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Highlights
• A new non-uniform subdivision surface representation, HNUSS, is introduced.
• The HNUSS limit surface is proved to be G1-continuous for any valence non-uniform EPs.
• The HNUSS limit surface has satisfactory geometric quality for non-uniform parameterization.
• The HNUSS-based IGA yields improved convergence rates;

Abstract

This paper introduces a new non-uniform subdivision surface representation, called hybrid non-uniform subdivision surface
(for short, HNUSS). The subdivision scheme is constructed through two steps. The first step inserts a set of edges and converts
a valence-n extraordinary point into a valence-n face. The second step combines both primal and dual subdivision schemes to
define the subdivision rules. The developed subdivision scheme generalizes bi-cubic NURBS to arbitrary topology and is proved
to be G1-continuous for any valence extraordinary points and any non-negative knot intervals. The HNUSS limit surface has
comparable shape quality as non-uniform subdivision via eigen-polyhedron (Li et al., 2016) and has better shape quality than
all the other subdivision schemes. In addition, numerical experiments show that HNUSS based isogeometric analysis yields
improved convergence rates compared to any existing non-uniform subdivision schemes.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Isogeometric analysis (IGA) has emerged as a unification technology between computer-aided design (CAD) and
numerical simulation. The key insight of IGA is the fact that numerical simulation relies on finite element method
with discrete approximation of models from CAD, which is classically based on non-uniform rational B-splines
(NURBS). The main advantages of the IGA include the elimination of both the geometry approximation error and
the computation cost of changing the representation between design and analysis. NURBS are the current standard
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geometry representation in CAD. NURBS provide intuitive control in the design process, and support fast and stable
evaluation. NURBS also offer many advantages in the analysis through IGA [1–4]. However, a major drawback of
NURBS is the tensor-product structure that makes it difficult to model freeform geometry with arbitrary topology.
Such a geometry needs to be decomposed into a set of C−1-continuous patches, which often leads to continuity
problems during analysis.

There are two main categories of approaches to define representations for extraordinary points (EPs). The
first category utilizes a finite number of patches to fill the neighboring region around EPs with many methods
developed [5–12]. Among these methods, manifold splines [12] and smooth cubic splines [13,14] observe optimal
convergence rates. The other category utilizes subdivision with an infinite number of patches around the EPs [15].
Subdivision algorithms are a generalization of splines to define free-form surfaces of arbitrary topology, which is
the standard in the animation industry. Subdivision surfaces are also attractive in IGA [16–21]. Subdivision-based
local refinement and its application in IGA have been studied for both Catmull–Clark subdivision [22,23] and Loop
subdivision [24]. However, these subdivision schemes are limited to generalizations of uniform splines. In order to
make subdivision compatible to NURBS, we need to derive subdivision schemes which can support non-uniform
splines. This issue was firstly addressed in [25], and later was extended in [26–30].

In this paper, we aim to develop a subdivision technique which can support non-uniform splines with arbitrary
topology and improved convergence rates. Particularly, this paper focuses on how to define a non-uniform
subdivision scheme such that it can be used for both design (shape quality near EPs) and analysis (with improved
convergence rates). For this purpose, we present a new Hybrid Non-Uniform Subdivision Scheme (for short,
HNUSS). The HNUSS is constructed through two steps. The first step converts each EP into an extraordinary
face by inserting a set of edges, and then in the second step we define a new subdivision scheme which combines
the primal and dual subdivision schemes in the subsequent levels. The main features of the new subdivision scheme
include:

1. The HNUSS generalizes bi-cubic NURBS to arbitrary topology;
2. The HNUSS limit surface is proved to be G1-continuous for any valence EPs and has satisfactory geometric

quality for non-uniform parameterization. To the authors’ best knowledge, this is the first paper which can
prove G1 continuity for non-uniform EPs.

3. Numerical experiments show that HNUSS-based IGA yields improved convergence rates compared to all the
existing non-uniform subdivision schemes.

The rest of the paper is organized as follows. Section 2 reviews the existing non-uniform subdivision schemes
and then we discuss how to construct the new HNUSS in Section 3. Geometric modeling and isogeometric analysis
based on HNUSS are discussed in Sections 4 and 5, respectively. The last section draws conclusion and points out
future work.

2. Existing non-uniform subdivision schemes

The most popular way to generalize splines to arbitrary topology is using subdivision. This has been well studied
for uniform splines [31]. In the non-uniform case, subdivision in regular regions away from EPs is equivalent to
NURBS refinement, which relies on the conventional knot insertion: a knot is inserted midway between each pair
of existing knots. Referring to the notations in Fig. 1, V , Ei and Fi denote the control points at the current level and
V , E i , F i denote the corresponding control points after subdivision. Then the refinement rule can be summarized
as follows. Each face/edge/vertex point is updated using its neighboring vertex points, edge points and face points,
for example,

F0 =
(d1 + 2d0)(e1 + 2e0)V + (d1 + 2d2)(e1 + 2e0)E0 + (d1 + 2d0)(e1 + 2e2)E1 + (d1 + 2d2)(e1 + 2e2)F0

4(d0 + d1 + d2)(e0 + e1 + e2)
, (1)

E0 =
e2 F0 + e1 F3

2(e1 + e2)
+

M0

2
, (2)

V =
e2 E1 + e1 E3

2(e1 + e2)
+

d2 M0 + d1 M2

4(d1 + d2)
+

V
4

, (3)

where M0 =
(d1+2d0)V +(d1+2d2)E0

2(d0+d1+d2) and M2 =
(d2+2d3)V +(d2+2d1)E2

2(d1+d2+d3) .
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Fig. 1. Bi-cubic NURBS can be regarded as the limit of knot splitting process.

