-spline, a T-mesh is called analysis-

uitable (for short, AS T- mesh) if the extensions for all the T-junctions ⊢

nd ⊣, don’t intersect the extensions for all the T-junctions ⊥ and ⊤. A T-

pline defined on an analysis-suitable T-mesh is called analysis-suitable

-spline, for short AS T-spline [5,11] .

AS T-splines are a subset of T-splines with the constraint that hori-

ontal extensions do not intersect with vertical extensions. Such a con-

traint makes the T-vertices in an AS T-mesh be separated up to some

xtent. Thus AS T-splines possess some nice properties that T-splines do

ot have. The blending functions of AS T-splines are linearly indepen-

ent for all the knots [10,11,14,16] . The basis constitutes a partition

f unity [11] . AS T-splines obey the convex hull property and can be

ocally refined [5] . There are exactly 16 basis functions on a Bézier el-

ment [17] . In all, AS T-mesh significantly simplifies the complexity of

rbitrary T-mesh and makes it possible to apply de Boor algorithm.

.3. de Boor algorithm

A B-spline curve c (s) of degree p is defined as

(𝑠) =

𝑚 ∑
𝑖 =0

𝑃 𝑖 𝑁

𝑝
𝑖
(𝑠) ,

here 𝑁

𝑝
𝑖
(𝑠) are the B-splines basis function defined over a knot vector

 = { 𝑠 0 , 𝑠 1 , 𝑠 2 , ⋯ , 𝑠 𝑚 + 𝑝 +1 } and 𝑃 𝑖 ∈ ℝ

𝑑 are control points. Suppose 𝑠 ∈
 𝑠 𝑖 , 𝑠 𝑖 +1] , 𝑖 = 𝑝, 𝑝 + 1 , ⋯ , 𝑚, then the curve point 𝑐(𝑠) = 𝑃

𝑝
𝑖

is evaluated

y de Boor algorithm as follows.

𝑃 0 𝑗 (𝑠) = 𝑃 𝑗 , 𝑗 = 𝑖 − 𝑝, 𝑖 − 𝑝 + 1 , ⋯ , 𝑖,

𝑃 𝑟 𝑗 (𝑠) = (1 − 𝛼𝑟
𝑗
) 𝑃 𝑟 −1

𝑗−1 (𝑠) + 𝛼𝑟
𝑗
𝑃 𝑟 −1
𝑗

(𝑠) , 𝛼𝑟
𝑗
=

𝑠 − 𝑠 𝑗

𝑠 𝑗+ 𝑝 +1− 𝑟 − 𝑠 𝑗
,

𝑟 = 1 , 2 , ⋯ , 𝑝, 𝑗 = 𝑖 − 𝑝 + 𝑟, 𝑖 − 𝑝 + 𝑟 + 1 , ⋯ , 𝑖.

(1)

A tensor product B-spline surface of degree (p, q) is defined as

(𝑠, 𝑡) =

𝑚 ∑
𝑖 =0

𝑛 ∑
𝑗=0

𝑃 𝑖𝑗 𝑁

𝑝
𝑖
(𝑠) 𝑁

𝑞
𝑗
(𝑡) ,

here 𝑃 𝑖𝑗 ∈ ℝ

𝑑 are control points, 𝑁

𝑝
𝑖
(𝑠) and 𝑁

𝑞
𝑖
(𝑡) are B-splines basis

unctions defined over knots vectors 𝑈 = { 𝑠 0 , 𝑠 1 , 𝑠 2 , ⋯ , 𝑠 𝑚 + 𝑝 +1 } and 𝑉 =
 𝑡 0 , 𝑡 1 , 𝑡 2 , ⋯ , 𝑡 𝑛 + 𝑞+1 } respectively. Suppose (𝑠, 𝑡) ∈ [𝑠 𝑘 , 𝑠 𝑘 +1] × [𝑡 𝑙 , 𝑡 𝑙+1] , the

urface point S (s, t) is evaluated by applying de Boor algorithm in one

irection firstly, then in the other direction. Fig. 2 shows the evaluation

ramework of bicubic B-spline surfaces by de Boor algorithm, the surface

oint 𝑆(𝑠, 𝑡) = 𝑃 3 , 3
𝑘,𝑙

.

The de Boor algorithm provides a fast and numerically stable way for

valuating B-splines. Instead of evaluating each B-spline basis functions,

H. Kang and X. Li Graphical Models 106 (2019) 101042

Fig. 2. de Boor algorithm of bicubic tensor

product B-splines surfaces.

t

o

i

3

n

T

e

T

t

a

p

c

w

p

a

3

t

D

o

c

t

r

c

t

D

m

b

f

t

s

d

t

[

c

s

r

T

m

a

c

e

P

c

D

a

v

1

v

a

t

a

p

i

n

i

I

i

b

v

b

v

t

t

3

i

O

he curve/surface point is evaluated by calculating a linear combination

f control points recursively. We are going to extend de Boor algorithm

n AS T-splines.

. de Boor-like evaluation algorithm

For T-splines, the non-vanishing basis functions on an element do

ot have a global tensor product structure owing to the T-junctions.

herefore de Boor algorithm can not be applied directly. In the current

xisting algorithm, a T-spline is evaluated by Bézier extraction [18,19] .

hat is, a T-spline is firstly represented as element-wise Bernstein func-

ions and then is evaluated by de Casteljau’s algorithm. However such

 work-around is often time- and memory-consuming. In this paper, we

ropose an algorithm similar to de Boor’s for evaluating AS T-splines by

alculating control points instead of calculating the Bézier coordinates,

e call such an algorithm as de Boor-like evaluation algorithm. In this

aper, we focus on the de Boor-like evaluation of bicubic AS T-splines

s bicubic AS T-splines are the most common ones used in application.

