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Abstract
This article presents an enhanced version of our previous work, hybrid nonuni-
form subdivision (HNUS) surfaces, to achieve optimal convergence rates in
isogeometric analysis (IGA). We introduce a parameter 𝜆 ( 1

4
< 𝜆 < 1) to con-

trol the rate of shrinkage of irregular regions, so the method is called tuned
hybrid nonuniform subdivision (tHNUS). Thus, HUNS is a special case of
tHNUS when 𝜆 = 1

2
. While introducing 𝜆 in hybrid subdivision significantly

complicates the theoretical proof of G1 continuity around extraordinary ver-
tices, reducing 𝜆 can recover optimal convergence rates when tHNUS func-
tions are used as a basis in IGA. From the geometric point of view, tHNUS
retains comparable shape quality as HNUS under nonuniform parameteri-
zation. Its basis functions are refinable and the geometric mapping stays
invariant during refinement. Moreover, we prove that a tHNUS surface is
globally G1-continuous. From the analysis point of view, tHNUS basis func-
tions form a nonnegative partition of unity, are globally linearly independent,
and their spline spaces are nested. In the end, we numerically demonstrate
that tHNUS basis functions can achieve optimal convergence rates for the
Poisson’s problem with nonuniform parameterization around extraordinary
vertices.
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1 INTRODUCTION

Isogeometric analysis (IGA) has emerged as a powerful technology to unify geometric modeling and numerical
simulation,1,2 which employs the basis functions used in computer-aided design (CAD) also for simulations. IGA has
grown into a large family of numerical methods incorporating various spline techniques, such as nonuniform ratio-
nal B-splines (NURBS),1 hierarchical B-splines,3 T-splines,4-11 polynomial splines over T-meshes,12 locally refinable
B-splines,13 and subdivision methods.14-20

The study of extraordinary vertices has been one of the most active research directions in IGA because they are
inevitable in complex watertight geometric representations. An extraordinary vertex in a quadrilateral mesh is an inte-
rior vertex shared by other than four faces. Along this direction, simultaneously fulfilling the requirements from both
design and analysis is a significant challenge. Numerous methods have been developed over the past few years, but among
them, only a few constructions can achieve optimal convergence rates in IGA, such as geometrically smooth multipatch
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construction,21,22 degenerated Bézier construction,23-25 manifold-based construction,26 and blended C0 construction for
unstructured hexahedral meshes.27 A common simplification in all these constructions is to adopt uniform parameter-
ization around extraordinary vertices, that is, the surrounding knot intervals are assumed to be the same. While the
support of nonuniform parameterization is a necessary step forward to be compatible with the current industry stan-
dard in CAD, that is, NURBS, the related study on the above-mentioned constructions has not been reported in the
literature.

On the other hand, subdivision methods, as a generalization of splines, provide a flexible means to deal with
extraordinary vertices, where an infinite series of spline patches are smoothly joined around extraordinary vertices. The
combination of flexibility and global smoothness makes them not only the standard in the computer animation indus-
try but also a promising candidate for IGA. Indeed, some of the subdivision methods have been studied in the context of
IGA, such as the use of Loop subdivision in thin-shell analysis15 and the development of Catmull–Clark solids.16 How-
ever, several challenging problems need to be carefully investigated before we can fully leverage the power of subdivision
methods, such as developing efficient quadrature rules to integrate infinite piecewise polynomials around extraordinary
vertices,28,29 supporting nonuniform parameterizations to be compatible with NURBS,30-34 and recovering optimal con-
vergence rates.20 This article intends to address both nonuniform parameterization and the optimal convergence behavior
at the same time.

To achieve optimal convergence, the present work is motivated by the idea of tuned Catmull–Clark subdivision.20

Tuned subdivision is a well-studied subject aiming to optimized subdivision stencils (i.e., coefficients in the subdivi-
sion matrix) to improve certain properties of a subdivision scheme, for example, to minimize curvature variations to
achieve a better surface fairness.35-37 Recently, it has been explored in the context of IGA to improve accuracy38 as well
as convergence.20 In particular, the tuned Catmull–Clark subdivision is the first work in IGA that is able to use a subdi-
vision scheme to achieve optimal convergence rates (in the L2-norm error by solving the Poisson’s equation). However,
the optimization framework proposed there only works for uniform parameterization and cannot be extended to nonuni-
form subdivision schemes because the subdivision stencils in a uniform subdivision scheme like Catmull–Clark only
depend on the valence of a given extraordinary vertex, and the optimization can be focused on a finite number of stencils
of interest. Thus, optimization only needs to be done once and the optimized stencils can be stored for future use. On
the other hand, the subdivision stencils in a nonuniform subdivision depend on not only the valence of an extraordinary
vertex, but also the surrounding knot intervals, leading to infinite possible cases of stencils. Therefore, it is not feasible
to apply optimization to nonuniform subdivision because otherwise it would be very time-consuming and also problem
specific.

To deal with nonuniform parameterization, we follow our preceding work on hybrid nonuniform subdi-
vision (HNUS),14 which generalizes bicubic NURBS to arbitrary topology with proved G1 continuity. HNUS
features high quality in geometric modeling under nonuniform parameterization. When applied to IGA,
HNUS basis functions lead to improved yet suboptimal convergence rates compared with Catmull–Clark
subdivision.