There are several different methods to define non-uniform subdivision around EPs, where knot information
are coupled with knot intervals by assigning a non-negative number to each edge of the control grid. In [25],
the subdivision rule around EPs was formulated by replacing the undefined knot intervals in Eqs. (1)–(3) by the
average of some knot intervals. Another prior art that aims to unify cubic NURBS and Catmull–Clark surfaces
into a single representation includes Extended Subdivision Surfaces [26] and Dinus [28]. These schemes handle
EPs by reverting to Catmull–Clark rules, and ignoring the actual knot intervals. A strategy [27] was proposed to
minimize the difference in knot intervals around an EP, which repeatedly splits the largest knot interval at an EP if
it is more than twice as large as the smallest knot interval at that EP, and then performs a local refinement to make
all knot intervals the same. The refinement rules in [25] were modified by changing the average to the maximal
knot interval in [29]. All the above schemes suffer from the same problem of their corresponding limit surfaces:
with non-uniform knot intervals, the blending functions of EPs can have two local maxima. This problem has been
solved by the technique of eigen-polyhedron [30], where numerical experiments showed that the limit surface is
G1-continuous at the EPs of valence between 3 and 8. However, it is still an open problem to provide a solid proof
for that.

3. Construction of HNUSS

In this section, we discuss how to construct HNUSS in detail. Given a control grid of arbitrary topology with
predefined knot intervals, we need to define a blending function for each vertex such that it specializes to NURBS
when the valence of each vertex is four. As shown in Fig. 2, di , d̃i , d̄i , and ai , ãi , āi are knot intervals and can be
any non-negative real numbers. Our discussion assumes that the control grid is a regular manifold grid and all the
faces are quadrilaterals. If the assumption does not hold initially, we apply a single NURSS refinement [25,30] in
advance. We assume knot intervals on the opposite edges are the same, i.e., di = d̃i = d̄i , and ai = ãi = āi .

On a quadrilateral mesh, a regular vertex has a valence of four in the interior, a valence of three on the boundary
and a valence of two at the corner. It is called an irregular vertex or extraordinary point otherwise. Topologically
a regular vertex in the interior is a crossing of two coordinate lines in a 2D cartesian grid, where we can easily
build a right-handed local coordinate system cyclically. A parametric line is generated by tracing a local coordinate
direction through regular vertices and ending with extraordinary points or boundary vertices. It is a connected by
a sequence of edges, such that two subsequent edges are always connected through a regular vertex where both
edges belong to the same local parametric direction. Vertices and edges on the parametric lines are called virtual
vertices and virtual edges, the meaning of which will become clear in the following. As illustrated in Fig. 3(a),
all the red edges are virtual edges and all the black and green vertices are virtual vertices. Here red dots represent
regular vertices.

The hybrid subdivision contains two steps of rules: a topological step and a geometric step. The topological rules
of the first step yield a hybrid dual mesh, as illustrated in Fig. 3. At the first level, if a valence-n virtual vertex
connects more than two virtual edges, then it is replaced by a dual face consisting of n new vertices, and otherwise
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Fig. 2. The notations for the initial control grid and knot intervals.

Fig. 3. The topological rule of the first level for HNUSS. In (a), the red edges are virtual edges, the black and green vertices are virtual
vertices, where two black ones are also EPs. The final mesh after first level subdivision is shown in (b) . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

it splits into two new vertices. Each virtual edge is then replaced by a dual face. In this manner, we obtain a hybrid
dual mesh; see the blue vertices in Fig. 3(b). Edges of each dual face corresponding to an EP are assigned with
zero knot intervals and the knot intervals of edges touching non-virtual vertices are kept unchanged. Knot intervals
for the other dual edges can be inferred from the opposite edges.

The topological rule for the subsequent levels is based on the hybrid dual mesh of the first level, where there
are three different types of faces, referring to Fig. 4.

• A face with all zero-knot-interval edges: we will not split it topologically;
• A face with two opposite edges of nonzero knot intervals: we spit it into two faces at each level;
• A face with all the four edges of nonzero knot intervals: we spit it into four faces at each level;

Now, we focus on the geometric rules based on the notations in Fig. 5. For the regular control grid, the geometric
rule of the first level corresponds to insertion of zero knot intervals. Thus, we can derive the rules directly from
non-uniform B-spline knot insertion. Similar to [25], we can derive a heuristic rule for the EPs. Let the gray control
grid be the initial control grid and V , Ei , Fi be its vertices. Vertices of the first-level hybrid dual mesh that needs
to be updated are calculated as

P1,1
i = Fi ,

P1,0
i = pi Fi + (1 − pi )Ei ,
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Fig. 4. The topological rule of the subsequent levels for HNUSS. (a) shows three different types of face splitting and (b) shows the final
mesh after subdivision.

