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Analysis-suitable T-splines form a practically useful subset of T-splines. They maintain the design flexibility of
T-splines with an efficient and highly localized refinement capability, while preserving the important analysis-
suitable mathematical properties of the NURBS basis. The present paper proposes a new evaluation algorithm for
analysis-suitable T-splines. The algorithm is based on the control polygon directly and it reduces both time and
storage cost comparing with Bézier extraction.

1. Introduction

T-splines [1,2] have been used to overcome many limitations inher-
ent in the industry standard NURBS representation, such as watertight-
ness [1,3], trimmed NURBS conversion [4] and local refinement [2,5].
These capabilities make T-splines attractive both for CAD and for appli-
cations in iso-geometric analysis (for short, IGA), which uses the smooth
spline basis that defines the geometry as the basis for analysis. IGA is in-
troduced in [6] and described in detail in [7]. However, all T-splines are
not suitable as a basis for IGA since they are not always linear indepen-
dent [8]. Thus an important development in the evolution of IGA was
the advent of analysis-suitable T-splines(for short, AS T-splines), a mild
topologically restricted subset of T-splines. AS T-splines are optimized
to meet the needs both for design and analysis [5,9]. Such T-splines
inherit all the good properties from T-splines, such as watertightness,
NURBS compatible, convex hull, and affine invariant. Unlike the gen-
eral T-splines, such T-splines are guaranteed to be locally linearly inde-
pendent [9], the polynomial blending functions for such T-splines sum
identically to one for an admissible T-mesh [10] and the T-spline space
can be characterized in terms of piecewise polynomials [11]. Further-
more, algorithms have been devised whereby local refinement of such
T-splines is well contained [5].

Among all the good properties of T-splines, there is one key prop-
erty which is not well developed, i.e., the evaluation algorithm directly
based on the T-spline control grid, owing to the topological complexity
of the T-grid. The current evaluation of T-spline is based on Bézier ex-
traction, which first represents the T-spline with a set of Bézier patches
and use de Casteljau algorithm [12]. Recently, Yang Zhang [13] pro-
posed a subset of AS T-splines, called de Boor-suitable T-splines, which
can be applied de Boor algorithm directly on T-spline control grid. Their
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proposed de Boor-suitable T-spline requires the control points on each
unit element of the underlying AS T-mesh span exactly four columns
(or rows) and the control points on the same column (or row) should
have the same horizontal (or vertical) local knot vector. In this pa-
per, based on an important observation, we develop a de Boor-like
evaluation algorithm for analysis-suitable T-splines. In order to eval-
uate a given element, we first find the control points associated with
the nonvanishing T-spline blending functions on the element, then we
modify the control points such that they can be applied de Boor algo-
rithm. When the control points span four columns or rows, the con-
trol points are only scaled and we do not need auxiliary points. Other-
wise, several control points are modified such that the control points
span four columns or rows by knot insertion. Comparing to [13], the
conditions imposed on the control points are relaxed and the number
of modified control points is far fewer than that of traditional Bézier
extraction.

2. Preliminaries

In the section, we will introduce some basic notations and prelimi-
nary results for bicubic analysis suitable T-splines [11,14,15] and give
a brief introduction of de Boor algorithm of bicubic B-splines.

2.1. Index T-mesh

Similar to the approach of Bazilevs et al. [15], we define T-splines
based on the T-meshes in the index domain which are referred as index
T-meshes. A T-mesh 7 for a bicubic T-spline is a connection of all the
elements of a rectangular partition of the index domain [0, ¢ + 3] X [0, r +
3], where all rectangle corners (or vertices) have integer coordinates.
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Fig. 1. (a) Anchors for a bicubic T-spline, (b) the local index vector for one bicubic T-spline blending function and (c) extensions of T-junctions.

Three types of elements are

e Vertex: Vertex of a rectangle, denoted as (¢;, n;) or &; X #;.

e Edge: A line segment connecting two vertices in the T-mesh and
no other vertices lying in the interior, denoted as [5}, & x{n;} or
&3 x [nj, m] for a horizonal or vertical edge.

e Face: A rectangle where no other edges and vertices in the interior,
denoted as [&;, &1 x [ny, nj] or (&, &) X (n;, mp)- The second notation
is for an open face.