In this work, we introduce a tuning parameter 𝜆 ∈
(

1
4
, 1
)

in HNUS to control the shrinkage rate in irregu-
lar regions such that we can recover optimal convergence under nonuniform parameterization. The enhanced ver-
sion of HNUS is therefore called tuned hybrid nonuniform subdivision (tHNUS). In fact, the parameter 𝜆 is the
subdominant eigenvalue (the second and third eigenvalues which are equal) of the tHNUS subdivision matrix,
that plays a crucial role in surface continuity39 as well as the convergence performance.20 Note that tHNUS coin-
cides with the original HNUS when 𝜆 = 1

2
. From the geometric point of view, tHNUS retains comparable shape

quality as HNUS. Its basis functions are refinable and the geometric mapping stays invariant during refinement.
Moreover, we prove that the tHNUS surface is globally G1-continuous. From the analysis point of view, tHNUS
basis functions form a nonnegative partition of unity, are globally linearly independent, and their spline spaces
are nested. Moreover, we numerically demonstrate that tHNUS can achieve optimal convergence rates in the Pois-
son’s problem by reducing 𝜆, regardless of whether parameterization around extraordinary vertices is uniform or
not. As an interesting side product, we also show that simply applying the standard Gauss quadrature rule to every
element (close to or far away from extraordinary vertices) in tHNUS does not influence simulation accuracy or
convergence.

The reminder of the article is organized as follows. Section 2 presents the subdivision rules of tHNUS. The proof
of G1 continuity for tHNUS surfaces is given in Section 3. The tHNUS basis functions their properties are discussed in
Section 4. In Section 5, we present numerical tests of both geometric modeling and IGA. Section 6 concludes the article
and discusses the future work.
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2 THNUS SURFACES

Our discussion assumes that the input control mesh is a regular manifold mesh where all the faces are quadrilaterals
(or quads). If initially a mesh has nonquad faces, we apply a single NURSS (Nonuniform Recursive Subdivision Surface)
refinement30,34 to obtain an all-quad mesh. A nonnegative scalar, called the knot interval, is assigned to each edge of the
control mesh. We further assume that in each face, the knot intervals on the opposite edges coincide. A nonuniform
parameterization is obtained by assigning different knot intervals to edges as long as the assumption of knot intervals
holds.

The tHNUS consists of two steps of rules: the topological step to manipulate mesh connectivity, and the geometric step
to update the coordinates of involved control points. Each step of rules can be further divided into that for the first level
and those for the subsequent levels.

2.1 Topological step

As shown in Figure 1, we start with the topological step. The rule corresponding to the first level converts the
input quad mesh (Figure 1(A)) to its hybrid counterpart (Figure 1(B)). Each extraordinary vertex is replaced by a
nonquad face, whereas each spoke edge is replaced by a quad face. An edge is a spoke edge if it touches a cer-
tain extraordinary vertex. To make the resulting mesh conforming, additional vertices and edges are further replaced
by certain quad faces; see Figure 1(B). All the edges of each nonquad face are assigned with a zero knot interval.
Under the assumption of knot intervals, this means that all the newly added faces have a zero (parametric) mea-
sure. In regular regions, introducing zero-knot-interval edges leads to a reduction in continuity of basis functions from
C2 to C1.

The topological rule for the subsequent levels defines how to split different types of faces in a given hybrid mesh.
There are three types of faces depending on the knot intervals of their edges. First, for a zero-measure face whose edges
all have a zero knot interval, no split is needed. Thus, all the nonquad faces fall in this case and stay unchanged. Next, if
a zero-measure face has a pair of opposite edges with nonzero knot intervals, then the face is split into two. Finally, every
nonzero-measure face is split into four subfaces. According to this rule, Figure 1(C) shows the (topological) split of the
hybrid mesh in Figure 1(B).

F I G U R E 1 The
topological steps of tuned hybrid
nonuniform subdivision. (A)
The input quad mesh, (B)
converting the input quad mesh
(light gray dots and lines) to the
first-level hybrid mesh (black
lines, and blue and red dots), and
(C) refinement of (B) to obtain a
subsequent-level hybrid mesh

(A)

(B) (C)
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2.2 Geometric step

We next introduce the geometric step of tHNUS to compute the vertex coordinates in the hybrid mesh. At the first
level, the rule to update regular vertices is the same as NURBS refinement, whereas the rule to compute vertices of
a nonquad face plays a crucial role in shape quality and thus needs careful treatment. Two options are available:14 a
sophisticated but rather complicated treatment, and a simple explicit solution. The sophisticated solution is derived
such that the limit surface of tHNUS has the same limit point and tangent plane as that of the nonuniform subdi-
vision via eigen-polyhedron,34 which is taken as the reference because it shows demonstrated shape quality under
nonuniform parameterization. However, the computation is rather complicated and there is no explicit formula
available.

Alternatively, the simple explicit solution defines each nonquad vertex as a convex combination of certain points in
the input quad mesh. We primarily adopt this treatment in the article because the first-level geometric rule has nothing to
do with the proof of surface G1 continuity or the convergence performance in IGA. Interested readers may refer
to Reference 14 for the eigen-polyhedron-based treatment. With reference to Figure 2(A), the explicit first-level geometric
rule is given as

⎧⎪⎪⎨⎪⎪⎩

P1,1
i = Fi,

P1,0
i = piFi + (1 − pi)Ei,

P0,1
i = qiFi + (1 − qi)Ei+1,

P0,0
i = piqiFi + (1 − pi) qiEi + pi (1 − qi)Ei+1 + (1 − pi) (1 − qi)V ,

pi =
di−1

di−1 + di+1 + ai+1
, qi =

di+2

di+2 + di + ai
,

where Ei, Ei+ 1, Fi, and V are the vertices of the ith face (indexing local to each extraordinary vertex) in the input quad
mesh, Pk,l

i (k, l ∈ {0, 1}) are the vertices of the ith face in the first-level hybrid mesh, and pi and qi are coefficients
computed from knot intervals ai, di, and so forth.