.1. An observation

We firstly introduce several concepts which are necessary for stating

he observation.

efinition 3.1. A basis function is called a non-vanishing basis function

n an element if it does not vanish on this element. The corresponding

ontrol point and anchor associated with this non-vanishing basis func-

ion is called a non-vanishing control point and a non-vanishing index,

espectively.

For bicubic AS T-splines, there is a one-to-one correspondence among

ontrol points, basis functions and anchors. Thus we do not distinguish

hese three concepts in the following context.

efinition 3.2. An extended T-mesh  𝑒𝑥𝑡 is formed by augmenting a T-

esh  with face extensions of all T-junctions in  . For a vertex 𝑣 ∈  𝑒𝑥𝑡 ,
ut 𝑣 ∉  , it is called a HE -vertex if it is the intersection of a horizontal

ace extension and a vertical edge in  ; it is called a VE -vertex if it is

he intersection of a vertical face extension and a horizontal edge in  .
For tensor-product B-spline surfaces, there are 16 non-vanishing ba-

is functions on an element. And the corresponding non-vanishing in-

ices span exactly four rows and four columns. For bicubic AS T-splines,

here are exactly 16 non-vanishing basis functions on a Bézier element

9] . But the non-vanishing indices do not span four rows and four

olumns. Fortunately, we observed that the non-vanishing indices must

pan two rows or columns. This observation inspires de Boor-like algo-

ithm. We will conclude this in Theorem 3.1 .

heorem 3.1. Given an AS T-spline, suppose  is the underlying index T-

esh. For an element 𝐹 = [𝑠 𝑘 , 𝑠 𝑘 +1] × [𝑡 𝑙 , 𝑡 𝑙+1] in the extended T-mesh  𝑒𝑥𝑡 ,
mong the 16 non-vanishing anchors on F, either
(1) four anchors are covered by the line 𝑠 = 𝑠 𝑘 and four anchors are

overed by 𝑠 = 𝑠 𝑘 +1 ; or

(2) four anchors are covered by the line 𝑡 = 𝑡 𝑙 and four anchors are cov-

red by 𝑡 = 𝑡 𝑙+1 .

roof. Suppose the four vertices of F are v 1 , v 2 , v 3 , v 4 arranged in anti-

lock order and v 2 is the left bottom vertex, see Fig. 3 for a reference.

enote 𝐾 1 = { 𝑣 1 , 𝑣 2 , 𝑣 3 , 𝑣 4 } and v i may not necessarily be in  , for ex-

mple v 3 in Fig. 3 (a).

We introduce a case indicator I for the set K 1 . If there exists one HE -

ertex in K 1 , then 𝐼 = 0 ; if there exists one VE -vertex in K 1 , then 𝐼 =
 ; otherwise 𝐼 = 2 . Such a case indicator is well-defined since the HE -

ertex and the VE -vertex should not occur simultaneously in a element

ccording to the definition of AS T-meshes.

If 𝑣 𝑖 0 ∈ 𝐾 1 is a HE -vertex, then among the vertical neighbors of 𝑣 𝑖 0 ,

he one in  but not in K 1 replaces 𝑣 𝑖 0 . If 𝑣 𝑖 0 ∈ 𝐾 1 is a VE -vertex, then

mong the horizontal neighbors of 𝑣 𝑖 0 , the one in  but not in K 1 re-

laces 𝑣 𝑖 0 . For example in Fig. 3 (a), v 3 is replaced by its right neighbor

n Fig. 3 (b). In this way, the four vertices in K 1 are all in  . For conve-

ience, we still use v 1 , v 2 , v 3 , v 4 to denote the vertices in K 1 .

If 𝐼 = 0 , the vertical 1-neighboring vertices in  of v 1 , v 2 , v 3 , v 4 ex-

st, therefore denote these 1-neighboring vertices as 𝐾 2 = { 𝑣 5 , 𝑣 6 , 𝑣 7 , 𝑣 8 } .
f 𝐼 = 1 , the horizontal 1-neighboring vertices in  of v 1 , v 2 , v 3 , v 4 ex-

st, denote these 1-neighboring vertices as 𝐾 2 = { 𝑣 5 , 𝑣 6 , 𝑣 7 , 𝑣 8 } . If 𝐼 = 2 ,
oth the horizontal 1-neighboring vertices and vertical 1-neighboring

ertices in  of v 1 , v 2 , v 3 , v 4 exist, here we denote the horizontal neigh-

oring vertices as 𝐾 2 = { 𝑣 5 , 𝑣 6 , 𝑣 7 , 𝑣 8 } . For example in Fig. 3 (b), v 5 and

 6 are the right neighbors of v 1 and v 2 respectively and v 7 and v 8 are

he right neighbors of v 3 and v 4 respectively.

It is easily proved that the corresponding AS T-spline blending func-

ion associated with v 1 , v 2 , ⋅⋅⋅, v 7 , v 8 do not vanish on F . And

• when 𝐼 = 0 , v 5 , v 1 , v 2 , v 6 are covered by the straight line 𝑠 = 𝑠 𝑘 and

v 8 , v 4 , v 3 , v 7 are covered by the straight line 𝑠 = 𝑠 𝑘 +1 .
• when 𝐼 = 1 , v 5 , v 1 , v 4 , v 8 are covered by the straight line 𝑡 = 𝑡 𝑙+1 and

v 6 , v 2 , v 3 , v 7 are covered by the straight line 𝑡 = 𝑡 𝑙 .
• when 𝐼 = 2 , v 5 , v 1 , v 2 , v 6 are covered by the straight line 𝑠 = 𝑠 𝑘 and

v 8 , v 4 , v 3 , v 7 are covered by the straight line 𝑠 = 𝑠 𝑘 +1 . Meanwhile,

v 5 , v 1 , v 4 , v 8 are covered by the straight line 𝑡 = 𝑡 𝑙+1 and v 6 , v 2 , v 3 ,

v 7 are covered by the straight line 𝑡 = 𝑡 𝑙 . □

.2. Finding non-vanishing basis functions

Based on Theorem 3.1 , we propose the following algorithm for find-

ng non-vanishing basis functions on a given element F .