Fig. 5. The geometric rules for the HNUSS. (a) is the rule for the first level while (b) is the rule for the subsequent levels.

P0,1
i = qi Fi + (1 − qi )Ei+1,

P0,0
i = pi qi Fi + (1 − pi )qi Ei + pi (1 − qi )Ei+1 + (1 − pi )(1 − qi )V,

where pi =
di−1

di−1+di+1+ai+1
and qi =

di+2
di+2+di +ai

. The rule obtained from the above equations is simple but has poor
shape quality for non-uniform knot intervals (see Fig. 6 as an example). Our construction to define P0,0

i will be
discussed in detail in the next section.

The geometric rules for the subsequent levels utilize the notations in Fig. 5(b), where P j,k
i denotes the control

points at the current level and P
j,k
i denotes the corresponding control points after subdivision. We only provide the

refinement rules for points P
0,0
i , P

1,0
i , P

1,1
i and P

0,1
i , and the others can be derived from NURBS refinement rules

such as Eqs. (1), (2) and (3). We have

P
1,1
i =

di di+1 P1,1
i + di (di+1 + 2ai+1)P1,0

i + di+1(di + 2ai )P0,1
i + (di + 2ai )(di+1 + 2ai+1)P0,0

i

4(di + ai )(di+1 + ai+1)
,

P
1,0
i =

di di+1 P0,1
i−1 + di (di+1 + 2di−1)P1,0

i + di+1(di + 2ai )P0,0
i−1 + (di + 2ai )(di+1 + 2di−1)P0,0

i

4(di−1 + di+1)(di + ai )
,

P
0,1
i =

di di+1 P1,0
i+1 + di+1(2di+2 + di )P0,1

i + di (di+1 + 2ai+1)P0,0
i+1 + (di+1 + 2ai+1)(di + 2di+2)P0,0

i

4(di−1 + di+1)(di + ai )
,
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Fig. 6. The blending functions for a valence-5 EP with non-uniform knot intervals using the rule in Section 3 could produce a poor-quality
surface even though the surface is G1-continuous.

P
0,0
i =

P0,0
i + C

2
+ αi (−n P0,0

i +

n−1∑
j=0

(1 + 2 cos(
2( j − i)π

n
))P0,0

j ),

where α j =
1
n

d j−1d j+2
(d j−1+d j+1)(d j +d j+2) and

C =

∑n−1
i=0 (di−1 + di+3)(di P0,0

i+1 + di+2 P0,0
i )∑n−1

j=0(d j + d j+2)(d j−1 + d j+3)
.
=

n−1∑
i=0

βi P0,0
i . (4)

Remark 1. There are two main differences between the geometric rule for P
0,0
i and the non-uniform Doo–Sabin

subdivision scheme [25]. One is the rule to define αi : our proposed rule can guarantee that both the second and
the third eigenvalues of the subdivision matrix are 1

2 while the non-uniform Doo–Sabin subdivision scheme can
be divergent. The second difference is the rule to define the point C in Eq. (4) which can be used to prove the
characteristic map is regular and injective.

Remark 2. The HNUSS can be generalized to the rational representation by assigning a weight for each vertex.
The rational control points can be projected into R4, subdivided using the same rule, and then projected back into
R3.

Theorem 1. The HNUSS limit surface is globally G1-continuous on 2-manifold control mesh with arbitrary
topology and any positive knot intervals.

Proof. This theorem follows directly from Lemmas 1 and 3 according to the subdivision book [32]. Details of
their proofs are given in the Appendix. □

4. Geometric modeling with HNUSS

Although the first level of geometric rule does not change the continuity and convergence rates, the geometric
rule is very important for the final shape quality; see Fig. 6 as an example. The rule derived in Section 3 cannot
provide satisfactory shape quality for non-uniform knot intervals. In this section, we provide improved geometric
rules for the first level hybrid dual mesh. The basic idea is to use the limit point and tangent plane of the non-uniform
subdivision via eigen-polyhedron to guide the construction of these rules.

4.1. NURSS Scheme and non-uniform subdivision via eigen-polyhedron

In this section, we first review the NURSS scheme in [25] and non-uniform subdivision via eigen-polyhedron
[30]. Fig. 7 shows a valence-n EP V with the neighboring control points Ei and Fi , the knot intervals di

and ai , i = 0, . . . , n − 1. We need to define rules to compute new control points V , E i and F i . Let P =

[V, E0, . . . , En−1, F0, . . . , Fn−1]T and P = [V , E0, . . . , En−1, F0, . . . , Fn−1]T , the rules in [25] can be written
into a matrix form P = M P .
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Fig. 7. Notations for defining the non-uniform subdivision rule.

• Face points:

F i = ωiωi+1 Fi + (1 − ωi )ωi+1 Ei+1 + (1 − ωi+1)ωi Ei + (1 − ωi )(1 − ωi+1)V, (5)

where ωi =
di−2+di+2+di

di−2+di+2+2di +2ai
.

• Edge points:

E i =
di−1

2(di−1 + di+1)
F i +

di+1

2(di−1 + di+1)
F i−1 +

1
2

Mi , (6)

where Mi = ωi Ei + (1 − ωi )V .
• Vertex Point:

V =
n − 3

n
V +

3
n

∑n−1
i=0 (mi Mi + fi F i )∑n−1

i=0 (mi + fi )
, (7)

where fi = di−1di+2, mi = fi + fi−1.

