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Abstract
Sharp features are important characteristics in surfacemodelling. However, it is still a significantly difficult task to create complex
sharp features for Non-Uniform Rational B-Splines compatible subdivision surfaces. Current non-uniform subdivision methods
produce sharp features generally by setting zero knot intervals, and these sharp features may have unpleasant visual effects. In
this paper, we construct a non-uniform subdivision scheme to create complex sharp features by extending the eigen-polyhedron
technique. The new scheme allows arbitrarily specifying sharp edges in the initial mesh and generates non-uniform cubic B-
spline curves to represent the sharp features. Experimental results demonstrate that the present method can generate visually
more pleasant sharp features than other existing approaches.
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1. Introduction

Sharp features on surfaces play an important role in geometric mod-
elling, where Non-Uniform Rational B-Splines (NURBS) and sub-
division surfaces are two principal surface representations. NURBS
is the industry standard in computer-aided design (CAD) while
subdivision surfaces are widely used in 3D computer animation.
NURBS has the limitation of rectangular topology. In addition,
sharp features on NURBS surfaces can only be iso-parameter lines.
Therefore, it is an extremely difficult task to generate complex sharp
features on NURBS surfaces.

The main advantage of subdivision representation is the efficient
way to generate smooth surfaces of arbitrary topology. Subdivi-
sion surfaces are also attractive because they are conceptually sim-
ple and can be easily modified to create surface features without
making major changes to the original subdivision rules. Lots of ap-
proaches [HDD*94, DKT98, BLZ00, BMZB02, KSD14a, KS99,
NLG12] have been proposed to produce sharp features for subdivi-
sion surfaces. These schemes are directly modified from Catmull–
Clark [CC78] or Loop [Loo87] subdivision rules. Many software
systems, such as Maya, Pixar’s proprietary Presto animation sys-
tem and OpenSubdiv libraries 2019 support the generation of sharp
features. [BLZ00] is a seminal work to introduce improved rules
for Catmull–Clark and Loop surfaces that overcome several prob-

lems with the original schemes. However, all these approaches work
only for uniform subdivision, whichmeans all the sharp features can
only be uniform cubic B-spline curves and are not totally NURBS-
compatible.

In industry design, NURBS is the dominant standard. Thus, it
is extremely important to construct NURBS compatible subdivi-
sion schemes in order to apply subdivision in CAD 2001, [Ma05].
For this purpose, [SZSS98] introduced the first NURBS-compatible
non-uniform subdivision scheme. And later this scheme was im-
proved by many researchers [MRF06, Urs09, MFR*10, KBZ15,
LFS16]. In order to create non-uniform sharp features, a general ap-
proach is to set some knot intervals to be zeros [SZSS98, KSD14b,
ZML15]. However, the sharp features created by these approaches
may have unpleasant visual effects.

For the approach in [SZSS98], some unpredictable results occur
when it is used to generate sharp features. Figures 1(a) and 2(a) show
two examples of the blending functions at a valence five extraordi-
nary point generated from the same initial control mesh with differ-
ent tags. Similar behaviour arises for the sharp features generated
by [ZML15].

The approach in [KSD14b] first inserts some zero knot inter-
vals into the mesh that will not change the limit surface. Then one
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Figure 1: The knot intervals of dark blue edges are 0 while those
of the blue edges are 0.2. The other knot intervals are all 1’s. The
red edges are marked as crease edges.

Figure 2: The knot intervals for the dark blue and blue edges are
0 and 0.2, respectively, and the other knot intervals are all 1’s. The
red edges are marked as crease edges.

can move the associated vertices corresponding to crease edges to
create sharp features. This method does not allow crease curves to
span or extend to extraordinary points because the truncated multi-
ple knot lines in their method actually do not work on the one-ring
edges of the extraordinary points (see Figure 3, middle). Moreover,
the generated surfaces still have the problem that the correspond-
ing blending function at an extraordinary point may have two local
maxima when the knot intervals are different [LFS16].