Input  is the underlying T-mesh of a given AS T-spline. F is a given

element in  𝑒𝑥𝑡 and has four vertices v 1 , v 2 , v 3 , v 4 arranged in

anti-clock order with the assumption that v 2 is the left bottom

vertex.

utput 16 non-vanishing indices on F and the case indicator I .

H. Kang and X. Li Graphical Models 106 (2019) 101042

Fig. 3. Find non-vanishing basis functions on element F .

Fig. 4. Find non-vanishing basis functions on element F 1 , F 2 and F 3 .

e

t

i

3

r

a

t

v

t

p

a

P

a

𝑈

a

F

k

(

r

t

m

n

(

(

C

t

t
1. update 𝐾 1 = { 𝑣 1 , 𝑣 2 , 𝑣 3 , 𝑣 4 } . If there is a HE -vertex in K 1 , then

set 𝐼 = 0 . If there is a VE -vertex in K 1 , then set 𝐼 = 1 . Otherwise

𝐼 = 2 .
If 𝑣 𝑖 0 ∈ 𝐾 1 is a HE -vertex, then search the 1-neighboring vertices

of 𝑣 𝑖 0 in the vertical direction pointing to the outside of F until

it is a vertex in  and replace 𝑣 𝑖 0 . If 𝑣 𝑖 0 ∈ 𝐾 1 is a VE -vertex,

then search the 1-neighboring vertices of 𝑣 𝑖 0 in the horizontal

direction pointing to the outside of F until it is a vertex in  and

replace 𝑣 𝑖 0 .

2. find 𝐾 2 = { 𝑣 5 , 𝑣 6 , 𝑣 7 , 𝑣 8 } . If 𝐼 = 0 , the closest vertical neighbor-

ing vertices (outside of F) of v i , 𝑖 = 1 , 2 , 3 , 4 are denoted as

𝐾 2 = { 𝑣 5 , 𝑣 6 , 𝑣 7 , 𝑣 8 } . If 𝐼 = 1 or 𝐼 = 2 , change ‘vertical’ as ‘hori-

zontal’.

3. find 𝐾 3 = { 𝑣 9 , 𝑣 10 , 𝑣 11 , 𝑣 12 , 𝑣 13 , 𝑣 14 , 𝑣 15 , 𝑣 16 } .When 𝐼 = 0 , find the

left adjacent elements of v 5 and v 6 and collect them in a set K f .

If elements in K f are less than 4, the left elements of v 1 and v 2
are included in K f . Collect the endpoints on the left edges of the

elements in K f without repetition. Denote the endpoints associ-

ated with non-vanishing T-spline blending functions on F as { v 9 ,

v 10 , v 11 , v 12 }. Similarly search the right adjacent elements of v 8 ,

v 4 , v 3 , v 7 and find { v 13 , v 14 , v 15 , v 16 }. When 𝐼 = 1 or 𝐼 = 2 , find

the top adjacent elements of v 5 , v 1 , v 4 , v 8 and find the down ad-

jacent elements of v 6 , v 2 , v 3 , v 7 similarly as 𝐼 = 0 . In Fig. 3 (c),

the elements in K f are colored by yellow.

4. 𝐾 = 𝐾 1 ∪𝐾 2 ∪𝐾 3 = { 𝑣 1 , 𝑣 2 , ⋯ , 𝑣 16 } is the output vertices on F .

Fig. 4 shows the results of finding the non-vanishing anchors on three

lements, where the anchors in K 1 are marked by yellow solid circles,

he anchors in K 2 are marked by orange solid circles, and the anchors

n K 3 are marked by blue solid vertices.
.3. Preprocessing control points

In order to evaluate an AS T-spline on an element by de Boor algo-

ithm, the non-vanishing anchors should span four columns or four rows

nd the non-vanishing control points on each column or row should have

he same local knot vector in s -direction or t -direction. Thus the non-

anishing control points have to be modified by knot insertion. With

he help of Theorem 3.1 , this process can be simplified significantly. We

resent this process as follows.

Denote by P ij , 𝑖, 𝑗 = 1 , 2 , 3 , 4 as the non-vanishing control points on

n element 𝐹 = [𝑠 3 , 𝑠 4] × [𝑡 3 , 𝑡 4] . Assume the associated anchors of P 12 ,

 22 , P 32 , P 42 are covered by the vertical line 𝑠 = 𝑠 3 , and the associated

nchors of P 13 , P 23 , P 33 , P 43 are covered by the vertical line 𝑠 = 𝑠 4 . Let

 = { 𝑠 0 , 𝑠 1 , 𝑠 2 , ⋯ , 𝑠 7 } be the referring knot vector in 𝑠 − direction with the

ssumption that there is no other knot between s k and 𝑠 𝑘 +1 , 𝑘 = 0 , 1 , ⋯ , 6 .
or the control points on the j th row P j 1 , P j 2 , P j 3 , P j 4 , the associated local

not vectors in s -direction are

 𝑥 0 , 𝑥 1 , 𝑥 2 , 𝑠 3 , 𝑠 4) , (𝑥 1 , 𝑥 2 , 𝑠 3 , 𝑠 4 , 𝑥 5) , (𝑥 2 , 𝑠 3 , 𝑠 4 , 𝑥 5 , 𝑥 6) , (𝑠 3 , 𝑠 4 , 𝑥 5 , 𝑥 6 , 𝑥 7) ,

espectively. Here x 1 ≤ s 1 ≤ x 2 ≤ s 2 < s 3 < s 4 < s 5 ≤ x 5 ≤ x 6 . We are going

o see how the control points P ij , 𝑖, 𝑗 = 1 , 2 , 3 , 4 are updated in order to

atch the referring knot vector. Referring to U , there are four cases

eeded to be considered:

 𝑎) 𝑥 2 = 𝑠 2 , 𝑥 5 = 𝑠 5 ; (𝑏) 𝑥 2 = 𝑠 2 , 𝑥 5 ≠ 𝑠 5 ; (𝑐) 𝑥 2 ≠ 𝑠 2 , 𝑥 5 = 𝑠 5 ;

 𝑑) 𝑥 2 ≠ 𝑠 2 , 𝑥 5 ≠ 𝑠 5 .

ase (b) and (c) can be integrated into case (d). And case (d) can be

ransformed into case (a) by inserting knots s 2 and s 5 . Thus we only need

o consider case (a) and (d). For case (a), it means the non-vanishing

H. Kang and X. Li Graphical Models 106 (2019) 101042

c

𝑁

𝑁

T

𝑃

𝑃

F

c

𝑁

𝑁

𝑁

T

𝑃

𝑃

w

𝛽

𝛽

c

p

(

t

(

t

𝑃

S

𝑠

x

𝑃

𝑃

𝑃

t

t

i

u

c

fi

t

(

n

n

c

c

o

t

t

c

t

d

u

t

n

T

a

3

s

w

a

d

c

a

d

w

f

a

ontrol points span four columns. By knot insertion, it has

[𝑥 0 , 𝑥 1 , 𝑠 2 , 𝑠 3 , 𝑠 4](𝑠) = 𝑁[𝑥 0 , 𝑥 1 , 𝑠 1 , 𝑠 2 , 𝑠 3](𝑠)
𝑠 1 − 𝑥 0
𝑠 3 − 𝑥 0

+ 𝑁[𝑥 1 , 𝑠 1 , 𝑠 2 , 𝑠 3 , 𝑠 4](𝑠)
𝑠 4 − 𝑠 1
𝑠 4 − 𝑥 1

, 𝑥 1 < 𝑠 1 ,

𝑁[𝑥 1 , 𝑠 2 , 𝑠 3 , 𝑠 4 , 𝑠 5](𝑠) = 𝑁[𝑥 1 , 𝑠 1 , 𝑠 2 , 𝑠 3 , 𝑠 4](𝑠)
𝑠 1 − 𝑥 1
𝑠 4 − 𝑥 1

+ 𝑁[𝑠 1 , 𝑠 2 , 𝑠 3 , 𝑠 4 , 𝑠 5](𝑠) , 𝑥 1 < 𝑠 1 ,

𝑁[𝑠 2 , 𝑠 3 , 𝑠 4 , 𝑠 5 , 𝑥 6](𝑠) = 𝑁[𝑠 2 , 𝑠 3 , 𝑠 4 , 𝑠 5 , 𝑠 6](𝑠)

+ 𝑁[𝑠 3 , 𝑠 4 , 𝑠 5 , 𝑠 6 , 𝑥 6](𝑠)
𝑥 6 − 𝑠 6
𝑥 6 − 𝑠 3

, 𝑥 6 > 𝑠 6 ,

[𝑠 3 , 𝑠 4 , 𝑠 5 , 𝑥 6 , 𝑥 7](𝑠) = 𝑁[𝑠 3 , 𝑠 4 , 𝑠 5 , 𝑠 6 , 𝑥 6](𝑠)
𝑠 6 − 𝑠 3
𝑥 6 − 𝑠 3

+ 𝑁[𝑠 4 , 𝑠 5 , 𝑠 6 , 𝑥 6 , 𝑥 7](𝑠)
𝑥 7 − 𝑠 6
𝑥 7 − 𝑠 4

, 𝑥 6 > 𝑠 6 .

hen for this case the control points are updated as follows

 𝑗1 ← 𝛼1 𝑃 𝑗1 + (1 − 𝛼1) 𝑃 𝑗2 , 𝛼1 =

𝑠 4 − 𝑠 1
𝑠 4 − 𝑥 1

,

 𝑗4 ← 𝛼4 𝑃 𝑗3 + (1 − 𝛼4) 𝑃 𝑗4 , 𝛼4 =

𝑥 6 − 𝑠 6
𝑥 6 − 𝑠 3

. (2)

or case (d), it means the non-vanishing control points only span two

olumns. So we insert the knot s 2 and s 5 and it has

[𝑥 0 , 𝑥 1 , 𝑥 2 , 𝑠 3 , 𝑠 4](𝑠) = 𝑁[𝑥 0 , 𝑥 1 , 𝑥 2 , 𝑠 2 , 𝑠 3](𝑠)
𝑠 2 − 𝑠 0
𝑠 3 − 𝑠 0

+ 𝑁[𝑥 1 , 𝑥 2 , 𝑠 2 , 𝑠 3 , 𝑠 4](𝑠)
𝑠 4 − 𝑠 2
𝑠 4 − 𝑥 1

,

[𝑥 1 , 𝑥 2 , 𝑠 3 , 𝑠 4 , 𝑥 5](𝑠) = 𝑁[𝑥 1 , 𝑥 2 , 𝑠 2 , 𝑠 3 , 𝑠 4](𝑠)
𝑠 2 − 𝑥 1
𝑠 4 − 𝑥 1

+ 𝑁[𝑥 2 , 𝑠 2 , 𝑠 3 , 𝑠 4 , 𝑠 5](𝑠)
𝑥 5 − 𝑠 2
𝑥 5 − 𝑥 2

+ 𝑁[𝑠 2 , 𝑠 3 , 𝑠 4 , 𝑠 5 , 𝑥 5](𝑠)
𝑥 5 − 𝑠 5
𝑥 5 − 𝑥 2

,

[𝑥 2 , 𝑠 3 , 𝑠 4 , 𝑥 5 , 𝑥 6](𝑠) = 𝑁[𝑥 2 , 𝑠 2 , 𝑠 3 , 𝑠 4 , 𝑠 5](𝑠)
𝑠 2 − 𝑥 2
𝑥 5 − 𝑥 2