The valence of a vertex is the number of edges connecting to this
vertex. For the interior vertices, we only allow valence three (called T-
junctions) or four vertices (called cross vertices). We adopt the notation I,
-, 1, and T to indicate the four possible orientations for the T-junctions.
The T-junctions of type I and  are called horizontal T-junctions, and T-
junctions of type L and T are called vertical T-junctions.

Denote the active region as a rectangle region [2, ¢ + 1] X [2,r + 1]. An
anchor is a point in the index T-mesh which corresponds one blending
function. For bicubic T-splines, an anchor is exactly a vertex in the active
region of the T-mesh. The active region carries the anchors that will be
associated the blending functions while the other indices will be needed
for the definition of the blending functions when the anchors close to
the boundary. Fig. 1(a) shows an index T-mesh of degree (3,3), where
the small solid rectangles are used to label anchors and the grey domain
is the active region in a T-mesh.

For the i-th anchor A;, we define a local index vector & x 7; which is
used to define the blending function T;(s, t). The values of & = [&9, - &4
and7; = [;1?, - nl‘.‘] are determined as follows. Starting from A;, we shoot
aray in the s and t direction traversing the T-mesh and collect a total of
5 and 5 knot indices to form 3, and 77;, as shown in Fig. 1(b). Then the
T-spline blending function T;(s, t) is defined as

Ty(s,1) = N[&), &, &, &), &) - NInP.n) n?om o} 10),

where N[£0, &, &2, 8, £4(s) and N[n°,n!,n?. 1}, n}1(t) are the cubic B-
spline functions in s—direction and r—direction respectively.

2.2. Analysis-suitable T-splines

The extension of a T-junction is defined as a closed line segment as-
sociated with the T-junction. For a i-th T-junction (¢;, #;) of type + or H,
the extension is the line segment [€i &, 1% {m; b When the T-junction is
of type I, &, and & are determined such that the edges [£;,&) X {n;}
have 1 intersection with the T-mesh and the edges (&;, & 1% {n;} have 2
intersections with the T-mesh. Here [¢; o &) xAm;} is called the edge ex-
tension while (¢, ¢; o Ang} is called the face extension. For a T-junction
of type -, we can similarly define the extension except the number of
intersections are exchanged. Also, we can define the extensions for the
other kinds of T-junctions L, T. The extension of a T-junction of type
I or - is called the horizontal extension (HE for short) and that of a T-
junction of type L or T is called the vertical extension (VE for short).

In Fig. 1(c), the yellow line segments are edge extensions and red line
segments are face extensions.

Definition 2.1. For a bicubic T-spline, a T-mesh is called analysis-
suitable (for short, AS T- mesh) if the extensions for all the T-junctions ~
and -, don’t intersect the extensions for all the T-junctions L and T. A T-
spline defined on an analysis-suitable T-mesh is called analysis-suitable
T-spline, for short AS T-spline [5,11].

AS T-splines are a subset of T-splines with the constraint that hori-
zontal extensions do not intersect with vertical extensions. Such a con-
straint makes the T-vertices in an AS T-mesh be separated up to some
extent. Thus AS T-splines possess some nice properties that T-splines do
not have. The blending functions of AS T-splines are linearly indepen-
dent for all the knots [10,11,14,16]. The basis constitutes a partition
of unity [11]. AS T-splines obey the convex hull property and can be
locally refined [5]. There are exactly 16 basis functions on a Bézier el-
ement [17]. In all, AS T-mesh significantly simplifies the complexity of
arbitrary T-mesh and makes it possible to apply de Boor algorithm.

2.3. de Boor algorithm

A B-spline curve c(s) of degree p is defined as

m
c(s)= ) PN(s),

i=0
where N i” (s) are the B-splines basis function defined over a knot vector
U = {50,51,52 = »Spype1 } and P, € R are control points. Suppose s €
[s;»8:41), i=p,p+1,-,m, then the curve point c(s) = P[” is evaluated
by de Boor algorithm as follows.