Next, we provide the geometric rule of tHNUS for the subsequent levels. Referring to Figure 2(B,C) and given knot
intervals ai, di, the points P

0,0
i , P

1,0
i , P

1,1
i and P

0,1
i in the refined hybrid mesh are defined as

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P
0,0
i = (1 − 𝜆)C + 𝜆P0,0

i + 2𝜆𝛼i

(
−nP0,0

i +
n−1∑
j=0

(
1 + 2 cos

(
2(j−i)𝜋

n

))
P0,0

j

)
,

P
1,1
i =

didi+1P1,1
i + di (di+1 + 2ai+1)P1,0

i + di+1 (di + 2ai)P0,1
i +(di + 2ai)(di+1 + 2ai+1)P0,0

i

4(di + ai)(di+1 + ai+1)
,

P
1,0
i =

didi+1P0,1
i−1 + di (di+1 + 2di−1)P1,0

i + di+1 (di + 2ai)P0,0
i−1 +(di + 2ai)(di+1 + 2di−1)P0,0

i

4(di−1 + di+1)(di + ai)
,

P
0,1
i−1 =

didi−1P1,0
i + di (2di+1 + di−1)P0,1

i−1 + di−1 (di + 2ai)P0,0
i +(di + 2ai)(2di+1 + di−1)P0,0

i−1

4(di−1 + di+1)(di + ai)
,

(1)

where 𝜆 ∈
(

1
4
, 1
)

, 𝛼j = 1
n

dj−1dj+2

(dj−1+dj+1)(dj+dj+2), and

C =
∑n−1

i=0
(

diP0,0
i+1 + di+2P0,0

i

)
(di−1 + di+3)∑n−1

j=0
(

dj + dj+2
)(

dj−1 + dj+3
) .

=
n−1∑
i=0

𝛽iP0,0
i . (2)

Points Pk,l
i denote those in the given hybrid mesh, and the range of 𝜆 will be explained in the following section. The

remaining points are computed by the NURBS mid-knot insertion. For example,

P
2,0
i = aiP

1,0
i

2(di + ai)
+ 1

4
(di+1 + 2di−1)P1,0

i + di+1P0,1
i−1

di+1 + di−1
+ diP

3,0
i

2(di + ai)
,

P
2,1
i = aiP

1,1
i

2(di + ai)
+ 1

4
di+1P1,1

i +(di+1 + 2ai+1)P1,0
i

di+1 + ai+1
+ diP

3,1
i

2(di + ai)
,
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P
2,2
i =

P1,1
i

4
+ aiai+1P

1,1
i + diai+1P

3,1
i + aidi+1P

1,3
i + didi+1P

3,3
i

4(di + ai)(di+1 + ai+1)

+ ai+1

4(di+1 + ai+1)
M1 +

di+1

4(di+1 + ai+1)
M3 +

di

4(di + ai)
M2 +

ai

4(di + ai)
M4, (3)

where

M1 =
di+1P1,1

i +(di+1 + 2ai+1)P1,0
i

2(di+1 + ai+1)
, M2 =

P1,1
i + P2,1

i

2
,

M4 =
P1,1

i +(di + 2ai)P0,1
i

2(di + ai)
, M3 =

P1,1
i + P1,2

i

2
. (4)

Remark 1. All the computations of these points are the same as those in HNUS except for P
0,0
i , the vertices of nonquad

faces, where the tuning parameter 𝜆 is introduced to control the size of shrinkage in an updated polygon: the smaller 𝜆
is, the more the polygon shrinks. As a result, isoparametric lines become more concentrated around extraordinary ver-
tices. We will see such examples in Section 5. When 𝜆 = 1

2
, the computation of P

0,0
i coincides with that in HNUS, and thus

tHNUS is equivalent to HNUS in this particular case. However, the generalization via introducing 𝜆 is not as straight-
forward as it appears. The key insight is that 𝜆 turns out to be the subdominant eigenvalues (i.e., the second and third
eigenvalues) of the subdivision matrix in tHNUS. As has been reported,20 convergence behavior in a subdivision scheme
is mostly influenced by the subdominant eigenvalues. Therefore, tuning 𝜆 is equivalent to “controlling” convergence. We
will have more detailed discussion about how 𝜆 improves convergence with specific examples in Section 5.

Remark 2. We introduce 𝜆 explicitly to the formula of P
0,0
i . Note that 𝜆 is a single parameter for all situations. It is inde-

pendent of the valence of extraordinary vertices and the choice of knot intervals. However, this is only possible when

F I G U R E 2 The geometric
steps of tuned hybrid
nonuniform subdivision. (A)
Computation of points (P0,0

i , P1,0
i ,

P0,1
i , and P1,1

i ) in the first-level
hybrid mesh from those (V , Ei,
Ei+ 1, and F) in the input quad
mesh; (B) a given hybrid mesh
with knot intervals di, ai and
di+ 1; and (C) the refined hybrid
mesh of (B)

(A)

(B) (C)
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bounded curvature is not of primary interest. tHNUS generally does not have bounded curvature. Nonetheless, bounded
curvature under nonuniform parameterization remains an open problem and may not be available at all.