Therefore, unlike the uniform sharp feature scheme [BLZ00], the
existing non-uniform sharp feature subdivision schemes cannot pro-

Figure 3: The first and third columns are results generated us-
ing our method, and the second column is the result produced by
[KSD14b]. Red edges are marked as crease edges and the edges
corresponding to multiple knot lines in [KSD14b] are shown in or-
ange(triple) and purple(double).

vide satisfactory results. In fact, it is extremely difficult to generate
complex sharp features for NURBS and NURBS-compatible subdi-
vision surfaces. This paper tries to solve the problem by generaliz-
ing the subdivision scheme in [BLZ00] to non-uniform subdivision,
which can handle all desired features in a unified approach. Moti-
vated by the idea of [LFS16], we find that the subdivision scheme
in [BLZ00] can be reconstructed by extending the eigen-polyhedron
technique. Then we generalize this technique to handle non-uniform
parameterization and derive a non-uniform subdivision scheme sup-
porting sharp features. This provides a NURBS-compatible subdi-
vision the ability to support arbitrary non-uniform sharp features,
and meanwhile retains the advantages of the uniform counterpart in
[BLZ00]. The new scheme allows arbitrarily specified sharp edges
in the initial mesh and generates non-uniform cubic B-spline curves
to represent sharp features. Experimental results demonstrate that
our method yields visually more pleasant sharp features than other
existing approaches. Two examples generated by our method are
shown in Figures 1(b) and 2(b).

The remainder of this paper is organized as follows. We first re-
view the uniform sharp feature subdivision scheme and the basic
idea of eigen-polyhedron technique in Section 2 and 3, respectively.
In Section 4, we design a new non-uniform sharp feature subdivi-
sion scheme via the generalized eigen-polyhedron technique. The
numerical examples are demonstrated in Section 5. Finally, we con-
clude the paper with a summary and future work in Section 6.

2. Uniform subdivision scheme with sharp features

Before describing the uniform subdivision rules in [BLZ00], we first
introduce tagged meshes which are used to specify the types for
edges and vertices. Edges can be tagged as crease edges and a vertex
with incident crease edges receives one of the following tags:

• crease vertex: joins exactly two incident crease edges smoothly.
• corner vertex: connects two or more creases in a corner (convex
or concave).

• dart vertex: causes the crease to blend smoothly into the surface.

In addition, all the edges on the boundary of a mesh are tagged as
crease edges and boundary vertices are tagged as corner or crease
vertices. Crease edges divide the mesh into separate patches, several
of which can meet in a corner vertex. At a corner vertex, the creases
meeting at that vertex separate the ring of quadrilaterals around the
vertex into sectors. Each sector of the mesh is labelled as convex
sector or concave sector indicating how the surface should approach
the corner, which are set by the user. The only restriction placed
on sector tags is that concave sectors consist of at least two faces.
An example of a tagged mesh is given in Figure 4. According to
these markings, [BLZ00] proposes a modified Catmull–Clark rule
to generate sharp feature curves on the subdivision surface.

Vertex points: The standard vertex rules are applied to reposition
untagged vertices and dart vertices. The new control point at a vertex
is the weighted average of the control points in its neighbourhood.
If a vertex has n adjacent polygons, then the centre vertex has the
weight 1 − β1 − β2, while all the adjacent vertices have the weight
β1/n; the remaining vertices in the ring receive the weight β2/nwith
β1 = 3

2n and β2 = 1
4n . A crease vertex is refined as the average of its
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Figure 4: A tagged mesh. Black edges are tagged as crease edges.
v1, v2 and v3 are dart , corner and crease vertices, respectively.

Figure 5: The edge point rules for untagged edges. When both end-
points are untagged, standard rule is used (left) and the modified
rule (right) is used in case of tagged endpoint.

old position with the weight 3/4 and the two adjacent crease vertices
with the weight 1/8. Corner vertices are interpolated.

Face points: The new vertex is inserted at the centroid of
each face.

Edge points: This is the most complicated case. The rule for an
edge point is chosen depending on the tag of the edge and the tags
of adjacent vertices and sectors. In the absence of tags, the standard
edge rules are applied, which are shown in Figure 5 (left). The case
of an untagged edge adjacent to a tagged vertex is illustrated in Fig-
ure 5 (right). The standard edge rule is modified in the following
way in this case: suppose that the rule is parameterized by an an-
gle θ which depends on the adjacent vertex tag and sector tag and
will be below. The new edge point rule is illustrated on the right of
Figure 5, where γ is given in terms of the parameter θ :

γ = 3/8 − 1/4cosθ.

For a dart vertex, θ = 2π/m, where m is the total number of poly-
gons adjacent to the vertex. If the vertex is a crease vertex, θ = π/m,
wherem is the number of polygons adjacent to vertex in the sector of
the edge. At a convex corner vertex, θ = α/m, where α is the angle
of the sector, that is the angle between the two crease edges span-
ning the sector (m is the same as above). If it is a concave corner,
then θ = (2π − α)/m.

3. Eigen-polyhedra

This section reviews the basic idea of eigen-polyhedron technique,
which is firstly used to define non-uniform Catmull–Clark subdivi-
sion surface in [LFS16]. For the notations, the capital letters with
hats denote the control points in R2 for an eigen-polyhedron in
the following.