+ 𝑁[𝑠 2 , 𝑠 3 , 𝑠 4 , 𝑠 5 , 𝑥 5](𝑠)
𝑠 5 − 𝑠 2
𝑥 5 − 𝑥 2

+ 𝑁[𝑠 2 , 𝑠 3 , 𝑠 4 , 𝑠 5 , 𝑥 5](𝑠)
𝑥 6 − 𝑠 5
𝑥 6 − 𝑠 3

,

𝑁[𝑠 3 , 𝑠 4 , 𝑥 5 , 𝑥 6 , 𝑠 7](𝑠) = 𝑁[𝑠 3 , 𝑠 4 , 𝑠 5 , 𝑥 5 , 𝑥 6](𝑠)
𝑠 5 − 𝑠 3
𝑥 6 − 𝑠 3

+ 𝑁[𝑠 4 , 𝑠 5 , 𝑥 5 , 𝑠 7](𝑠)
𝑠 7 − 𝑠 5
𝑠 7 − 𝑠 4

.

hen for this case the control points are updated as follows

 𝑗1 ← 𝛽1 𝑃 𝑗1 + (1 − 𝛽1) 𝑃 𝑗2 , 𝑃 𝑗2 ← 𝛽2 𝑃 𝑗2 + (1 − 𝛽2) 𝑃 𝑗3 ,
 𝑗3 ← 𝛽3 𝑃 𝑗2 + (1 − 𝛽3) 𝑃 𝑗3 , 𝑃 𝑗4 ← 𝛽4 𝑃 𝑗3 + (1 − 𝛽4) 𝑃 𝑗4 .

(3)

ith

1 =

⎧ ⎪ ⎨ ⎪ ⎩

𝑠 4 − 𝑠 2
𝑠 4 − 𝑥 1

, 𝑥 2 ≠ 𝑠 2

1 , 𝑥 2 = 𝑠 2
, 𝛽2 =

𝑠 5 − 𝑠 2
𝑠 5 − 𝑥 2

, 𝛽3 =

𝑥 5 − 𝑠 5
𝑥 5 − 𝑥 2

,

4 =

⎧ ⎪ ⎨ ⎪ ⎩

𝑥 6 − 𝑠 5
𝑥 6 − 𝑠 3

, 𝑥 5 ≠ 𝑠 5

0 , 𝑥 5 = 𝑠 5

(4)

According to the above analysis, we present the way of preprocessing

ontrol points. We do the preprocessing column by column. For a control

oint P j 1 on the first column assumed with the 𝑠 − direction knot vector

 x 0 , x 1 , x 2 , s 3 , s 4), we have to consider three cases in order to match

he referring knot vector (s 0 , s 1 , s 2 , s 3 , s 4): (1) 𝑥 2 = 𝑠 2 ; (2) 𝑥 2 = 𝑠 1 ; and

3) 𝑥 2 = 𝑠 0 . According to (2) and (3) , the updates associated with these

hree cases can be integrated into the following form:
 𝑗1 ← 𝜆1 𝑃 𝑗1 + 𝜎1 𝑃 𝑗2 , 𝜆1 =

𝑠 4 − 𝑠 2
𝑠 4 − 𝑥 1

𝑠 4 − 𝑠 1
𝑠 4 − 𝑥 2

, 𝜎1 =

𝑠 4 − 𝑠 1
𝑠 4 − 𝑥 2

𝑠 2 − 𝑥 1
𝑠 4 − 𝑥 1

+

𝑠 5 − 𝑠 2
𝑠 5 − 𝑥 2

𝑠 1 − 𝑥 2
𝑠 4 − 𝑥 2

. (5)

imilarly, for the control points P j 2 , P j 3 and P j 4 associated with the

 − direction knot vector (x 1 , x 2 , s 3 , s 4 , s 5), (x 1 , x 2 , s 3 , s 4 , s 5) and (x 1 ,

 2 , s 3 , s 4 , s 5) respectively, they are updated as follows,

 𝑗2 ← 𝜆2 𝑃 𝑗2 + 𝜎2 𝑃 𝑗3 , 𝜆2 =

𝑠 5 − 𝑠 2
𝑠 5 − 𝑥 2

, 𝜎2 = 1 − 𝜆2 , (6)

 𝑗3 ← 𝜆3 𝑃 𝑗2 + 𝜎3 𝑃 𝑗3 , 𝜆3 =

𝑥 5 − 𝑠 5
𝑥 5 − 𝑥 2

, 𝜎3 = 1 − 𝜆3 , (7)

 𝑗4 ← 𝜆4 𝑃 𝑗3 + 𝜎4 𝑃 𝑗4 , 𝜆4 =

𝑠 5 − 𝑥 2
𝑥 5 − 𝑥 2

𝑥 5 − 𝑠 6
𝑥 5 − 𝑠 3

+

𝑥 6 − 𝑠 5
𝑥 6 − 𝑠 3

𝑠 6 − 𝑠 3
𝑥 5 − 𝑠 3

,

𝜎4 =

𝑠 5 − 𝑠 3
𝑥 6 − 𝑠 3

𝑠 6 − 𝑠 3
𝑥 5 − 𝑠 3

. (8)

Notice that we do not need to update all the non-vanishing con-

rol points. The control points on a column are updated only when

he control points on this column do not have the same knot vector

n 𝑠 − direction. Actually there are at most 6 control points needed to be

pdated. This can be explained as follows. When the non-vanishing an-

hors span four columns or four rows exactly, the control points on the

rst and fourth column (row) may be updated according to (2) . Notice

hat we can choose the knot vector of one control point on a column

row) as a referring knot vector, thus there are at most 6 control points

eeded to be updated for this case. When the non-vanishing anchors

either span four columns nor four rows, we discuss this the update of

ontrol points according to the case indicator. If 𝐼 = 0 , then either the

ontrol points on the first and second column are needed to be updated

r the control points on the third column and fourth column are needed

o be updated. Otherwise there exists an horizontal T-vertex whose ex-

ension intersects with a vertical extension crossing this element, which

onflicts the definition of AS T-meshes. Similarly, if 𝐼 = 1 , then either

he control points on the first row and second row are needed to be up-

ated or the control points on the third and fourth row are needed to be

pdated. When 𝐼 = 2 , if the control points on four columns are needed

o be updated, then there exists two rows on which the control points do

ot need an update. This is guaranteed by the definition of AS T-meshes.

heorem 3.2. For bicubic AS T-splines, it needs to update 6 control points

t most for an element in the preprocessing.