Instead of defining the rules directly, a polyhedron in R2 called the eigen-polyhedron is first defined and then the
subdivision rules are defined based on the eigen-polyhedron. Referring to Fig. 7, denote γ =

4

cos( 2π
n )+1+

√
(cos( 2π

n )+9)(cos( 2π
n )+1)

and λ =
1+γ

4γ
. Let li =

2di +d−

i
3 , where d−

i =
di−2di+1+di+2di−1

di−1+di+1
. We define a set of

points V̂ , Êi and F̂i in R2, i.e., V̂ = (0, 0), Êi = li (cos 2iπ
n , sin 2iπ

n ) and F̂i = γ (Êi + Êi+1). Then the subdivision
rules can be defined in the following and the relationship can be written into a matrix form P = N P .

• Vertex Point: the same as the NURSS rules and let V be the point of applying Equation (7) by replacing V ,
Ei and Fi with V̂ , Êi and F̂i , respectively.

• Face points:

F i = αi,1αi,2 Fi + (1 − αi,1)αi,2 Ei+1 + αi,1(1 − αi,2)Ei + (1 − αi,1)(1 − αi,2)V, (8)

where αi,1 and αi,2 are the unique solution of the function

V + λF̂i = αi,1αi,2 F̂i + (1 − αi,1)αi,2 Êi+1 + αi,1(1 − αi,2)Êi + (1 − αi,1)(1 − αi,2)V̂ . (9)

• Edge points:

E i = (1 − βi,2)(
1 − βi,1

2
Pi,1 +

βi,1

2
Pi,2 +

1
2

V ) + βi,2(
1 − βi,1

2
Pi,3 +

βi,1

2
Pi,4 +

1
2

Ei ), (10)

where

Pi,1 = (1 − αi−1,1)V + αi−1,1 Ei−1, Pi,2 = (1 − αi,2)V + αi,2 Ei+1; (11)
Pi,3 = (1 − αi−1,1)Ei + αi−1,1 Fi−1, Pi,4 = (1 − αi,2)Ei + αi,2 Fi , (12)
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Fig. 8. Notations for defining the new HNUSS rule in the first level.

and βi,1 and βi,2 are the unique solution of the function

V + λÊi = (1 − βi,2)(
1 − βi,1

2
P̂i,1 +

βi,1

2
P̂i,2 +

1
2

V̂ ) + βi,2(
1 − βi,1

2
P̂i,3 +

βi,1

2
P̂i,4 +

1
2

Êi ), (13)

where P̂i, j are defined by replacing V , Ei and Fi in Eq. (11) with V̂ , Êi and F̂i .

4.2. Geometric rule for the first level

Based on the knowledge of eigen-polyhedron, here we provide an improved method to obtain P0,0
i . The basic

idea is to define P0,0
i as a linear combination of V , Ei and Fi with the guide of the limit point and the tangent plane

of the limit surface produced by subdivision via eigen-polyhedron. All the information can be directly computed
from the subdivision matrix using Jordan decomposition of matrix N [32] (see Fig. 8).

1. Compute the limit point C for the subdivision scheme based on eigen-polyhedron.
Denote the normalized left eigenvector corresponding to the eigenvalue 1 by L0

= [L0
0, . . . , L0

2n] and we
have

∑2n
j=0 L0

j = 1. The limit point is C = L0 MT P according to [32]. Here we also use matrix M because
the subdivision scheme based on eigen-polyhedron uses the NURSS rule at the first level.

2. Compute the tangent plane for the subdivision scheme based on eigen-polyhedron.
We define two 2n × 2n matrices M̂ and N̂ , where N̂i, j = Ni+1, j+1 − N0, j+1, M̂i, j = ci (Mi+1, j+1 − M0, j+1),

ci =
2d−

i
2d−

i +di
, i = 0, 1, . . . , n−1 and ci+n =

ci +ci+1
2 . Let P̂ = [E0−V, . . . , En−1−V, F0−V, . . . , Fn−1−V ]T .

Note that according to [30], λ is the leading eigenvalue for the matrix N̂ . N̂ can be written into the form
of N̂ = UΛU−1, where Λ is a diagonal matrix with the elements being the eigenvalues. Suppose i1 and i2
are two indices such that Λ(i1, i1) = Λ(i2, i2) = λ. Let Λ̂ be a new diagonal matrix where all the elements
are zero except that Λ̂(i1, i1) = Λ̂(i2,i2 ) = 1. Then we can define a new matrix Q = U Λ̂U−1. Now, we can
define a set of vectors V i = [M̂ Q P̂]n+i .

3. Define the subdivision scheme for the EPs at the first level.
Since we have defined the HNUSS for the subsequent levels, the corresponding matrix can define the limit
point according to [32]. Denote the limit point C ′ by applying our new HNUSS subdivision to the control
points V i , then

P0,0
i = V i + C − C ′.