Pis)=P;,  j=i—pi-p+l i,
S—=8;
Pl(s)=(1—a)P"l(s)+ o' P \(s), o = ———,
J 7= it J s, _s.
Jj+p+l-r J
r=12,,p, j=i—p4+ri—p+r+1,-,i

()]

A tensor product B-spline surface of degree (p, q) is defined as

S =2 3 PN NI,

i=0 j=0

where P; € RY are control points, N/(s) and N/(r) are B-splines basis
functions defined over knots vectors U = {sg, 51,3, =, Spyppq} @nd V =
{tg, 11,12, =+ 14 q41 } TESDECtiVEly. Suppose (s, 1) € [sy, Sgqq] X [17, 11411, the
surface point S(s, t) is evaluated by applying de Boor algorithm in one
direction firstly, then in the other direction. Fig. 2 shows the evaluation
framework of bicubic B-spline surfaces by de Boor algorithm, the surface
point S(s,1) = P}

The de Boor algorithm provides a fast and numerically stable way for
evaluating B-splines. Instead of evaluating each B-spline basis functions,
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the curve/surface point is evaluated by calculating a linear combination
of control points recursively. We are going to extend de Boor algorithm
in AS T-splines.

3. de Boor-like evaluation algorithm

For T-splines, the non-vanishing basis functions on an element do
not have a global tensor product structure owing to the T-junctions.
Therefore de Boor algorithm can not be applied directly. In the current
existing algorithm, a T-spline is evaluated by Bézier extraction [18,19].
That is, a T-spline is firstly represented as element-wise Bernstein func-
tions and then is evaluated by de Casteljau’s algorithm. However such
a work-around is often time- and memory-consuming. In this paper, we
propose an algorithm similar to de Boor’s for evaluating AS T-splines by
calculating control points instead of calculating the Bézier coordinates,
we call such an algorithm as de Boor-like evaluation algorithm. In this
paper, we focus on the de Boor-like evaluation of bicubic AS T-splines
as bicubic AS T-splines are the most common ones used in application.

3.1. An observation

We firstly introduce several concepts which are necessary for stating
the observation.

Definition 3.1. A basis function is called a non-vanishing basis function
on an element if it does not vanish on this element. The corresponding
control point and anchor associated with this non-vanishing basis func-
tion is called a non-vanishing control point and a non-vanishing index,
respectively.

For bicubic AS T-splines, there is a one-to-one correspondence among
control points, basis functions and anchors. Thus we do not distinguish
these three concepts in the following context.

Definition 3.2. An extended T-mesh 7, is formed by augmenting a T-
mesh 7" with face extensions of all T-junctions in 7. For a vertex v € T,,;,
but v & T, it is called a HE-vertex if it is the intersection of a horizontal
face extension and a vertical edge in 7 it is called a VE-vertex if it is

the intersection of a vertical face extension and a horizontal edge in 7.

For tensor-product B-spline surfaces, there are 16 non-vanishing ba-
sis functions on an element. And the corresponding non-vanishing in-
dices span exactly four rows and four columns. For bicubic AS T-splines,
there are exactly 16 non-vanishing basis functions on a Bézier element
[9]. But the non-vanishing indices do not span four rows and four
columns. Fortunately, we observed that the non-vanishing indices must
span two rows or columns. This observation inspires de Boor-like algo-
rithm. We will conclude this in Theorem 3.1.

Theorem 3.1. Given an AS T-spline, suppose T is the underlying index T-
mesh. For an element F = [s;, 511X [1;,1,,1] in the extended T-mesh T,,,,
among the 16 non-vanishing anchors on F, either

' ) )
De Boor Algorithm 3,0
Pk—3.1 B{—Z] Pk—lJ Pk,[ — I)k,l
\ J s-direction
{ A
- 3.0
L B{—3J—1 Pk—2.l—1 B(—l.l—l Pk,l—l ) De Boor Algorithm B
- ~ s-direction
Pk—3.[—2 Pk—21—2 Pk—l,/—z Pk,/—z DeBoos Algonitiim 30
. J - - kl-1
p N s-direction
P De Boor Algorithm 3,0
w33 Bos By Py - B
\ J s-direction —
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Fig. 2. de Boor algorithm of bicubic tensor
product B-splines surfaces.
De Boor Algorithm ;5
—————————— 3
. . kil
t-direction

(1) four anchors are covered by the line s = s, and four anchors are
covered by s = s,y ; or

(2) four anchors are covered by the line t = t; and four anchors are coy-
eredby t =1,,,.