3 PROOF OF CONTINUITY

In order to prove tHNUS surfaces to be G1 continuous, we need to prove that the spectrum of the subdivision matrix
satisfies certain constraints and the associated characteristic map is regular and injective. Note that introducing 𝜆 to
HNUS indeed significantly complicates the proof of G1 continuity. Referring to Figure 3 for the notations, the subdivision
rule can be written into the following equations since the neighbor knot intervals ai equals to di with enough subdivision
levels.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P
0,0
j = (1 − 𝜆)C + 𝜆P0,0

j + 2𝜆𝛼j

[
−nP0,0

j +
n−1∑
i=0

(
1 + 2 cos

(
2(j−i)𝜋

n

))
P0,0

i

]
,

P
1,0
j =

3
(
2dj−1 + dj+1

)
8
(

dj−1 + dj+1
) P0,0

j +
3dj+1

8
(

dj−1 + dj+1
)P0,0

j−1 +
(
2dj−1 + dj+1

)
8
(

dj−1 + dj+1
)P1,0

j +
dj+1

8
(

dj−1 + dj+1
)P0,1

j−1,

P
0,1
j−1 =

3dj−1

8
(

dj−1 + dj+1
)P0,0

j +
3
(

dj−1 + 2dj+1
)

8
(

dj−1 + dj+1
) P0,0

j−1 +
dj−1

8
(

dj−1 + dj+1
)P1,0

j +
(

dj−1 + 2dj+1
)

8
(

dj−1 + dj+1
)P0,1

j−1,

P
1,1
j = 9

16
P0,0

j + 3
16

P0,0
j + 3

16
P0,0

j + 1
16

P1,1
j .

(5)

We arrange them in a matrix form M = SnM, that is,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P
0,0
0

⋮

P
0,0
n−1

P
1,0
0

⋮

P
0,1
n−1

P
1,1
0

⋮

P
1,1
n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Qn 0 0

E0 … 0
⋇ ⋮ ⋱ 0 0

0 0 En−1
1

16
0 0

⋇ ⋇ ⋮ ⋱

0 0 1
16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P0,0
0

⋮

P0,0
n−1

P1,0
0

⋮

P0,1
n−1

P1,1
0

⋮

P1,1
n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

F I G U R E 3 The notations to define the subdivision matrix around a
nonquad face
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Denote Qn = (Qi, j), where i, j∈ {0, 1, … , n− 1}, and then we have

Qi,j =
⎧⎪⎨⎪⎩
(1 − 𝜆)𝛽j + 2

(
1 + 2 cos

(
2(j−i)𝜋

n

))
𝜆𝛼i, j ≠ i

𝜆 +(1 − 𝜆)𝛽i − 2(n − 3) 𝜆𝛼i, j = i

and

Ej =
⎛⎜⎜⎜⎝

2dj−1+dj+1

8(dj−1+dj+1)
dj+1

8(dj−1+dj+1)
dj−1

8(dj−1+dj+1)
dj−1+2dj+1

8(dj−1+dj+1)

⎞⎟⎟⎟⎠ .
Lemma 1. Given an extraordinary vertex of any valence and an arbitrary choice of positive knot intervals, 1 > 𝜆 >

1
4

, the
eigenvalues of Qn satisfy

𝜆1 = 1 > 𝜆2 = 𝜆3 = 𝜆 > |𝜆k|, k = 4, 5, … ,n. (7)

Proof. We use the discrete Fourier transform to compute the eigenvalues of Qn. Let pk and pk (k= 0, … , n− 1) be the
Fourier vectors corresponding to Pj and Pj, respectively, that is,

pk = 1
n

n−1∑
j=0

P0,0
j 𝜔

jk
, pk = 1

n

n−1∑
j=0

P
0,0
j 𝜔

jk
, (8)

P0,0
k =

n−1∑
j=0

pj𝜔
jk,P

0,0
k =

n−1∑
j=0

pj𝜔
jk, (9)

where 𝜔 = e
2𝜋
n
𝜄 and 𝜔 = e−

2𝜋
n
𝜄 (𝜄 is the imaginary unit). Now the subdivision rule can be formulated in terms of the Fourier

vectors,

n−1∑
k=0

pk𝜔
jk =

n−1∑
k=0

(n−1∑
j=0

(1 − 𝜆)𝛽j𝜔
jk

)
pk + p0 + 𝜆𝜔jp1 + 𝜆𝜔j(n−1)pn−1 + 2𝜆

(1
2
− n𝛼j

) n−2∑
k=2

pk𝜔
jk. (10)