As we know, uniform subdivision schemes are well understood
according to the eigen-properties of subdivision matrices, which
can be exactly computed via discrete Fourier transformation. How-
ever, the approach fails for non-uniform subdivisions because the
schemes are not shift invariant [PR08]. Moreover, the coefficients
for non-uniform subdivision schemes are rational functions of knot
intervals. Thus, it is almost impossible to directly compute the
eigen-properties of a non-uniform subdivision matrix in terms of
knot intervals.

One common approach to define a non-uniform subdivision
scheme is to use a heuristic way to generalize non-uniform bi-cubic
B-spline refinement rules to arbitrary valences, such as [SZSS98,
KBZ15]. However, the subdivision matrices by these approaches
cannot ensure the second and third eigenvalues to be identical,
which is the necessary condition for the surface to be G1 [PR08].
Another common approach is to convert the non-uniform knots
to be uniform with or without additional pre-insertions [MRF06,
Urs09, MFR*10]. Nevertheless, it still causes unnecessary awk-
ward behaviours on resulting surfaces if the knot intervals are dif-
ferent [LFS16].

Instead of defining subdivision rules directly, eigen-polyhedron
technique [LFS16] firstly defines an eigen-polyhedron in R2 for
each extraordinary point from which the subdivision matrix is de-
rived. Themain property is that, the eigen-polyhedron aftermapping
by the subdivision matrix is a scaling and translation of the orig-
inal eigen-polyhedron, which ensures that the subdivision matrix
has two identical eigenvalues. To be specific, eigen-polyhedron is a
polyhedron mesh in 2D (as illustrated in Figure 6), denoted by P̂0 =
[F̂0

0 , · · · , F̂0
n−1, Ê

0
0 , · · · , Ê0

n−1, V̂
0]T which is a (2n+ 1) × 2 matrix.

An eigen-polyhedron satisfies P̂1 = MP̂0 = λP̂0 + IT̂ 0, where P̂0

has vertex V̂ 0 = (0, 0), M is a (2n+ 1) × (2n+ 1) matrix whose
rows sum to one, λ ∈ R, T̂ 0 ∈ R

2 and I is a 2n+ 1-dimensional

Figure 6: The topology of the eigen-polyhedron P̂0.
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vector whose elements are all 1′s. In other words, MP̂0 produces a
scale of P̂0 by a factor of λ, followed by a translation by T̂ 0.

After defining the eigen-polyhedra, one can derive the subdi-
vision matrix M from the relationship P̂1 = MP̂0. Now the basic
framework to construct a non-uniform subdivision scheme M via
the eigen-polyhedron technique consists of following steps:

• Define the eigen-polyhedron P̂0 = [F̂0, . . . , F̂n−1, Ê0, . . . , Ên−1,
V̂ ]. Note that for bi-cubic non-uniform B-splines and Catmull–
Clark subdivision, the coordinates of the eigen-polyhedron can
be defined as the two eigenvectors of the second and third eigen-
values. Thus, for non-uniform extraordinary points, the eigen-
polyhedron is defined such that it can be reduced to bi-cubic
non-uniform B-splines for valence four and to Catmull–Clark
subdivision if the knot intervals are all the same.

• Define λ to be the second and third eigenvalues for the subdivision
matrix and T̂ to be the vertex point through the vertex point rule
on P̂0. Let P̂1 = λ · P̂0 + I · T̂ .

• Use the relation P̂1 = MP̂0 to solve the non-zero elements of M.

The above construction has been verified in [LFS16] and a large
number of examples show that the basis functions of the new sub-
division scheme have much better shapes than all the existing ap-
proaches when knot intervals are different.

4. Design non-uniform subdivision scheme with sharp features

In order to design a non-uniform scheme that can produce high qual-
ity sharp features, we generalize the scheme in [BLZ00] to non-
uniform case using a similar idea in [LFS16].We find that the subdi-
vision scheme in [BLZ00] has a similar eigen-polyhedron structure,
which we call generalized eigen polyhedron (see Section 4.1 for de-
tails). We then define generalized eigen-polyhedra for non-uniform
subdivision scheme in Section 4.2. Finally, the subdivision scheme
is constructed by solving a system generated from the generalized
eigen polyhedron in Section 4.3. As the scheme is generalized from
[BLZ00], it automatically inherit all the advantages of the scheme in
[BLZ00], such as the ability to arbitrarily specify sharp edges on the
input mesh to generate different types of complex sharp features.