Proof. Suppose the four vertices of F are v;, v,, V3, v, arranged in anti-
clock order and v, is the left bottom vertex, see Fig. 3 for a reference.
Denote K| = {v;,v,,03,0,} and v; may not necessarily be in 7, for ex-
ample v; in Fig. 3(a).

We introduce a case indicator I for the set K;. If there exists one HE-
vertex in K;, then I = 0; if there exists one VE-vertex in K;, then I =
1; otherwise I = 2. Such a case indicator is well-defined since the HE-
vertex and the VE-vertex should not occur simultaneously in a element
according to the definition of AS T-meshes.

If v;, € K, is a HE-vertex, then among the vertical neighbors of v; ,
the one in 7 but not in K, replaces v; . If v;) € K| is a VE-vertex, then
among the horizontal neighbors of v; , the one in 7 but not in K; re-
places v; . For example in Fig. 3(a), v3 is replaced by its right neighbor
in Fig. 3(b). In this way, the four vertices in K; are all in 7. For conve-
nience, we still use vy, v,, v3, v4 to denote the vertices in K;.

If I =0, the vertical 1-neighboring vertices in 7 of vy, v, V3, v4 ex-
ist, therefore denote these 1-neighboring vertices as K, = {vs, v, v7, Vg }.
If I =1, the horizontal 1-neighboring vertices in 7 of vy, vy, V3, V4 €x-
ist, denote these 1-neighboring vertices as K, = {vs, vg, v7,vg}. If I =2,
both the horizontal 1-neighboring vertices and vertical 1-neighboring
vertices in 7 of vy, v,, V3, v,4 exist, here we denote the horizontal neigh-
boring vertices as K, = {vs, v4, U7, U3 }. For example in Fig. 3(b), v5 and
ve are the right neighbors of v; and v, respectively and v, and vg are
the right neighbors of v; and v, respectively.

It is easily proved that the corresponding AS T-spline blending func-
tion associated with vy, vy, -+, V5, vg do not vanish on F. And

e when I =0, v5, vy, Vo, Vg are covered by the straight line s = 5, and
Vg, V4, V3, V; are covered by the straight line s = s, ;.

e when I =1, vs, v, V4, Vg are covered by the straight liner = ¢, ; and
Vg, Vo, V3, V7 are covered by the straight line r = 7,.

e when I =2, vs5, vy, V5, Vg are covered by the straight line s = 5, and
Vg, V4, V3, V; are covered by the straight line s = s, ;. Meanwhile,
Vs, V1, V4, Vg are covered by the straight line r = 7,,; and vg, v,, v3,
v, are covered by the straight liner =¢,. [

3.2. Finding non-vanishing basis functions

Based on Theorem 3.1, we propose the following algorithm for find-
ing non-vanishing basis functions on a given element F.

Input 7 is the underlying T-mesh of a given AS T-spline. F is a given
element in 7,,, and has four vertices v;, vy, V3, v, arranged in
anti-clock order with the assumption that v, is the left bottom
vertex.

Output 16 non-vanishing indices on F and the case indicator I.
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Fig. 4. Find non-vanishing basis functions on element F;, F, and F;.

1. update K| = {v,,v,,v3,04}. If there is a HE-vertex in K;, then

set I = 0. If there is a VE-vertex in K;, then set I = 1. Otherwise
1=2.
If v, € K, is a HE-vertex, then search the 1-neighboring vertices
of v; in the vertical direction pointing to the outside of F until
it is a vertex in 7 and replace v; . If v; € K is a VE-vertex,
then search the 1-neighboring vertices of v, in the horizontal
direction pointing to the outside of F until it is a vertex in 7 and
replace v; .

. find K, = {vs, v, 07, 05}. If I =0, the closest vertical neighbor-
ing vertices (outside of F) of v;, i =1,2,3,4 are denoted as
K, = {vs,v4,07,08}. If I =1 or I =2, change ‘vertical’ as ‘hori-
zontal’.