Using the inverse discrete Fourier transform, we obtain

⎛⎜⎜⎜⎜⎜⎝

p0

p1

⋮

pn−1

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

1 (1 − 𝜆)𝛽1 … (1 − 𝜆)𝛽n−1

0 𝜆 ⋇ 0
⋮ ⋮ Bn−3 ⋮

0 0 ⋇ 𝜆

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

p0

p1

⋮

pn−1

⎞⎟⎟⎟⎟⎟⎠
, (11)

where

Bn−3 = 𝜆I − 2𝜆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n−1∑
j=0

𝛼j

n−1∑
j=0

𝛼j𝜔
j …

n−1∑
j=0

𝛼j𝜔
(n−4)j

n−1∑
j=0

𝛼j𝜔
(n−1)j

n−1∑
j=0

𝛼j …
n−1∑
j=0

𝛼j𝜔
(n−5)j

⋮ ⋮ ⋱ ⋮
n−1∑
j=0

𝛼j𝜔
4j

n−1∑
j=0

𝛼j𝜔
5j …

n−1∑
j=0

𝛼j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=∶ 𝜆I − 2𝜆Gn−3. (12)

We can find that the matrix Qn has its first three eigenvalues 1, 𝜆, and 𝜆. Although the eigenvalues 𝜇k (k= 1, … , n− 3)
of Gn− 3 cannot be computed explicitly, we can conclude that 0 < 𝜇k < 1 according to Reference 14. Denote 𝜆B,i to be
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the eigenvalues of Bn− 3. As Gn− 3 is positive definite, 1
2

I − 1
2𝜆

Bn−3 (=Gn− 3) is also a positive definite matrix, which
means that 𝜆B,i < 𝜆. On the other hand, I −Gn− 3 is a positive definite matrix as well because 𝜇k < 1, and equivalently,
I −
(

1
2

I − 1
2𝜆

Bn−3

)
is positive definite, which means that 𝜆B,i > −𝜆. Therefore, we complete the proof. ▪

Lemma 2. Given an extraordinary vertex of any valence and an arbitrary choice of positive knot intervals, if 1 > 𝜆 >
1
4

, then
the eigenvalues of Sn satisfy

𝜆1 = 1 > 𝜆2 = 𝜆3 = 𝜆 > |𝜆k|,where k = 4, 5, … , 4n. (13)

Proof. The eigenvalues of Sn consist of those of Qn, Ei, and 1
16

In, where In is an n×n identity matrix. As proved in Lemma 1,
the first three eigenvalues of Qn are 1, 𝜆, 𝜆, and the remaining ones are less than 𝜆. 1

16
In has n equal eigenvalues 1

16
(< 𝜆). It

is also straightforward to verify that the eigenvalues of the 2× 2 matrix Ei are 1
4

(< 𝜆) and 1
8

(< 𝜆). Therefore, we conclude
that the eigenvalues of Sn are

𝜆1 = 1 > 𝜆2 = 𝜆3 = 𝜆 > |𝜆k|,where k = 4, 5, … , 4n. (14)
▪

The next step is to compute the characteristic map and prove that it is regular and injective. We first prove the following
lemma.

Lemma 3. Let Pi =
(

cos
(

2i𝜋
n

)
, sin

(
2i𝜋
n

))
∈ R2 (i= 0, … , n− 1), CP =

∑n−1
i=0 𝛽iPi, and P be an n× 2 vector containing all

Pi, that is, P= [P0, P1, … , Pn− 1]T. Then we have

Sn (P − CP) = 𝜆(P − CP). (15)

Proof. Denote P = SnP, and we can obtain

Pj − CP = 𝜆
(

Pj − CP
)
+ 2𝜆𝛼j

[
−n
(

cos
(

2j𝜋
n

)
, sin

(
2j𝜋
n

))
+

n−1∑
i=0

(
1 + 2 cos

(
2(j − i)𝜋

n

))(
cos
(2i𝜋

n

)
, sin

(2i𝜋
n

))]

= 𝜆
(

Pj − CP
)
+ 2𝜆𝛼j

[
−n
(

cos
(

2j𝜋
n

)
, sin

(
2j𝜋
n

))
+

n−1∑
i=0

2 cos
(

2(j − i)𝜋
n

)(
cos
(2i𝜋

n

)
, sin

(2i𝜋
n

))]
= 𝜆

(
Pj − CP

)
+ 2𝜆𝛼j

[
− n

(
cos
(

2j𝜋
n

)
, sin

(
2j𝜋
n

))
+

n−1∑
i=0

(
cos
(

2j𝜋
n

)
+ cos

(
2(j − 2i)𝜋

n

)
, sin

(
2j𝜋
n

)
− sin

(
2(j − 2i)𝜋

n

))]
= 𝜆

(
Pj − CP

)
.

Since the above equation holds for any 0≤ j≤n− 1, we conclude

Sn (P − CP) = 𝜆(P − CP). (16)
▪

Lemma 4. The characteristic map of tHNUS is regular and injective for any valence extraordinary vertices and any positive
knot intervals if 𝜆 ∈

(
1
4
, 1
)

.

Proof. To prove that the characteristic map is regular and injective, we need a 4× 4 grid of control points. We first compute
the coordinates of this control grid that is used to define the characteristic map. The key idea is based on the fact that
applying subdivision to the control grid of a characteristic map is equivalent to scaling the control grid by 𝜆.