.4. de Boor-like evaluation algorithm

Now we are ready to present the algorithm for evaluating AS T-

plines. There are three steps:

1. Find non-vanishing basis functions and the case indicator I by the

algorithm presented in Section 3.2 .

2. Preprocess the non-vanishing control points on each column or row

by one of (5), (6), (7) and (8) as presented in 3.3.

3. Apply de Boor algorithm firstly in one direction then in another di-

rection according to the case indicator I .

This evaluation algorithm is very similar to de Boor algorithm but

ith a preprocessing of the control points. We call such an evaluation

lgorithm as de Boor-like algorithm. In the following, two examples are

emonstrated to explain the work-flow of this algorithm.

For the element shown in Fig. 5 (a), the control points span three

olumns, thus we have to update the control points on the first column

nd second column. By the formulas (5) and (6) , P 11 and P 21 are up-

ated with the weights 𝜆1 =

𝑠 5 − 𝑠 3
𝑠 5 − 𝑠 1

, 𝜎1 =

𝑠 3 − 𝑠 1
𝑠 5 − 𝑠 1

, P 12 and P 22 are updated

ith the weights 𝜆2 =

𝑠 6 − 𝑠 3
𝑠 6 − 𝑠 2

, 𝜎2 = 1 − 𝜆2 . For this AS T-mesh, there are

our control points updated. Fig. 5 (c) shows the process of de Boor-like

lgorithm.

H. Kang and X. Li Graphical Models 106 (2019) 101042

Fig. 5. de Boor-like algorithm.

Fig. 6. de Boor-like algorithm for control points span

four rows.

c

t

a

𝜆

u

4

g

[

W
For the element shown in Fig. 6 (a), the control points span four

olumns, but the control points on the fourth column do not have

he same knot vector, thus the control points on the fourth column

re updated. By the formulas (8) , P 44 is updated with the weights

4 =

𝑡 6 − 𝑡 3
𝑡 8 − 𝑡 3

, 𝜎4 =

𝑡 8 − 𝑡 6
𝑡 8 − 𝑡 3

. For this AS T-mesh, there is only one control point

pdated. Fig. 5 (c) shows the process of de Boor-like algorithm.
. Numerical experiments

In this section, we are going to compare de Boor-like evaluation al-

orithm with the Bézier extraction evaluation and the one proposed in

13] on several AS T-meshes produced in solving PDEs by AS T-splines.

e compare the number of the control points needed to be updated of

H. Kang and X. Li Graphical Models 106 (2019) 101042

Fig. 7. The exact solutions shown in Example 4.1 and 4.2 .

d

t

g

s

t

r

t

c

e

4

P

i

i

−

w

c

s

t

𝐺

w

i

d

𝑉

T

∫
T ∑

w

u

l

e

4

E

t

b

T

u

a

E

𝑢

a

a

E

a

a

3

T

w

e

b

m

t

B

b

E

o

B

l

T

n

Table 1

Statistics of comparison with Bézier extraction and DS T-splines for Example 4.1 .

Our algorithm DS T-splines Our algorithm Bézier extraction

Level N e N ve N c N c
1 240 6 36 3840

2 739 90 540 11824

3 1405 302 1812 22480
e Boor-like algorithm and Bézier extraction. And we give a statistic of

hose elements which do not satisfy the conditions proposed in [13] in a

iven AS T-mesh. In [13] , the proposed de Boor-suitable T-splines (DS T-

plines for short) have to satisfy two conditions: the non-vanishing con-

rol points on each unit element have to span exactly four columns (or

ows) and the control points on the same column (or row) should have

he same horizontal (or vertical) local knot vector. For convenience, we

all those elements which do not satisfy these two conditions as violated

lements.

.1. Solving PDEs by AS T-splines

The AS T-meshes in the experiments are produced from solving the

oisson equation by AS T-splines. We briefly review the framework of

sogeometric analysis based on AS T-splines, more details can be found

n [15] .

The Poisson equation is defined as

Δ𝑢 = 𝑓 in Ω,

𝑢 = 𝑔 on Γ, (9)

here Ω ⊆ ℝ

2 is a connected, bounded domain with a Lipschitz-

ontinuous boundary Γ, f and h are square-integrable on Ω and ΓN , re-

pectively.