. find K3 = {vg, vy, U115 V12, U135 U145 Uy5. U1 }-When I = 0, find the
left adjacent elements of v5 and v, and collect them in a set Kp.
If elements in K, are less than 4, the left elements of v; and v,
are included in K}. Collect the endpoints on the left edges of the
elements in K without repetition. Denote the endpoints associ-
ated with non-vanishing T-spline blending functions on F as {vy,
V105 V115> Y12} Similarly search the right adjacent elements of vg,
V4, V3, V7 and find {v;3, V14, V15, V16}. When I =1 or I =2, find
the top adjacent elements of vs, v;, v4, vg and find the down ad-
jacent elements of vg, V5, V3, vV, similarly as I = 0. In Fig. 3(c),
the elements in K; are colored by yellow.

4. K =K UK, UKj; = {v},0y,,04} is the output vertices on F.

Fig. 4 shows the results of finding the non-vanishing anchors on three
elements, where the anchors in K; are marked by yellow solid circles,
the anchors in K, are marked by orange solid circles, and the anchors
in K5 are marked by blue solid vertices.

3.3. Preprocessing control points

In order to evaluate an AS T-spline on an element by de Boor algo-
rithm, the non-vanishing anchors should span four columns or four rows
and the non-vanishing control points on each column or row should have
the same local knot vector in s-direction or t-direction. Thus the non-
vanishing control points have to be modified by knot insertion. With
the help of Theorem 3.1, this process can be simplified significantly. We
present this process as follows.

Denote by Py, i,j=1, 2,3,4 as the non-vanishing control points on
an element F = [s3, 54] X [13,174]. Assume the associated anchors of P;,,
P,,, P35, P4, are covered by the vertical line s = 53, and the associated
anchors of P;3, Pys, P33, P43 are covered by the vertical line s = s,. Let
U = {sg, 5,55, -, 57} be the referring knot vector in s—direction with the
assumption that there is no other knot between s; and s, 1,k =0, 1, -, 6.
For the control points on the jth row Pj;, Pjy, Pj3, Pj4, the associated local
knot vectors in s-direction are

(x(), X1,X9,83, 54), (xl » X2, 83,84, xs), (Xz, 853,84, X5, x6), (53, S4,X5, Xg5 X7),
respectively. Here x; <s; <Xy <55 <53 <$4 <S5 <X5 <Xg. We are going
to see how the control points Py, i,j=1,2,3,4 are updated in order to
match the referring knot vector. Referring to U, there are four cases
needed to be considered:

(@) xp =5,, x5=255;(b) Xy =355, X5FS5:(c) Xy F Sy, X5=55;
(d) x5 # 55, X5 # 55.
Case (b) and (c) can be integrated into case (d). And case (d) can be

transformed into case (a) by inserting knots s, and s5. Thus we only need
to consider case (a) and (d). For case (a), it means the non-vanishing
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control points span four columns. By knot insertion, it has

S1—Xo
Nlxg, X1, 52,53, 541(s) = Nxg,x1, 51,5, 531(s)
S3 = Xo
S4— 8]
+ N[xy, 51,52, 53,541(5) , X < Sq,
S4 — X
S — X
Nlxy, $2,53, 545 S51(s) = N[xl,sl,sZ,S3,S4](S)S
-
+ N[sy,5,,53,54,851(8), x| <5y,
Nls,, 83, 84,85, Xﬁ](s) = N[s,, 83,84, 85, 35](5)
X6 — S
+ Ns3, 84, S5, 56, X6 1(5) . Xg > Sg»
X6 — 3
S6 — 53
Ns3, 84,55, X6, X7](s) = N[S3,S4,s5,s6,x6](S)x p
6 53

X7 = 5S¢

+ N sy, S5, S¢» X, X71(5) . Xg > Sg.
X7 — 84

Then for this case the control points are updated as follows

54— 8,

Py —a P+ —a)Pp, oy =—7,
S — X
X6~ %6

Py <y P+ (1 —a)Py, ay=——. @
X6 =53

For case (d), it means the non-vanishing control points only span two
columns. So we insert the knot s, and s5 and it has