Referring to Figure 4, we have control points Pj,k
i , where 0≤ j, k≤ 3 (0≤ i≤n− 1). According to Lemma 3,

if we let P0,0
i =

(
cos
(

2i𝜋
n

)
, sin

(
2i𝜋
n

))
∈ R2, C =

∑n−1
i=0 𝛽iP0,0

i , then we have Sn[P0,0
0 − C, … ,P0,0

n−1 − C]T =
𝜆[P0,0

0 − C, … ,P0,0
n−1 − C]T .
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F I G U R E 4 The control
points of the characteristic map of
tuned hybrid nonuniform
subdivision. (A) Shows the control
points P0j

i and Pj0
i while (B) shows

the rest of the control points of the
characteristic map

(A) (B)

Further let Ei =
di

di+di+2
P0,0

i+1 +
di+2

di+di+2
P0,0

i , p = P0,0
i − C, v=Ei− 1 −C and w=Ei −C. By definition, we have

1
4

(
di+1 + 2di−1

2di+1 + 2di−1

(
P1,0

i − P0,0
i

)
+ di+1

2di+1 + 2di−1

(
P0,1

i−1 − P0,0
i−1

))
+ 1

2
(Ei−1 − C) = 𝜆

(
P1,0

i − P0,0
i

)
,

1
4

(
di−1

2di+1 + 2di−1

(
P1,0

i − P0,0
i

)
+ di−1 + 2di+1

2di+1 + 2di−1

(
P0,1

i−1 − P0,0
i−1

))
+ 1

2
(Ei−1 − C) = 𝜆

(
P0,1

i−1 − P0,0
i−1

)
.

Solving the linear systems, we obtain

P1,0
i − P0,0

i = P0,1
i−1 − P0,0

i−1 = 4(1 − 𝜆)
4𝜆 − 1

v + 4(1 − 2𝜆)
8𝜆 − 1

(p − v). (17)

Similarly, we compute P2,0
i , P3,0

i , P0,3
i−1, P0,3

i−1 as follows,

P2,0
i − P1,0

i = 18(1 − 𝜆)
(8𝜆 − 1)(4𝜆 − 1)

v + 18(1 − 2𝜆)
(16𝜆 − 1)(8𝜆 − 1)

(p − v),

P3,0
i − P2,0

i = 6(1 − 𝜆)(1 + 𝜆)
(8𝜆 − 1)𝜆(4𝜆 − 1)

v +
3
(
1 − 4𝜆2)

(16𝜆 − 1)𝜆(8𝜆 − 1)
(p − v).

We can also compute the remaining control points Pj,k
i (1≤ j, k≤ 3), whose coefficients are complex expressions in 𝜆.

The detailed expressions are given in the Appendix.
With all these control points, we can now extract the Bézier control points for patches P1, P2, and P3; see Figure 4(B).

For example, in the patch P2, let Bj,k
2 (j, k= 0, … , 3) be the 4× 4 Bézier control points. We denote Sj,k

2 = Bj+1,k
2 − Bj,k

2 and
Tj,k

2 = Bj,k+1
2 − Bj,k

2 . All Sj,k
2 and Tj,k

2 can be written as linear combinations of p, v and w, where the coefficients are again
complex expressions in 𝜆; see Appendix. We further plot some of these coefficients as functions of 𝜆 ∈

(
1
4
, 1
)

; see Figures 5

and 6. We observe that Sj,k
2 are convex combinations of vectors p, v and −w, while Tj,k

2 are convex combinations of p, −v
and w. Moreover, C is a convex combination of the points Ei from Equation (2), so the patch P2 is regular and injective.
As a result, all the control points Pj,k

i (0≤ j, k≤ 3) lie in the region bounded by two rays CEi− 1 and CEi, which means that
any two different patches must not intersect with one another. Similar results can also be achieved for patches P1 and P3.
Therefore, the characteristic map of tHNUS is regular and injective for any 𝜆 ∈

(
1
4
, 1
)

, any valence extraordinary vertices
and any positive knot intervals. ▪

Theorem 1. Given an arbitrary 2-manifold control mesh with any choice of positive knot intervals and any 𝜆 ∈
(

1
4
, 1
)

, the
corresponding tHNUS limit surface is globally G1-continuous.

Proof. The theorem is a direct result of Lemmas 1,2, and 4. ▪
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F I G U R E 5 The plots of the coefficients of Sj,k
2 in terms of 𝜆 ∈

(
1
4
, 1
)

, where the x-axis represents 𝜆 and y-axis represents the value of

the coefficients. The green, blue and orange lines represent coefficients corresponding to v, p, and w, respectively. Each Sj,k
2 is a convex

combination of p, v, and −w

F I G U R E 6 The plots of the coefficients of Tj,k
2 in terms of 𝜆 ∈

(
1
4
, 1
)

, where the x-axis represents 𝜆 and y-axis represents the value of

the coefficients. The green, blue and orange lines represent coefficients corresponding to v, p, and w, respectively. Each Tj,k
2 is a convex

combination of p, −v, and w

4 HYBRID SUBDIVISION BASIS FUNCTIONS

In this section, we introduce basis functions of HNUS. The derivation of such subdivision functions essentially follows
Stam’s method for Catmull–Clark subdivision.40 However, there are two major differences. First, Catmull–Clark basis
functions are associated with the input quad control mesh, whereas tHNUS basis functions are associated with the hybrid
control mesh; see Figure 1(A). Second, Catmull–Clark subdivision features uniform knot intervals everywhere, leading
to a subdivision matrix that only depends on the valence of a particular extraordinary vertex. By contrast, tHNUS (or
HNUS) supports general nonuniform knot intervals, so the subdivision matrix depends not only on the valence of the
extraordinary vertex, but also on the surrounding knot intervals.