The physical domain Ω is parameterized by a global geometry func-

ion 𝐺 ∶ (𝑠, 𝑡) ∈ Ω0 = [0 , 1] 2 → (𝑥, 𝑦) ∈ Ω, defined as

(𝑠, 𝑡) =

𝑚 ∑
𝑖 =1

𝑃 𝑖
𝑤 𝑖 𝑇 𝑖 (𝑠, 𝑡) ∑𝑚
𝑖 =1 𝑤 𝑖 𝑇 𝑖 (𝑠, 𝑡)

, (𝑠, 𝑡) ∈ Ω0 ,

here 𝑃 𝑖 ∈ ℝ

2 , T i (s, t) is an AS T-splines basis function, 𝑤 𝑖 ∈ ℝ , 𝑤 𝑖 > 0
s a weight, m is the number of basis functions and Ω0 is the parameter

omain. A finite dimensional subspace V

h is defined as

ℎ = 𝑠𝑝𝑎𝑛 { ̂𝑇 𝑖 (𝑥, 𝑦) | 𝑇̂ 𝑖 (𝑥, 𝑦) = 𝑇 𝑖 ◦𝐺

−1 , 𝑇̂ 𝑖 (𝑥, 𝑦) |Γ = 0 , 𝑖 = 1 , ⋯ , 𝑛. } .

he weak form solution of problem (9) is to seek u h such that

Ω
∇ 𝑢 ℎ ⋅ ∇ 𝑣 ℎ 𝑑Ω = ∫Ω 𝑓𝑣 ℎ 𝑑Ω, ∀𝑣 ℎ ∈ 𝑉 ℎ .

he approximate solution u h is written as 𝑢 ℎ (𝑥, 𝑦) =

∑𝑛
𝑖 =1 𝑐 𝑖 𝐺̂ 𝑖 (𝑥, 𝑦) =

𝑛
𝑖 =1 𝑐 𝑖 𝑇 𝑖 ◦𝐺

−1 , with unknown coefficients 𝑐 𝑖 , 𝑖 = 1 , 2 , ⋯ , 𝑛 . Thus the

eak form solution is converted into solving a linear system with the

nknown coefficients.

We use the local refinement of AS T-splines introduced in [5] . The

ocal refinement of the numerical solution is refined based on posterior

rror estimation.
.2. Comparison

We choose two examples to demonstrate the comparison:

xample 4.1 and 4.2 . In the first example, the exact solution has

wo peaks at (13 20 ,
13
20) and (7 20 ,

7
20) . Thus the underling T-mesh should

e refined heavily around these two peaks to capture the feature.

he second exact solution has a sharp gradient around (0,0) and the

nderling T-mesh should be refined heavily around the origin. Fig. 7 (a)

nd (b) shows the plots of these two exact solutions.

xample 4.1. The exact solution in (9) is chosen as

 (𝑥, 𝑦) =

2
3 𝑒 (20 𝑥 −13) 2 +(20 𝑦 −13) 2

+

2
3 𝑒 (20 𝑥 −7) 2 +(20 𝑦 −7) 2

,

nd the right hand can be derived from (9) . We solve this problem on

n unit square Ω = [0 , 1] × [0 , 1] .

xample 4.2. The exact solution in (9) is chosen as 𝑢 (𝑥, 𝑦) =

0 . 01
𝑥 2 + 𝑦 2 + . 01 ,

nd the right hand can be derived from (9) . We solve this problem on

n unit square Ω = [0 , 1] × [0 , 1] .

We start from a 9 ×9 tensor-product mesh for Example 4.1 and a

 ×3 tensor-product mesh for Example 4.2 . The corresponding refined

-meshes on the first three levels are shown in Figs. 8 and 9 respectively,

here the elements shaded by yellow color are the violated elements.

Denote by N be and N ve as the number of Bézier elements and violated

lements in an AS T-mesh. The number of the control points needed to

e updated is denoted by N c . In our algorithm, we need to update at

ost 6 control points for each violated element, thus we use 𝑁 𝑐 = 6 𝑁 𝑣𝑒

o give a upper bound of the updated control points for comparison. For

ézier extraction, it has exactly 𝑁 𝑐 = 16 𝑁 𝑒 . We summarize the num-

ers of Bézier elements, violated elements, updated control points of

xample 4.1 and 4.2 in Tables 1 and 2 respectively.

From the statistics in Tables 1 and 2 , it can be seen the number

f updated control points in our algorithm is far fewer than that in

ézier extraction and the violated elements increase as the refinement

evel increases. Furthermore, we see the AS T-splines are not always DS

-splines in practice and our algorithm provides an efficient and eco-

omic way of dealing with violated elements in a sense.

H. Kang and X. Li Graphical Models 106 (2019) 101042

Fig. 8. Three refined AS T-meshes for Example 4.1 .

Fig. 9. Three refined AS T-meshes for Example 4.2 .

Table 2

Statistics of comparison with Bézier extraction and DS T-splines for Example 4.2 .

Our algorithm DS T-splines Our algorithm Bézier extraction

Level N e N ve N c N c
1 54 12 72 864

2 121 27 162 1936

3 344 96 576 5504

4 806 163 978 12896

5

c

T

t

t

r

t

v

i

c

n

d

a

a

b

r

i

b

i

A

p

a

n

d

q

D

R

. Conclusion

It is not a trivial work to extend de Boor algorithm on T-splines be-

ause of the existing of T-junctions in the underlying T-mesh. For AS

-splines, the vertical T-junctions and horizontal T-junctions can not be

oo close, simplifying the complexity of the T-mesh. Thus it is possible

o explore an efficient evaluation algorithm similar to de Boor algo-

ithm for AS T-splines. In this paper, we propose a de Boor-like evalua-

ion algorithm for AS T-splines. There are mainly three steps, the non-

anishing control points are found and the case indicator is determined

n the first step, then the control points are updated one column by one

olumn or one row by one row depending on the case indicator, and fi-

ally the de Boor algorithm is applied in one direction then in the other

irection. The control points are updated as a weighted average of itself

nd its neighbors. With the help of Theorem 3.1 , the weights for update

re easily computed and there are at most 6 control points needed to

e updated. In summary, the proposed algorithm is an evaluation algo-
ithm for bicubic AS T-splines based on calculating control points and

s an improvement over Bézier extraction.