Sy = g

Nxg, X1, X5, 53, 541(5) = N[xq, X1, X7, 55, 53](s)

$3 = 5o
S4— 8

+N[x1’xz’52,33s34](5)s R
4 — X

Sy —Xi
S4—

Nxy,xp,53,54, X51(s) = N[xy,x3,55,53,54](s)

X5 — 8
+ N[x,, 5, 53,84, S51(5) —

Xs

+ Ns,, 53, 54, 55, X5](s)

B

2
X5 =S5
X5 — Xy
Sy — X
X5 = X3

Nxy, 53,54, X5, X1(s) = N[x;, 55,53, 54, 55](s)

S5 =52
+ N[s,, 53, 54, 55, X5](s)
X5 = Xp

Xg — S5

+ N[s,, 53, 54, 55, X5](s)

X6 =53
S5 — 53
X6 — 53

N{s3, $4, X5, Xg, S71(s) = N[s3, 54,55, X5, X6](5)

§7 =55
+ N[sy4, S5, x5,57](s) .

57— Sy
Then for this case the control points are updated as follows

Py < b1 Py + (1= PPy, Pp < bPp+(1-pF)P;s,

3
Pi3 — 3Py + (1= B3)P3,  Pjy < ByPiz + (1= By)Py.
with
54— 5,
p sq—xp X2 # 52 p 55— 5, p X5 — S5
=L =5 P sk BT ks —xy
X6 — S5
—— XsFSs
By =1%—53 “
0, X5 = S5

According to the above analysis, we present the way of preprocessing
control points. We do the preprocessing column by column. For a control
point P;; on the first column assumed with the s—direction knot vector
(xg, X1, Xq, S3, S4), we have to consider three cases in order to match
the referring knot vector (s, 1, Sy, S3, S4): (1) x5 = 555 (2) x, = 5;; and
(3) x5 = (. According to (2) and (3), the updates associated with these
three cases can be integrated into the following form:
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S4— Sy S4— S
Py« Pj+oPp, A= ——F———, 01=
S4—X| Sy — Xy

54— S S, — X3
S4— Xy 54— X1
S5 =S 517%

_— &)

S5 =Xy 54— Xp

Similarly, for the control points Pjy, Pj3 and Pj, associated with the
s—direction knot vector (x;, Xg, S3, S4, S5), (X1, Xg, S3, S4, S5) and (xq,
Xo, S3, S4, S5) respectively, they are updated as follows,

S5—s

2

P, < Py +0,P3, Ay = s o =1=4, ©)
S5 — X2
X5 — 55

Py« 3Py +03P3, Az = ., o3=1-1;, M
X5 =Xy

S5 =Xy X5 =S¢ Xe— S5 S¢ — 53

P, « AyP»+0,P; Ay =
M e M X5 =Xy X5—53 Xg—53 X5~ 53

S5 — S3 Sg — 83
04:x6—53x5—33. ®

Notice that we do not need to update all the non-vanishing con-
trol points. The control points on a column are updated only when
the control points on this column do not have the same knot vector
in s—direction. Actually there are at most 6 control points needed to be
updated. This can be explained as follows. When the non-vanishing an-
chors span four columns or four rows exactly, the control points on the
first and fourth column (row) may be updated according to (2). Notice
that we can choose the knot vector of one control point on a column
(row) as a referring knot vector, thus there are at most 6 control points
needed to be updated for this case. When the non-vanishing anchors
neither span four columns nor four rows, we discuss this the update of
control points according to the case indicator. If I = 0, then either the
control points on the first and second column are needed to be updated
or the control points on the third column and fourth column are needed
to be updated. Otherwise there exists an horizontal T-vertex whose ex-
tension intersects with a vertical extension crossing this element, which
conflicts the definition of AS T-meshes. Similarly, if I = 1, then either
the control points on the first row and second row are needed to be up-
dated or the control points on the third and fourth row are needed to be
updated. When I = 2, if the control points on four columns are needed
to be updated, then there exists two rows on which the control points do
not need an update. This is guaranteed by the definition of AS T-meshes.

Theorem 3.2. For bicubic AS T-splines, it needs to update 6 control points
at most for an element in the preprocessing.