Now, we show some HNUSS limit surface examples and compare them with the existing non-uniform subdivision
schemes. We first show the graphs of blending functions for the EPs with different valences, such as valence-5 EP
in Fig. 9, valence-6 EP in Fig. 10 and valence-7 EP in Fig. 11. We can observe that the approaches in [25,27]
and [29] produce limit surfaces with very similar quality, as shown in Figs. 9 and 10. Therefore, we only show
some of the limit surfaces for the rest examples. We can also observe that the HNUSS and the rule in [30] have
limit surfaces with similar quality which are much better than the results produced by any other schemes.
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Fig. 9. The blending function for a valence-5 non-uniform EP using different approaches, where the knot intervals of the red edges are 10
and those of the other edges are 1 . (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 10. The blending functions for a valence-6 non-uniform EP using different approaches, where the knot intervals of the red edges are
10 and those of the other edges are 1 . (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

The improvement of the blending functions leads to the shape improvement in real-world models, such as the
ring model in Fig. 12, the helmet model in Figs. 13 and 14.

5. Isogeometric analysis with HNUSS

In this section, we apply the HNUSS to IGA. We found that our hybrid subdivision can also improve the
convergence behavior in analysis, and we compare our results with several state-of-the-art work such as [19]
and [21].
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Fig. 11. The blending functions for a valence-7 non-uniform EP using different approaches, where the knot intervals for the red edges are
7 and those of the other edges are 1 . (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 12. A comparison of three methods ([29,30] and HNUSS) applied to the ring model. The artifact in the red box of (a) is removed in
(b) and (c).

We first perform a patch test by solving the Poisson’s equation on a unit square [0, 1]2 with the following
manufactured solution,

u = x + y.

The input control mesh is shown in Fig. 15(a). We strongly impose the Dirichlet boundary condition on the entire
boundary, where a least-squares fitting is performed to obtain prescribed values corresponding to boundary control
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Fig. 13. A comparison of two methods ([25] and HNUSS) applied to the helmet model. Some artifacts in (a) are removed in (b).

Fig. 14. The reflection lines for the helmet and ring models. (a) is the result produced by [25], (c) is the result produced by [29] and (b),
(d) are results produced by HNUSS.

points. To retain the accuracy of numerical integration, we subdivide an irregular element several times and adopt
4-point Gaussian quadrature rule for each subelement, which is a common method also used in [11,23]. The patch
test is passed with machine precision with the overall L2- and H 1-norm errors in the order of 10−13 and 10−11,
respectively; similar results were also observed in [23].

We next numerically test the convergence behavior of the hybrid subdivision. We solve the Poisson’s equation
on four meshes with EPs of different valence numbers, ranging from 3 to 8; see the input meshes in Figs. 15–18.
We adopt the following two manufactured solutions,

u = sin(πx) sin(πy), (14)

and

u = e(x+y)/2. (15)

L2- and H 1-norm errors are evaluated on six meshes that are obtained through global refinement, which are
shown in solid curves in Figs. 15–18. The element size is reduced by half in each refinement if measured in
the parametric domain, so over refinement we adopt element sizes as 1, 1/2, 1/4, etc. Classical Catmull–Clark
subdivision functions [31] are also used to solve the problem for comparison; see dashed curves. We observe that
in all the tested meshes, HNUSS possesses faster convergence rates than Catmull–Clark subdivision. Particularly
in the high valence cases (valence 6, 7 and 8), HNUSS converges one order faster than Catmull–Clark subdivision.
While the subdivision scheme proposed in [21] can yield better accuracy than classical Catmull–Clark subdivision,
its convergence rates stay the same as Catmull–Clark subdivision. On the other hand, our hybrid subdivision scheme
improves convergence rates with numerical error (L2 or H1) decreasing exponentially faster than that in [21] as
refinement proceeds. We also notice that our results are comparable to those reported in [19], where a dynamic
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Fig. 15. Solving the Poisson’s equation on a unit square domain. (a) The input control mesh, and (b, c) convergence curves plotted using
the solutions in Eqs. (14) and (15), respectively.

Fig. 16. Solving the Poisson’s equation on a valence six domain. (a) The input control mesh, and (b, c) convergence curves plotted using
the solutions in Eqs. (14) and (15), respectively.

Fig. 17. Solving the Poisson’s equation on a valence seven domain. (a) The input control mesh, and (b, c) convergence curves plotted using
the solutions in Eqs. (14) and (15), respectively.

weighted refinement was proposed to make the size of refined irregular elements more uniform than Catmull–Clark
subdivision. However, HNUSS can be used in the non-uniform case while the dynamic weighted refinement only
supports uniform cases to the authors’ best knowledge.

6. Conclusion and future work

This paper has introduced a new non-uniform subdivision scheme called Hybrid Non-Uniform Subdivision
Surface or HNUSS. The subdivision scheme generalizes bi-cubic NURBS to arbitrary topology with satisfactory
shape quality for non-uniform splines with EPs. The subdivision scheme is proved to be G1-continuous for any
valence EPs with any non-negative knot intervals. HNUSS-based isogeometric analysis has better convergence rates
than the Catmull–Clark subdivision scheme. As the HNUSS representation can be used in both design and analysis,
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Fig. 18. Solving the Poisson’s equation on a valence eight domain. (a) The input control mesh, and (b, c) convergence curves plotted using
the solutions in Eqs. (14) and (15), respectively.

we believe it is a technology with great potential to handle EPs. In the future, we plan to improve HNUSS such
that it can achieve optimal convergence rates.
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Appendix. Proof of the continuity

The new HNUSS surface is always G1-continuous for any valence and any non-negative knot intervals. Referring
to Fig. 19 for the notations, after enough refinement, the hybrid subdivision rule can be written into the following
equations.