4.1. Reformulate the uniform scheme with sharp features

Corresponding to the tags in Section 2, the uniform scheme that pro-
duces sharp features in [BLZ00] can actually be divided into three
cases: dart, crease and corner. For the sake of consistency, we also
refer to the standard rule for untagged vertices as standard case. The
subdivision schemes for these cases can be defined by constructing
their corresponding subdivisionmatrices. Then all these subdivision
matrices can be reformulated, respectively, through the following
steps by referring to Figure 7.

1. Define the generalized eigen polyhedron P̂0:
Standard case: For i = 0, 1, . . . , n− 1, the vertices of P̂0 are
defined ⎧⎨

⎩
V̂ 0 = (0, 0),
Ê0
i = (cos(i · θ 0), sin(i · θ0)),
F̂0
i = τ (Ê0

i + Ê0
i+1),

(1)

(a) (b)

(d)(c)

Figure 7: The relation between P̂1 and P̂0 in various cases. Red
lines correspond to crease edges.

where τ = 4
cn+1+√

(cn+9)(cn+1)
, cn = cos(θ 0), and θ 0 = 2π

n .

Dart case: For i = 0, 1, . . . , n− 1, the vertices of P̂0 are com-
puted through⎧⎨

⎩
V̂ 0 = (0, 0);
Ê0
i = (cos(i · θ 0), sin(i · θ0)),
F̂0
i = Ê0

i + Ê0
i+1,

(2)

where V̂ 0Ê0
0 corresponds to the crease edge in dart case, and θ 0

is defined as above.
Crease case: Let n1 be the number of polygons adjacent to
v in the first sector. The number of polygons adjacent to v in
the second sector is naturally n2 = n− n1, and n2 = 0 if v is a
boundary vertex. Then for i = 0, . . . , n− 1, j = 0, . . . , n1 − 1
and k = 0, . . . , n2 − 1, the vertices of P̂0 are computed by⎧⎪⎪⎨

⎪⎪⎩
V̂ 0 = (0, 0),
Ê0
j = (cos( j · θ1), sin( j · θ 1)),

Ê0
k = (cos(π + k · θ 2), sin(π + k · θ 2)),
F̂0
i = Ê0

i + Ê0
i+1, i = 0, 1, . . . , n− 1,

(3)

where V̂ 0Ê0
0 and V̂ 0Ê0

n1
denote the two crease edges in crease

case, respectively, and θ 1 = π

n1
, θ2 = π

n2
.

Corner case: Considering that the sum of the angles of all the
sectors around v in this case may not be 2π , we deal with each
sector separately. Let nq be the number of polygons adjacent to
v in the qth sector, and r is the total number of sectors around
v, then n = ∑r

q=1 nq. For i = 0, . . . , nq and j = 0, . . . , nq − 1,

the vertices of the qth sector of P̂0 are computed as⎧⎨
⎩
V̂ 0 = (0, 0),
Ê0
i = (cos(i · θ q), sin(i · θq)),
F̂0
j = Ê0

j + Ê0
j+1,

(4)
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where V̂ 0Ê0
0 and V̂ 0Ê0

nq
denote the two crease edges spanning

the qth sector. Denote the angle of the qth sector by αq, then
θ q = αq/nq if v is a convex corner, and θ q = (2π − αq)/nq if v

is a concave corner.
2. Define the polyhedron P̂1: For the standard case, P̂1 = λP̂0,

where λ = 1+τ

4τ = 5+cn+
√
(cn+9)(cn+1)
16 and for the other cases,

P̂1 = 1
2 P̂

0.
3. Determine the non-zero elements of M: Since each row of M

corresponds to the face, edge or vertex point rule in subdivi-
sion, determining the non-zero elements in each row of M is
equivalent to designing the stencils of these rules. These sten-
cils are already evident in Section 2. First, the face point is the
bilinear combination of the four vertices of its generating face.
For the vertex point, both the untagged and dart vertex are linear
combinations of all the vertices in its neighbourhood; A crease
vertex is a linear combination of the corresponding vertex and
the two adjacent crease vertices; Corner vertices are interpolated
as itself. Finally, the edge point on the crease edge is a linear
combination of the two end vertices and the edge point on the
untagged edge is the linear combination of the six vertices of the
two adjacent faces.

4. Use the relation P̂1 = MP̂0 to solve the non-zero elements ofM.

We can verify that the subdivision scheme in Section 2 can be ob-
tained through the above procedure. In the next two sections, we
show that this idea can be generalized to non-uniform subdivision
to support sharp features.