3.4. de Boor-like evaluation algorithm

Now we are ready to present the algorithm for evaluating AS T-
splines. There are three steps:

1. Find non-vanishing basis functions and the case indicator I by the
algorithm presented in Section 3.2.

2. Preprocess the non-vanishing control points on each column or row
by one of (5), (6), (7) and (8) as presented in 3.3.

3. Apply de Boor algorithm firstly in one direction then in another di-
rection according to the case indicator 1.

This evaluation algorithm is very similar to de Boor algorithm but
with a preprocessing of the control points. We call such an evaluation
algorithm as de Boor-like algorithm. In the following, two examples are
demonstrated to explain the work-flow of this algorithm.

For the element shown in Fig. 5(a), the control points span three
columns, thus we have to update the control points on the first column
and second column. By the formulas (5) and (6), P;; and P,; are up-

dated with the weights 4; = 2=2 5, = 2=L, Py, and Py, are updated
-] 555

O, — Q. SS
with the weights A, = *=2,6, = 1 - 4,. For this AS T-mesh, there are
6752

=5

four control points updated. Fig. 5(c) shows the process of de Boor-like
algorithm.
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(c) de Boor-like algorithm

For the element shown in Fig. 6(a), the control points span four
columns, but the control points on the fourth column do not have
the same knot vector, thus the control points on the fourth column
are updated. By the formulas (8), P44 is updated with the weights

fo~ts = 87 For this AS T-mesh, there is only one control point

4= g3 04 = 1313
updated. Fig. 5(c) shows the process of de Boor-like algorithm.

4. Numerical experiments

In this section, we are going to compare de Boor-like evaluation al-
gorithm with the Bézier extraction evaluation and the one proposed in
[13] on several AS T-meshes produced in solving PDEs by AS T-splines.
We compare the number of the control points needed to be updated of
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(b) Example 2

Fig. 7. The exact solutions shown in Example 4.1 and 4.2.

de Boor-like algorithm and Bézier extraction. And we give a statistic of
those elements which do not satisfy the conditions proposed in [13] in a
given AS T-mesh. In [13], the proposed de Boor-suitable T-splines (DS T-
splines for short) have to satisfy two conditions: the non-vanishing con-
trol points on each unit element have to span exactly four columns (or
rows) and the control points on the same column (or row) should have
the same horizontal (or vertical) local knot vector. For convenience, we
call those elements which do not satisfy these two conditions as violated
elements.

4.1. Solving PDEs by AS T-splines

The AS T-meshes in the experiments are produced from solving the
Poisson equation by AS T-splines. We briefly review the framework of
isogeometric analysis based on AS T-splines, more details can be found
in [15].

The Poisson equation is defined as

—Au=f in Q,
u=g on I, )

where Q CR? is a connected, bounded domain with a Lipschitz-
continuous boundary T, f and h are square-integrable on Q and Ty, re-
spectively.

The physical domain Q is parameterized by a global geometry func-
tion G : (s,1) € Qy = [0, 1]> = (x,) € Q, defined as
(s,1) € Q,

m
_ w;T;(s,1)
G0 = X P o
i=1 i=1 PP\

where P, € R2, T;(s, t) is an AS T-splines basis function, w; € R, w; > 0
is a weight, m is the number of basis functions and Q, is the parameter
domain. A finite dimensional subspace V" is defined as

V" = span{T(x, )| Ty(x,y) = T;0G™", Ti(x, »lp=0,i=1,-,n.}.

The weak form solution of problem (9) is to seek u;, such that
/ Vuy, - Vo, dQ = / fu, dQ, Vv, €V
Q Q

The approximate solution u” is written as u"(x,y) = Y, ¢;G;(x,y) =
Z;’zl c,.T,.oG*I, with unknown coefficients c¢;,i =1,2,---,n. Thus the
weak form solution is converted into solving a linear system with the
unknown coefficients.

We use the local refinement of AS T-splines introduced in [5]. The

local refinement of the numerical solution is refined based on posterior
error estimation.