P
0,0
j =

C + P0,0
j

2
+ α j [−n P0,0

j +

n−1∑
i=0

(1 + 2 cos(
2( j − i)π

n
))P0,0

i ],

P
1,0
j =

6d j−1 + 3d j+1

8(d j−1 + d j+1)
P0,0

j +
3d j+1

8(d j−1 + d j+1)
P0,0

j−1 +
2d j−1 + d j+1

8(d j−1 + d j+1)
P1,0

j +
d j+1

8(d j−1 + d j+1)
P0,1

j−1,

P
0,1
j−1 =

3d j−1

8(d j−1 + d j+1)
P0,0

j +
3d j−1 + 6d j+1

8(d j−1 + d j+1)
P0,0

j−1 +
d j−1

8(d j−1 + d j+1)
P1,0

j +
d j−1 + 2d j+1

8(d j−1 + d j+1)
P0,1

j−1,

P
1,1
j =

9
16

P0,0
j +

3
16

P0,0
j +

3
16

P0,0
j +

1
16

P1,1
j .

The above relation can be written into a matrix form P = Sn P , and we have⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P
0,0
0
...

P
0,0
n−1

P
1,0
0
...

P
0,1
n−1

P
1,1
0
...

P
1,1
n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Qn 0 0

T0 . . . 0

⋇
...

. . . 0 0
0 0 Tn−1

1
16

0 0

⋇ ⋇
...

. . .

0 0
1
16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P0,0
0
...

P0,0
n−1

P1,0
0
...

P0,1
n−1

P1,1
0
...

P1,1
n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (16)
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Fig. 19. Define the HNUSS subdivision matrix Sn for the 2-ring neighborhood of points around an extraordinary point, where P j,k
i are

points before subdivision and P
j,k
i are points after subdivision.

Denote Qn = (Qi, j ), i, j ∈ [0, n − 1], then we obtain

Qi, j =

⎧⎪⎪⎨⎪⎪⎩
β j

2
+ (1 + 2 cos(

2( j − i)π
n

))αi , j ̸= i ,

1
2

+
βi

2
− (n − 3)αi , j = i ,

(17)

and

T j =

⎛⎜⎜⎝
2d j−1 + d j+1

8(d j−1 + d j+1)
d j+1

8(d j−1 + d j+1)
d j−1

8(d j−1 + d j+1)
d j−1 + 2d j+1

8(d j−1 + d j+1)

⎞⎟⎟⎠ . (18)

In order to prove the HNUSS is G1-continuous, we need to prove that the spectrum of the subdivision matrix
Sn satisfies some constraints and the associated characteristic map is regular and injective. Our proof includes three
steps:

1. Prove that the subdivision matrix satisfies the relationship in Lemma 1.
2. Construct the 1-ring neighborhood of control points for the characteristic map in Lemma 2;
3. Compute the 4-ring neighborhood of control points for the characteristic map and prove that the characteristic

map is regular and injective in Lemma 3.

Lemma 1. For any valence EPs, the eigenvalues of the HNUSS subdivision matrix Sn satisfy

λ1 = 1 > λ2 = λ3 =
1
2

> |λk |, k = 4, 5, . . . , 4n. (19)

Proof. Since the HNUSS subdivision matrix Sn remains constant through all the subsequent subdivision steps, we
can use the eigenstructure of Sn to define the characteristic map and analyze the continuity. The eigenvalues of Sn

consist of those of matrices Qn , Ti and 1
16 In , where Qn and Ti are defined in Eqs. (17) and (18) respectively, and

In is an n × n identity matrix.
It is obvious that the matrix 1

16 In has n identical eigenvalues 1
16 and it is easy to verify that the eigenvalues of the

2 × 2 matrix Ti are 1
4 and 1

8 . It remains to look into the eigenvalues of Qn . We use the discrete Fourier transform
to analyze the eigenproperties. Let pk and pk , (k = 0, . . . , n − 1) be Fourier vectors corresponding to Pj and P j ,
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i.e.,

pk =
1
n

n−1∑
j=0

P0,0
j ω jk, pk =

1
n

n−1∑
j=0

P
0,0
j ω jk, (20)

P0,0
k =

n−1∑
j=0

p jω
jk, P

0,0
k =

n−1∑
j=0

p jω
jk, (21)

where ω = e
2π
n and ω = e−

2π
n . Now the refinement rule can be formulated in terms of the Fourier vectors,

n−1∑
k=0

pkω
jk

=

n−1∑
k=0

(
n−1∑
j=0

β j

2
ω jk)pk + p0 +

ω j

2
p1 +

ω j(n−1)

2
pn−1 + (

1
2

− nα j )
n−2∑
k=2

pkω
jk . (22)

Using the inverse discrete Fourier transform and we can obtain

⎛⎜⎜⎜⎝
p0
p1
...

pn−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
β1

2
· · ·

βn−1

2

0
1
2

⋇ 0

0 0 Bn−3 0

0 0 ⋇
1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝
p0
p1
...

pn−1

⎞⎟⎟⎟⎠ , (23)

where

Bn−3 =
1
2

I −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n−1∑
j=0

α j

n−1∑
j=0

α jω
j . . .

n−1∑
j=0

α jω
(n−4) j

n−1∑
j=0

α jω
(n−1) j

n−1∑
j=0

α j · · ·

n−1∑
j=0

α jω
(n−5) j

...
...