4.1 Definition of basis functions

We now introduce how tHNUS basis functions are defined on a hybrid control mesh. We start with distinguishing different
types of faces. Recall that there exists both quad and nonquad faces in the hybrid mesh, and each edge in a nonquad face
is assigned with a zero knot interval by construction. The knot intervals of other edges inherit from the input quad mesh
and are constrained by the assumption that opposite edges in a quad face have the same knot interval. Moreover, note
that edges perpendicular to the boundary also have zero knot intervals to make use of open knot vectors. An example
of the knot interval configuration is shown in Figure 7(B), where the hybrid mesh is obtained from the input mesh in
Figure 7(A).

We identify faces of zero-measure and nonzero-measure according to their parametric areas, which are computed
using knot intervals. Zero-measure faces are not used in geometric representation and have no contribution to analysis.
Note that all the nonquad faces and boundary faces have a zero-measure. The nonzero-measure faces, on the other hand,
are divided into regular and irregular faces. An irregular face is a nonzero-measure face that shares a vertex with a certain
nonquad face; all the other nonzero-measure faces are regular; see Figure 7(C). The tHNUS basis functions defined on
a regular element1 are simply B-spline basis functions. In what follows, we restrict our attention to those defined on an
irregular element. For simplicity of explanation, we assume that there is only one nonquad face in the 1-ring neighborhood

1We use face and element interchangeably, but “face” emphasizes mesh topology whereas “element” is IGA-oriented.
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(A) (B) (C)

F I G U R E 7 Knot intervals and mesh terminologies. (A) The input quad mesh, (B) edges with zero knot intervals (blue) and nonzero
intervals (orange), and (C) different types of faces: quad faces with zero-measure (green), nonquad faces (orange), regular faces (blue), and
irregular faces (red)

of an irregular element. The 1-ring neighborhood of a face is a collection of faces that share vertices with this face, and
recursively, the n-ring (n≥ 2) neighborhood consists of faces in the (n− 1)-ring neighborhood as well as the faces sharing
vertices with the (n− 1)-ring neighborhood.

Remark 3. In a hybrid control mesh, each interior vertex is shared by four faces (or edges) and thus it has a regular
valence of four. However, it does not mean that mesh irregularities are removed by converting the input quad mesh to its
hybrid counterpart. In fact, irregularities are now manifested in the nonquad faces, which will be detailed in the following.

Given an irregular element Ω, let N denote the number of vertices in its adjacent nonquad face which is equivalent
to the valence of the corresponding extraordinary vertex in the input quad mesh. There are K:=N + 12 basis functions
defined on Ω, associated with a local mesh around the nonquad face; see Figure 8(A). We denote

B0 (u, v) = [B0,1 (u, v),B0,2 (u, v), … ,B0,K (u, v)]T

and

P0 = [P0,1,P0,2, … ,P0,K]T

the basis functions and the corresponding control vertices, respectively. Their indices are ordered according to Figure 8(A).
The surface patch, that is, the geometric mapping restricted to Ω is then represented by

s(u, v) = PT
0 B0 (u, v), (u, v) ∈ Ω. (18)

Note that Ω naturally has a parametric domain [0, d1]× [0, d2] that is determined by the corresponding knot intervals.
We rescale it to Ω = [0, 1]2 to unify the treatment of irregular elements. The influence of the rescaling will be discussed
in Remark 4.

Our focus is to derive B0, which relies on subdivision of the corresponding control mesh P0. Applying subdivision
once yields Level-1 control vertices, denoted by

P1 = [P1,1,P1,2, … ,P1,K]T = S1P0,

P1 = [P1,1,P1,2, … ,P1,K ,P1,K+1, … ,P1,M]T = S1P0, (19)

where M:=K + 9=N + 21. The subdivision matrices S1 and S1 have the dimension of K ×K and M ×K, respectively.
Clearly, S1 yields additional nine vertices compared with S1. The entries of S1 and S1 come from the tHNUS geometric rules
as well as the mid-knot insertion of B-splines; see Equations (1,2) and (3,4), respectively. Among the four subelements
at Level 1, three of them Ω1

k (k= 1, 2, 3) are regular and correspond to regular C1 B-spline patches. In other words, the
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(A) (B)

(C) (D) (E)

F I G U R E 8 Local meshes
of an irregular element Ω and its
refined subelements Ω1

k
(k= 1, 2, 3). (A) The local mesh
and surrounding knot intervals
of Ω, (B) the globally refined
mesh, and (C–E) the local
meshes of Ω1

k, where the orange
lines indicate the boundary of Ω,
and indices in light gray imply
that the corresponding basis
functions have no support on the
highlighted subelement

surface patch restricted to Ω1
k is given by

s(u, v) = PT
1,kN1,k (u, v), (u, v) ∈ Ω1

k ⊂ Ω, (20)

where P1, k is a subvector of P1 and N1, k(u, v) is the vector of B-splines defined on Ω1
k (k= 1, 2, 3); see Figure 8(C–E). Both

P1, k and N1, k have a dimension of 16 due to the bicubic degree setting. P1, k can be obtained with the help of a permutation
matrix Tk, that is, P1,k = TkP1 = TkS1P0. Therefore, Equation (20) becomes

s(u, v) =
(
TkS1P0

)TN1,k (u, v) = PT
0
(
TkS1

)TN1,k (u, v), (u, v) ∈ Ω1
k. (21)

For Equations (18,21) to be equivalent under arbitrary choice of P0, we need

B0 (u, v) =
(
TkS1

)TN1,k (u, v), (u, v) ∈ Ω1
k. (22)

In other words, we have found the definition of B0 on three quarters (Ω1
1, Ω1

2, and Ω1
3) of Ω.