4.2. Define the generalized eigen-polyhedron P̂0 for
non-uniform subdivision

Suppose the edges adjacent to the valence-n vertex v have knot in-
terval values d0, . . . , dn−1, as shown in Figure 8. For the general-
ized eigen polyhedron P̂0 around v, we set V̂ 0 = (0, 0), and ex-
press the points Ê0

i and F̂0
i , i = 0, . . . , n− 1 as functions of n and

d0, . . . , dn−1. The only rigid requirements are that the scheme must
reduce to Equations (1)–(4) when d0 = · · · = dn−1.

The edge points Ê0
i in P̂

0 are determined by two quantities: (1) the
angles between edges in P̂0, θi = ∠Ê0

i V̂
0Ê0

i+1, i = 0, . . . , n− 1, i ≡
i mod n(i = 0, . . . , nq−1 if v is a corner vertex), and (2) the length of
the edges in P̂0, li, i = 0, . . . , n− 1(i = 0, . . . , nq, if v is a corner
vertex). Firstly, the angle θi of P̂0 is determined through the same
way as the uniform case described in Section 4.1. Secondly, the
length of the edges in P̂0 take the values as described in [LFS16],
namely,

li = di + d+
i + d−

i

3
, i = 0, . . . , n− 1. (5)

where

d+
i =

i+n−1∑
j=i,|i− j|≤ n

4

djcos

(
i− j

n
· 2π

)
,

d−
i = −

i+n−1∑
j=i,|i− j|> n

4

djcos

(
i− j

n
· 2π

)
.

Figure 8: Knot intervals near an extraordinary vertex, where d̄i =
d̃i = di.

Note that the length in corner case should be assigned according to
Equation (5) before dealing with each sector in order to ensure the
consistency of the length of the common edge of adjacent sectors.

The face points F̂0
i in P̂0 for standard case are obtained using

F̂0
i = τ (Ê0

i + Ê0
i+1) in Equation (1) and for the other cases, using

F̂0
i = Ê0

i + Ê0
i+1 in Equations (2)–(4).

The polyhedron P̂1 can be defined in a similar way as that for
uniform case except adding one more degree of freedom. That is,
P̂1 = λP̂0 + I · T̂ , where λ = 1+τ

4τ = 5+cn+
√
(cn+9)(cn+1)
16 for the stan-

dard case, and λ = 1
2 for the other cases. Here T̂ ∈ R

2 is determined
by the vertex point rule as discussed in details in the next subsection.

Remark 1 There are some degrees of freedoms to define the gen-
eralized eigen-polyhedra, that is the angle θi and the length li. We
tried different ways to define the generalized eigen-polyhedra and
found that minor changes occur in resulting subdivision surfaces.
We leave it as a future work to design some optimized general-
ized eigen-polyhedra.

4.3. Construct non-uniform subdivision scheme with sharp
features

In this section, we directly utilize the relation P̂1 = MP̂0 to derive
subdivision rules for the non-uniform sharp feature scheme. And the
non-zero elements in the subdivision matrixM are the same as those
for uniform case.

4.3.1. Vertex point rules

The only restriction for the vertex point rule is that it must reduce to
uniform vertex point rule when all the knot intervals are the same.
As V̂ 0 = (0, 0), T̂ = V̂ 1 is easily derived from the equations in Sec-
tion 4.2 and the vertex point rule is also used to define T̂ .

Standard case:When there are no tagged information, referring
to Figure 9(a), we use the vertex point rule in [LFS16], that is,

V̂ k+1 = n− 3

n
V̂ k + 3

n
·
∑n−1

i=0 (miHk
i + fiGk

i )∑n−1
i=0 (mi + fi)

, (6)
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Hk
i = giÊk

i + (1 − gi)V̂ k,

Gk
i = gi(1 − gi+1)Êk

i + gi+1(1 − gi)Êk
i+1

+ gigi+1F̂k
i + (1 − gi)(1 − gi+1)V̂ k,

gi = di−2+di+2+di
di−2+di+2+4di

,

fi = ∏n
j=1, j �=i,i+1 d

+
j ,

mi = fi + fi−1.

(7)

and

T̂ = V̂ 1 = 3

n
·
∑n−1

i=0 (miH0
i + fiG0

i )∑n−1
i=0 (mi + fi)

. (8)

Dart case: Referring to Figure 9(b), we introduce Equation (9)
(which is a minor modification of Equation (6)) to decide the update
of dart vertices.

V̂ k+1 = n− 3

n
V̂ k+

3

n
· (μ ·

[ n−1
2 ]∑
i=0

(miH
k
i + fiG

k
i ) + (1 − μ) ·

n−1∑
i=[ n−1

2 ]+1

(miH
k
i + (9)

fiG
k
i ))/(μ ·

[ n−1
2 ]∑
i=0

(mi + fi) + (1 − μ) ·
n−1∑

i=[ n−1
2 ]+1

(mi + fi)).