. . .
...

n−1∑
j=0

α jω
4 j

n−1∑
j=0

α jω
5 j

· · ·

n−1∑
j=0

α j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (24)

However, it is not easy to directly compute the eigenvalue for Bn−3. Instead we can construct a circulant matrix Gn

as follows:

Gn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n−1∑
j=0

α j

n−1∑
j=0

α jω
j . . .

n−1∑
j=0

α jω
(n−1) j

n−1∑
j=0

α jω
(n−1) j

n−1∑
j=0

α j · · ·

n−1∑
j=0

α jω
(n−2) j

...
...

. . .
...

n−1∑
j=0

α jω
j

n−1∑
j=0

α jω
2 j

· · ·

n−1∑
j=0

α j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (25)

The eigenvalues µk for Gn can be computed explicitly, where µk = nαn−k ∈ (0, 1), k = 1, . . . , n. Denote the
eigenvalues for Bn−3 by λB,i , then we can prove that λB,i lies in the domain (− 1

2 , 1
2 ). Actually, Gn is a positive

definite matrix, so 1
2 I − Bn−3 is also positive definite, which means that λB,i < 1

2 . On the other hand, as µk < 1,
I − Gn is a positive definite matrix, so I − ( 1

2 I − Bn−3) is also positive definite, and thus λB,i > −
1
2 . Therefore

we can conclude that the eigenvalues of Sn are

λ1 = 1 > λ2 = λ3 =
1
2

> |λk |, k = 4, 5, . . . , 4n. □ (26)
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Fig. 20. Define the characteristic map for HNUSS. The points satisfy Mn[P0,0
0 − C, . . . , P0,0

n−1 − C]T
=

1
2 [P0,0

0 − C, . . . , P0,0
n−1 − C]T , where

Mn is the HNUSS subdivision matrix for the 4-ring neighborhood of points around an extraordinary point.

The next step is to compute the characteristic map and prove it is regular and injective. We first prove the
following lemma.

Lemma 2. Let Pi = (cos( 2iπ
n ), sin( 2iπ

n )) ∈ R2, i = 0, . . . , n − 1, C =
∑n−1

i=0 βi Pi , and P be a n × 2 vector
containing all the Pi , i.e., P = [P0, P1, . . . , Pn−1]T , then the HNUSS subdivision matrix Sn satisfies

Sn(P − C) =
1
2

(P − C). (27)

Proof. Denote P = Sn P , then we have

P j − C =
Pj − C

2
+ α j [−n(cos(

2 jπ
n

), sin(
2 jπ

n
)) +

n−1∑
i=0

(1 + 2 cos(
2( j − i)π

n
))(cos(

2iπ
n

), sin(
2iπ

n
))]

=
Pj − C

2
+ α j [−n(cos(

2 jπ
n

), sin(
2 jπ

n
)) +

n−1∑
i=0

2 cos(
2( j − i)π

n
)(cos(

2iπ
n

), sin(
2iπ

n
))]

=
Pj − C

2
+ α j [−n(cos(

2 jπ
n

), sin(
2 jπ

n
))+

n−1∑
i=0

(cos(
2 jπ

n
) + cos(

2( j − 2i)π
n

), sin(
2 jπ

n
) − sin(

2( j − 2i)π
n

))]

=
Pj − C

2
.

The above equation can be applied to any 0 ≤ j ≤ n − 1, therefore we can obtain

Sn(P − C) =
1
2

(P − C). □ (28)

Lemma 3. The characteristic map for HNUSS is regular and injective for any valence and any positive knot
intervals.

Proof. In order to prove the characteristic map is regular and injective, around an EP we need to include 4 × 4
grid of control points in each segment to prove G1 continuity. We first need to compute the coordinates of the
involved control points, which are used to define the characteristic map. The basic idea is based on the fact that
applying the subdivision rules to the related control grid is to scale the control grid by half. Referring to Fig. 20,
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let the control grid be P j,k
i , 0 ≤ j, k ≤ 3, 0 ≤ i ≤ n − 1, and the corresponding subdivision matrix be Mn .

According to Lemma 2, denote P0,0
i = Pi = (cos( 2iπ

n ), sin( 2iπ
n )) ∈ R2, i = 0, . . . , n − 1, C =

∑n−1
i=0 βi Pi , then

Mn[P0,0
0 − C, . . . , P0,0

n−1 − C]T
=

1
2 [P0,0

0 − C, . . . , P0,0
n−1 − C]T .