The proposed de Boor-like algorithm in this paper mainly focus on

icubic AS T-splines since bicubic AS T-splines are most commonly used

n applications. The de Boor-like algorithm can of course be extended to

S T-splines of arbitrary degree, which means the non-vanishing control

oints can be updated by a similar way as the bicubic AS T-splines before

pplying de Boor algorithm. But the complexity of the preprocessing has

ot been explored in details. Is there a more efficient way of applying

e Boor algorithm for AS T-splines of arbitrary degree? We leave this

uestion as a future work.

eclaration of Competing Interest

None.

eferences

[1] T.W. Sederberg , J. Zheng , A. Bakenov , A. Nasri , T-splines and T-NURCCSs, ACM

Trans. Graphics 22 (3) (2003) 477–484 .

[2] T.W. Sederberg , D.L. Cardon , G.T. Finnigan , N.S. North , J. Zheng , T. Lyche , T-spline

simplification and local refinement, ACM Trans. Graphics 23 (3) (2004) 276–283 .

[3] H. Ipson , T-spline merging, Brigham Young University, April 2005 Masters thesis .

[4] T.W. Sederberg , G.T. Finnigan , X. Li , H. Lin , H. Ipson , Watertight trimmed NURBS,

ACM Trans. Graphics 27 (2008) . Article no. 79

[5] M.A. Scott , X. Li , T.W. Sederberg , T.J.R. Hughes , Local refinement of analysis-suit-

able T-splines, Comput. Methods Appl. Mech.Eng. 213–216 (2012) 206–222 .

[6] T.J.R. Hughes , J.A. Cottrell , Y. Bazilevs , Isogeometric analysis: CAD, finite elements,

NURBS, exact geometry, and mesh refinement, Comput. Methods Appl. Mech.Eng.

194 (2005) 4135–4195 .

http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0001
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0001
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0001
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0001
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0001
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0002
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0002
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0002
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0002
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0002
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0002
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0002
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0003
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0003
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0004
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0004
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0004
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0004
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0004
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0004
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0004
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0005
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0005
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0005
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0005
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0005
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0006
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0006
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0006
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0006

H. Kang and X. Li Graphical Models 106 (2019) 101042

[

[

[

[

[

[

[

[

[

[

[7] J.A. Cottrell , T.J.R. Hughes , Y. Bazilevs , Isogeometric Analysis: Toward Integration

of CAD and FEA, Wiley, Chichester„ 2009 .

[8] A. Buffa , D. Cho , G. Sangalli , Linear independence of the T-spline blending functions

associated with some particular T-meshes, Comput. Methods Appl. Mech.Eng. 199

(23–24) (2010) 1437–1445 .

[9] X. Li , J. Zheng , T.W. Sederberg , T.J.R. Hughes , M.A. Scott , On the linear indepen-

dence of T-splines blending functions, Comput. Aided Geometric Des. 29 (2012)

63–76 .

10] Jingjing , Z. Li , On the linear independence and partition of unity of arbitrary degree

analysis-suitable T-splines, Commun. Math. Stat. 3 (2015) 353–364 .

11] X. Li , M.A. Scott , Analysis-suitable T-splines: characterization, refinablility and ap-

proximation, Math. Models Methods Appl.Sci. 24 (2014) .

12] G.E. Farin , Curves and Surfaces for CAGD, A Practical Guide, Fifth Edition, Morgan

Kaufmann Publishers, San Francisco, 1999 .

13] R.G. Yang Zhang , Visit Pataranutaporn , de Boor-suitable (DS) T-splines, Graph. Mod-

els (2017) .
14] L.B. Veiga , A. Buffa , G. Sangalli , R. Vazquez , Analysis-suitable T-splines of arbi-

trary degree: definition and properties, Math. Models Methods Appl.Sci. 23 (2013)

1979–2003 .

15] Y. Bazilevs , V.M. Calo , J.A. Cottrell , J.A. Evans , T.J.R. Hughes , S. Lipton ,

M.A.S. andT. W. Sederberg , Isogeometric analysis using T-splines, Comput. Meth-

ods Appl. Mech.Eng. 199 (2010) 229–263 .

16] L.B. Veiga , A. Buffa , D.C.G. Sangalli , Analysis-suitable T-splines are dual-compatible,

Comput. Methods Appl. Mech. Eng 249–252 (2012) 42–51 .

17] X. Li , Some properties for analysis-suitable T-splines, J. Comput. Math. 33 (2015)

428–442 .

18] M.J. Borden , M.A. Scott , J.A. Evans , T.J. Hughes , Isogeometric finite element data

structures based on Bézier extraction of NURBS, Int. J. Numer. MethodsEng. 87

(2011) 15–47 .

19] R. Borst , L. Chen , The role of Bézier extraction in adaptive isogeometric analysis: lo-

cal refinement and hierarchical refinement, Int. J. Numer. MethodsEng. 113 (2017)

999–1019 .

http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0007
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0007
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0007
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0007
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0008
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0008
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0008
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0008
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0009
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0009
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0009
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0009
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0009
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0009
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0010
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0010
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0010
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0011
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0011
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0011
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0012
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0012
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0013
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0013
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0013
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0014
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0014
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0014
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0014
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0014
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0015
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0015
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0015
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0015
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0015
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0015
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0015
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0015
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0016
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0016
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0016
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0016
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0017
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0017
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0018
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0018
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0018
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0018
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0018
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0019
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0019
http://refhub.elsevier.com/S1524-0703(19)30033-5/sbref0019

	de Boor-like evaluation algorithm for Analysis-suitable T-splines
	1 Introduction
	2 Preliminaries
	2.1 Index T-mesh
	2.2 Analysis-suitable T-splines
	2.3 de Boor algorithm

	3 de Boor-like evaluation algorithm
	3.1 An observation
	3.2 Finding non-vanishing basis functions
	3.3 Preprocessing control points
	3.4 de Boor-like evaluation algorithm

	4 Numerical experiments
	4.1 Solving PDEs by AS T-splines
	4.2 Comparison

	5 Conclusion
	Declaration of Competing Interest
	References