Denote{
(x1, y1) = ∑[ n−1

2 ]
i=0 (miH0

i + fiG0
i ),

(x2, y2) = ∑n−1
i=[ n−1

2 ]+1
(miH0

i + fiG0
i ),

then μ in Equation (9) satisfies μy1 + (1 − μ)y2 = 0, namely, μ =
y2

y2−y1 . This choice of μ guarantees that V̂ 1 locates on the line of

V̂ 0Ê0
0 in order to ensure Ê1

0 is a linear combination of V̂ 0 and Ê0
0 . It

can be verified that μ = 1
2 when d0 =, · · · , = dn−1. So

T̂ = V̂ 1 =

3

n
· (μ ·

[ n−1
2 ]∑
i=0

(miH
0
i + fiG

0
i ) + (1 − μ) ·

n−1∑
i=[ n−1

2 ]+1

(miH
0
i + (10)

Figure 9: Vertex point rules in standard case (a) and dart case (b).
Red lines correspond to crease edges.

fiG
0
i ))/(μ ·

[ n−1
2 ]∑
i=0

(mi + fi) + (1 − μ) ·
n−1∑

i=[ n−1
2 ]+1

(mi + fi)).

Crease case: As the generalization of uniform subdivision
scheme in [BLZ00], we naturally use the vertex point rule of non-
uniform cubic B-spline curves as the vertex point equation here (see
Figure 10(a)),

V̂ k+1 = d0Êk+1
n1

+ (dn1 + d0)V̂ k + dn1 Ê
k+1
0

2(dn1 + d0)
, (11)

where

Êk+1
n1

= (dn1 + 2d0)Êk
n1

+ 3dn1V̂
k

2(2dn1 + d0)
, (12)

Êk+1
0 = 3d0V̂ k + (d0 + 2dn1 )Ê

k
0

2(dn1 + 2d0)
. (13)

And

T̂ = V̂ 1 = 2d0(dn1 + 2d0)2Ê0
n1

+ 2dn1 (2dn1 + d0)2Ê0
0

8(dn1 + d0)(2dn1 + d0)(dn1 + 2d0)
. (14)

Corner case: The corner vertices are interpolated (see Fig-
ure 10(b)),

V̂ k+1 = V̂ k, (15)

and

T̂ = V̂ 1 = V̂ 0 = (0, 0). (16)

4.3.2. Face point rules

According to the restriction for the polyhedron P̂1, we have

F̂1
i = λF̂0

i + T̂ . (17)

At this stage of the process, we know T̂ , λ and F̂0
i . So the Cartesian

coordinates of F̂1
i can be computed.

To generalize the face point rule, we create an equation for F̂1
i in

terms of the four vertices of the face corresponding to F̂1
i . Referring

Figure 10: Vertex point rules in crease case (a) and corner case
(qth sector) (b). Red lines represent crease edges.
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Figure 11: Compute the face point rule.

to Figure 11, a reasonable way to define the face point rule is using
a bi-linear equation, where

F̂k+1
i = (1 − βi,1)(1 − βi,2)V̂

k + βi,1(1 − βi,2)Ê
k
i

+ (1 − βi,1)βi,2Ê
k
i+1 + βi,1βi,2F̂

k
i , (18)

with undetermined coefficients βi,1 and βi,2.

To determine βi,1 and βi,2, we let k = 0 in the above equation to
get

F̂1
i = (1 − βi,1)(1 − βi,2)V̂

0 + βi,1(1 − βi,2)Ê
0
i

+ (1 − βi,1)βi,2Ê
0
i+1 + βi,1βi,2F̂

0
i . (19)

Then βi,1 and βi,2 can be solved from the above equation using the
formula in [Flo15a] and [Flo15b]). Denote

A1 = A(F̂1
i , V̂ 0, Ê0

i ), A2 = A(F̂1
i , Ê0

i , F̂
0
i ),

A3 = A(F̂1
i , F̂0

i , Ê0
i+1),A4 = A(F̂1

i , Ê0
i+1, V̂

0),

B1 = A(F̂1
i , Ê0

i+1, Ê
0
i ),B2 = A(F̂1

i , V̂ 0, F̂0
i ).

where

A(x1, x2, x3) :=
∣∣∣∣∣∣
1 1 1
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣.
Then

βi,1 = 2A4

2A4 − B1 + B2 + √
D

, (20)

βi,2 = 2A1

2A1 − B1 − B2 + √
D

, (21)

where D = B2
1 + B2

2 + 2(A1A3 + A2A4).