4.2. Comparison

We choose two examples to demonstrate the comparison:
Example 4.1 and 4.2. In the first example, the exact solution has
two peaks at (%, %) and (%, %). Thus the underling T-mesh should
be refined heavily around these two peaks to capture the feature.
The second exact solution has a sharp gradient around (0,0) and the
underling T-mesh should be refined heavily around the origin. Fig. 7(a)

and (b) shows the plots of these two exact solutions.

Example 4.1. The exact solution in (9) is chosen as

2 2
3020x—13)2420y—13)2  3,(20x—T)2+(20y-7)>

u(x,y) =

and the right hand can be derived from (9). We solve this problem on
an unit square Q = [0, 1] x [0, 1].

0.01
x2+y2+.01°
and the right hand can be derived from (9). We solve this problem on
an unit square Q = [0, 1] x [0, 1].

Example 4.2. The exact solution in (9) is chosen as u(x,y) =

We start from a 9x9 tensor-product mesh for Example 4.1 and a
3% 3 tensor-product mesh for Example 4.2. The corresponding refined
T-meshes on the first three levels are shown in Figs. 8 and 9 respectively,
where the elements shaded by yellow color are the violated elements.

Denote by N}, and N,,, as the number of Bézier elements and violated
elements in an AS T-mesh. The number of the control points needed to
be updated is denoted by N,. In our algorithm, we need to update at
most 6 control points for each violated element, thus we use N, = 6N,,
to give a upper bound of the updated control points for comparison. For
Bézier extraction, it has exactly N, = 16N,. We summarize the num-
bers of Bézier elements, violated elements, updated control points of
Example 4.1 and 4.2 in Tables 1 and 2 respectively.

From the statistics in Tables 1 and 2, it can be seen the number
of updated control points in our algorithm is far fewer than that in
Bézier extraction and the violated elements increase as the refinement
level increases. Furthermore, we see the AS T-splines are not always DS
T-splines in practice and our algorithm provides an efficient and eco-
nomic way of dealing with violated elements in a sense.

Table 1
Statistics of comparison with Bézier extraction and DS T-splines for Example 4.1.

Our algorithm DS T-splines Our algorithm Bézier extraction

Level N, Ny, N, N,

1 240 6 36 3840
2 739 90 540 11824
3 1405 302 1812 22480
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Fig. 8. Three refined AS T-meshes for Example 4.1.
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Fig. 9. Three refined AS T-meshes for Example 4.2.
Table 2

Statistics of comparison with Bézier extraction and DS T-splines for Example 4.2.

Our algorithm DS T-splines Our algorithm Bézier extraction

Level N, Nye N, N,

1 54 12 72 864

2 121 27 162 1936
3 344 96 576 5504
4 806 163 978 12896

5. Conclusion

It is not a trivial work to extend de Boor algorithm on T-splines be-
cause of the existing of T-junctions in the underlying T-mesh. For AS
T-splines, the vertical T-junctions and horizontal T-junctions can not be
too close, simplifying the complexity of the T-mesh. Thus it is possible
to explore an efficient evaluation algorithm similar to de Boor algo-
rithm for AS T-splines. In this paper, we propose a de Boor-like evalua-
tion algorithm for AS T-splines. There are mainly three steps, the non-
vanishing control points are found and the case indicator is determined
in the first step, then the control points are updated one column by one
column or one row by one row depending on the case indicator, and fi-
nally the de Boor algorithm is applied in one direction then in the other
direction. The control points are updated as a weighted average of itself
and its neighbors. With the help of Theorem 3.1, the weights for update
are easily computed and there are at most 6 control points needed to
be updated. In summary, the proposed algorithm is an evaluation algo-

rithm for bicubic AS T-splines based on calculating control points and
is an improvement over Bézier extraction.

The proposed de Boor-like algorithm in this paper mainly focus on
bicubic AS T-splines since bicubic AS T-splines are most commonly used
in applications. The de Boor-like algorithm can of course be extended to
AS T-splines of arbitrary degree, which means the non-vanishing control
points can be updated by a similar way as the bicubic AS T-splines before
applying de Boor algorithm. But the complexity of the preprocessing has
not been explored in details. Is there a more efficient way of applying
de Boor algorithm for AS T-splines of arbitrary degree? We leave this
question as a future work.
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