Let Ei =
di

di +di+2
P0,0

i+1 +
di+2

di +di+2
P0,0

i . For the points P0,1
i−1 and P1,0

i , according to the fact that the new grid after
subdivision is the scale of 1

2 of the given control grid. Using this relationship, we have

(1 −
2di−1 + di+1

4(di−1 + di+1)
)P1,0

i −
di+1

4(di−1 + di+1)
P0,1

i−1 =
6di−1 + 3di+1

4(di−1 + di+1)
P0,0

i +
3di+1

4(di−1 + di+1)
P0,0

i−1 − C,

(1 −
2di+1 + di−1

4(di−1 + di+1)
)P0,1

i−1 −
di−1

4(di−1 + di+1)
P1,0

i =
3di−1 + 6di+1

4(di−1 + di+1)
P0,0

i−1 +
3di−1

4(di−1 + di+1)
P0,0

i − C.

Solving the linear systems we get

P1,0
i − P0,0

i = P0,1
i−1 − P0,0

i−1 = 2(Ei−1 − C). (29)

Similarly, we can compute P2,0
i , P3,0

i , P0,3
i−1, P0,3

i−1 as

P2,0
i − P1,0

i = P0,2
i−1 − P0,1

i−1 = 3(Ei−1 − C),

P3,0
i − P2,0

i = P0,3
i−1 − P0,2

i−1 = 3(Ei−1 − C).

Let p = P0,0
i − C , v = Ei−1 − C and w = Ei − C , then we compute the remaining control points P j,k

i such that
Mn[P0,0

0 − C, P1,0
0 − C, . . . , P3,3

n−1 − C]T
=

1
2 [P0,0

0 − C, P1,0
0 − C, . . . , P3,3

n−1 − C]T . We obtain

⎛⎝P3,1
i P3,2

i P3,3
i

P2,1
i P2,2

i P2,3
i

P1,1
i P1,2

i P1,3
i

⎞⎠ = C+

⎛⎜⎜⎜⎜⎜⎝
93p + 12v + 222w

35
939p + 393v + 1014w

217
5853p + 2523v + 2523w

1085
87p + 18v + 123w

35
3987p + 2523(v + w)

1085
939p + 1014v + 393w

217
15p + 6(v + w)

7
87p + 123v + 18w

35
93p + 222v + 18w

35

⎞⎟⎟⎟⎟⎟⎠ .

(30)

With all these control points, we can extract the Bézier control points for the patches P1, P2 and P3. For example,
the 4 × 4 Bézier control points for patch P2 have the explicit form

C +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1901p + 1354v + 1354w

1085
2221p + 2119v + 1034w

1085
473p + 612v + 178w

217
9899p + 16141v + 3121w

4340
2221p + 1034v + 2119w

1085
535p + 333v + 333w

217
2901p + 2524v + 1439w

1085
3074p + 3436v + 1266w

1085
473p + 178v + 612w

217
2901p + 1439v + 2524w

1085
3229p + 2196v + 2196w

1085
3482p + 3082v + 1943w

1085
9899p + 3121v + 16141w

4340
3074p + 1266v + 3436w

1085
3482p + 1943v + 3028w

1085
3802p + 2708v + 2708w

1085

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then two directional derivatives of patch P2, ∂ P2
∂t and ∂ P2

∂s , are bi-degree 3 × 2 and 2 × 3 Bézier patches respectively,
where vectors of the control points are

∂ P2

∂t
:

⎛⎜⎜⎜⎜⎜⎜⎝
64p − 64v + 153w

217
454p − 454v + 631w

1085
536p − 536v + 549w

1085
2397p − 2397v + 1943w

4340
144p − 144v + 941w

1085
226p − 226v + 859w

1085
328p − 328v + 757w

1085
408p − 408v + 677w

1085
439p − 439v + 3901w

4340
173p − 173v + 912w

1085
253p − 253v + 832w

1085
64p − 64v + 153w

217

⎞⎟⎟⎟⎟⎟⎟⎠ , (31)



X. Li, X. Wei and Y.J. Zhang / Computer Methods in Applied Mechanics and Engineering 352 (2019) 606–624 623

∂ P2

∂s
:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

64p + 153v − 64w

217
144p + 941v − 144w

1085
439p + 3901v − 439w

4340
454p + 631v − 454w

1085
226p + 859v − 226w

1085
173p + 912v − 173w

1085
536p + 549v − 536w

1085
328p + 757v − 328w

1085
253p + 832v − 253w

1085
2397p + 1943v − 2397w

4340
408p + 677v − 408w

1085
64p + 153v − 64w

217

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (32)

From Eq. (4), we can observe that C is a convex combination of the points Ei , so the control points P0,0
i lie in

the regions bounded by two rays C Ei−1 and C Ei . The control points for ∂ P2
∂t are convex combinations of vectors

p, −v and w, while the control points for ∂ P2
∂s are convex combinations of vectors p, v and −w, so the patch of P2

is regular and injective. On the other hand, from the above computation, we can observe that for any i , the control
points P0,0

i , P1,0
i , P2,0

i and P3,0
i are also collinear, the control points P0,0

i−1, P0,1
i−1, P0,2

i−1 and P0,3
i−1 are collinear, and

these two lines are parallel. In addition, according to Eq. (30), the points P j,k
i , 0 ≤ j, k ≤ 3, all lie in the regions

bounded by two rays C Ei−1 and C Ei . Thus, the characteristic map of HNUSS is regular and injective for any
valence and any positive knot intervals. □
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