4.3.3. Edge point rules

According to the restriction for the polyhedron P̂1, we have

Ê1
i = λÊ0

i + T̂ . (22)

As we know T̂ , λ and Ê0
i , so the Cartesian coordinates of Ê1

i can
be computed.

According to whether the associated edge e is tagged or not, the
list of edge point rules in [BLZ00] can be divided into two types:

Normal edge: If the edge e is not tagged, the associated edge
point is a linear combination of the six vertices of the two adja-
cent faces for e in the uniform case [BLZ00]. Inspired by the non-
uniform B-spline refinement rules, we first denote

Pki,1 = (1 − βi−1,1)V̂
k + βi−1,1Ê

k
i−1 (23)

Pki,2 = (1 − βi,2)V̂
k + βi,2Ê

k
i+1 (24)

Pki,3 = (1 − βi−1,1)Ê
k
i + βi−1,1F̂

k
i−1 (25)

Pki,4 = (1 − βi,2)Ê
k
i + βi,2F̂

k
i , (26)

then the edge point is computed via the following equation

Êk+1
i = (1 − ωi,2)

(
1 − ωi,1

2
Pki,1 + ωi,1

2
Pki,2 + 1

2
V̂ k

)

+ ωi,2

(
1 − ωi,1

2
Pki,3 + ωi,1

2
Pki,4 + 1

2
Êk
i

)
. (27)

Let k = 0, then

Ê1
i = (1 − ωi,2)

(
1 − ωi,1

2
P0
i,1 + ωi,1

2
P0
i,2 + 1

2
V̂ 0

)

+ ωi,2

(
1 − ωi,1

2
P0
i,3 + ωi,1

2
P0
i,4 + 1

2
Ê0
i

)
. (28)

It is easy to see that Ê1
i is also a bi-linear combination of four points

P0i,1+V̂ 0

2 ,
P0i,2+V̂ 0

2 ,
P0i,3+Ê0

i
2 and

P0i,4+Ê0
i

2 with coefficients ωi,1 and ωi,2.
Thus, we can solve the coefficients using the same method as in
Section 4.3.2. After solving ωi,1 and ωi,2, the normal edge point rule
is defined via Equation (27).

Crease edge:When the edge e is a crease edge, we represent the
associated edge point as a linear combination of the two end vertices
of e like in [BLZ00]which is illustrated in Figure 12(b). Specifically,
we set

Êk+1
i = (1 − ωi)V̂

k + ωiÊ
k
i . (29)

Figure 12: Edge point rules.
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Figure 13: Surface manipulation with various types of sharp fea-
tures. Red edges in the control mesh are crease edges.

Let k = 0, then

Ê1
i = (1 − ωi)V̂

0 + ωiÊ
0
i . (30)

Denote v1 = Ê1
i − Ê0

i , v2 = Ê1
i − V̂ 0, it is easy to get

ωi = |v1|
|v1| + |v2| . (31)

Obviously, when applying the above subdivision scheme to a 3D
mesh, the entire resulting surface is divided into several patches by
the crease curves. It is easy to theoretically analyse that each surface
patch is a non-uniform Catmull–Clark surface bounded by these
crease curves which are non-uniform cubic B-splines. Each surface
patch is reduced to a NURBS surface in the regular region. More-
over, since the knot intervals on opposing edges in a control mesh
are identical, the subdivision matrix M is stationary without the in-
fluence of the updates of knot intervals. Of course, the new scheme
is reduced to the uniform scheme described in Section 2 when all
the knot intervals of the initial control mesh are equal.

5. Results and Discussion

In this section, we present experimental results of sharp features
designed by our method and the comparisons with previous ap-
proaches are also provided. Experimental examples demonstrate
that applying previous subdivision rules for arbitrary control meshes
with non-uniform knots and arbitrarily specified tags yields good
results.

As demonstrated in Figures 13 and 14, our method can gener-
ate surface models with various types of sharp features including
darts, creases and corners. All the surfaces in Figure 13 are gener-
ated from the same control mesh by applying diverse tags. Figure 14
shows a character model, where we use different sharp features on
the mouth, cheeks, eyelids and brow ridges. All these models are
parameterized by the average length of the edges of the control
grid [LC18].

Figure 14: Character animation model. Red edges in the control
mesh are marked as crease edges. Note that the two edges closest to
nose are adjacent to an extraordinary vertex and the middle point
of the upper lip is portrayed as a corner point.

Figure 15: Sharp features are added to two models with differ-
ent tessellations. The bottom model is created by applying the non-
uniform subdivision on the up one and set the corresponding edges
to be crease edges. The knot intervals of dark blue edges are 1, those
of red edges are 3 and the red edges are crease edges.

Figures 15 and 16 show two real-world models. Both models are
created through the commercial NURBS software–T-spline plugin
of Rhinoceros. The knot information is designed from the original
control meshes which are also shown in the figures. The sharp fea-
tures are created using our new subdivision scheme. In Figure 15,
we create sharp features for two different tessellations. The bottom
model is created by applying the non-uniform subdivision on the up
one and set the corresponding edges to be crease edges. We can ob-
serve that both tessellations generate satisfactory sharp features but
the features of the up model are sharper.

Even for the regular region, our approach can produce sharp
features where NURBS cannot do. Two regular B-spline control
meshes with different feature edges are shown in Figure 17. Our
new subdivision scheme can create a very smooth desirable crease
curve. We should mention that these kinds of sharp features are very
common in NURBS-based modelling systems.
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Figure 16: Car model. The knot intervals of red edges are 3, those
of other edges are 1 and the red edges are also crease edges.

Figure 17: The control mesh is topologically isomorphic to torus
and the red edges are crease edges. However, this type of sharp fea-
tures cannot be produced by NURBS.

The approach in [SZSS98] can generate unpredictable sharp fea-
tures for non-uniform parameterization. Figure 18(a) and (b) shows
the results of a wedge model with different knot intervals, which
produce unacceptable wrinkles. On contrast, our method produces
natural and wrinkle-free sharp features for the same model, as
shown in Figure 18(c) and (d).

Similar to [KSD14a] and [DKT98], our method can also pro-
duce semi-sharp features by interactively mixing the sharp rule and
smooth rule throughout the subdivision process. Specifically, af-
ter subdividing a tagged initial mesh several times, we clear the
tagged information in the control mesh and continue to subdivide
until the limit surface is obtained. We associate each original edge
with a sharpness factor s, which indicates the subdivision times be-
fore clearing the tagged information and the value of s on different
edges can be different. An example of a blending function with dif-
ferent sharp factors is shown in Figure 19.

Our method can also be used to implement shape editing on
surfaces, where crease curves generated by our method are non-
uniform B-spline curves. An example is illustrated in Figure 20.

Figure 18: A wedge model with different kinds of sharp features
using the method in [SZSS98] by assigning zero knot interval to
different edges (Figure (a) and (b)). The corresponding results of
our method are shown in Figure (c) and (d).

In addition, the crease curves on the subdivision surface are end-
point interpolating non-uniform cubic B-splines curves and the re-
sulting surfaces can be evaluated exactly at arbitrary parameter val-
ues based on the similar method as that in [Sta98]. This permits
many algorithms and analysis techniques specifically developed for

Figure 19: Semi-sharp features generated by our method. For sim-
plicity, the sharpness factors on the six edges adjacent to the central
extraordinary vertex vary uniformly, while those on the other edges
in the control mesh are always zero.
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Figure 20: After subdividing a cube four times, some edges in the
control mesh are marked as crease edges to produce the words
‘PG2019’ and ‘CGF’. To highlight these glyphs, we made a minor
overall translation of the crease edges along the vertical direction
before continuing the subdivision process.

parametric surfaces to work for the new subdivision representation.
Furthermore, we can seamlessly merge two limit surfaces because
the boundary curves of the subdivision surface depend only on the
boundary control points.

6. Conclusions and Future Work

Although uniform subdivision is very popular in computer graph-
ics, but it is not compatible with NURBS representations. Thus
NURBS-compatible subdivision is indispensable in order to use
subdivision in CAD. On the other hand, complex sharp features
are required in many CAD product design. So it is imperative
to have a NURBS-compatible subdivision with this capability. In
this paper, we generalize the uniform sharp feature subdivision
scheme in [BLZ00] to non-uniform case using the generalized
eigen-polyhedron technique. The method also supports semi-sharp
features and glyph editing on surfaces. Experimental examples
demonstrate that our method can generate various types of sharp
features with pleasant visual effects. The subdivision surfaces are
wrinkle free at the extraordinary vertices for non-uniform parame-
terization while the other existing approaches are not.

According to our observation, the subdivision surfaces by our
method areG1 continuous at the interior extraordinary points. How-
ever, theoretical analysis about the convergence and continuity are
very challenging due to arbitrary parameterizations. And no non-
uniform subdivision schemes have made any progress on this topic
so far. The subdivisionmatrixM designed according to our approach

must have two identical eigenvalues λ, which always turned out to
be the second and third eigenvalues ofM bymany tests, but its math-
ematical proof can only be left as a future research.
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