Now we are left to find the definition of B0 on the remaining quarter [0, 1
2
]2, and we proceed with the same idea

explained above. As a result, the domain Ω is partitioned into an infinite series of tiles,

Ω =
∞⋃

n=1

3⋃
k=1

Ωn
k ,

where

Ωn
1 =

[
1
2n ,

1
2n−1

]
×
[
0, 1

2n

]
,

Ωn
2 =

[
1
2n ,

1
2n−1

]
×
[

1
2n ,

1
2n−1

]
,

Ωn
3 =

[
0, 1

2n

]
×
[

1
2n ,

1
2n−1

]
.
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Analogous to Equation (19), we have

Pn = SnPn−1 = SnSn−1 … S1P0,

Pn = SnPn−1 = SnSn−1 … S1P0.

Again, Sn and Sn (n≥ 1) have the dimension of K ×K and M ×K, respectively. Note that S2 = S3 = … = Sn (n≥ 2) and
S3 = S4 = … = Sn (n≥ 3) because the ratios of knot intervals around an irregular subelement become fixed as the subdi-
vision level increases. Therefore, following the same argument in deriving Equation (22), we have the general expressions
for B0,

B0 (u, v) =
⎧⎪⎨⎪⎩
(
TkS1

)TN1,k (u, v) n = 1
(TkS2S1)TN2,k (u, v) n = 2
(TkS3(S2)n−2S1)TNn,k (u, v) n ≥ 3

,

where (u, v) ∈ Ωn
k , and Nn, k(u, v) (n≥ 1) is the vector of B-splines defined on Ωn

k .

Remark 4. Rescaling Ω to [0, 1]2 only affects the knot vectors (or equivalently, the vectors of knot intervals)
of B-splines Nn, k(u, v) (n≥ 1). For example, when n= 1 without scaling, the vector of knot intervals in the u
direction is {

d3

2
,

d3

2
, 0, d1

2
,

d1

2
,

a1

2
,

a1

2
,

b1

2

}
,

whereas after scaling with respect to d1, it becomes

U1 =
{

d3

2d1
,

d3

2d1
, 0, 1

2
,

1
2
,

a1

2d1
,

a1

2d1
,

b1

2d1

}
,

and similarly, we have the vector of knot intervals in the v direction,

V1 =
{

dN

2d2
,

dN

2d2
, 0, 1

2
,

1
2
,

a2

2d2
,

a2

2d2
,

b2

2d2

}
.

Moreover, when n= 2, we have

U2 =
{

d3

22d1
,

d3

22d1
, 0, 1

22 ,
1
22 ,

1
22 ,

1
22 ,

a1

22d1

}
, V2 =

{
dN

22d2
,

dN

22d2
, 0, 1

22 ,
1
22 ,

1
22 ,

1
22 ,

a2

22d2

}
,

and when n≥ 3,

Un =
{

d3

2nd1
,

d3

2nd1
, 0, 1

2n ,
1
2n ,

1
2n ,

1
2n ,

1
2n

}
, Vn =

{
dN

2nd2
,

dN

2nd2
, 0, 1

2n ,
1
2n ,

1
2n ,

1
2n ,

1
2n

}
.

Nn, k(u, v) are defined using Un and V n.

In fact, it is practically useful to rescale each tile Ωn
k to [0, 1]2 by

k = 1 ξ = 2nu − 1, η = 2nv,

k = 2 ξ = 2nu − 1, η = 2nv − 1,

k = 3 ξ = 2nu, η = 2nv − 1.
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Correspondingly, the vectors of knot intervals are rescaled to

n = 1 Ξ1 =
{

d3

d1
,

d3

d1
, 0, 1, 1, a1

d1
,

a1
d1
,

b1
d1

}
, Θ1 =

{
dN
d2
,

dN
d2
, 0, 1, 1, a2

d2
,

a2
d2
,

b2
d2

}
,

n = 2 Ξ2 =
{

d3

d1
,

d3

d1
, 0, 1, 1, 1, 1, a1

d1

}
, Θ2 =

{
dN
d2
,

dN
d2
, 0, 1, 1, 1, 1, a2

d2

}
,

n ≥ 3 Ξ3 =
{

d3

d1
,

d3

d1
, 0, 1, 1, 1, 1, 1

}
, Θ3 =

{
dN
d2
,

dN
d2
, 0, 1, 1, 1, 1, 1

}
,

where the rescaled knot intervals are now independent of the subdivision level n when n≥ 3. In summary, the basis
functions of interest are defined as

B0 (u, v) =
⎧⎪⎨⎪⎩
(
TkS1

)Tb1,k (ξ(u), 𝜂 (v)) n = 1
(TkS2S1)Tb2,k (ξ(u), 𝜂 (v)) n = 2
(TkS3(S2)n−2S1)Tb3,k (ξ(u), 𝜂 (v)) n ≥ 3

, (23)

where (ξ, 𝜂) ∈ [0, 1]2 and bl,k (ξ, 𝜂) are B-splines defined using Ξl and Θl (l= 1, 2, 3). Note that when n= 1, 2, we have
Nn,k (u, v) = bn,k (ξ(u), 𝜂 (v)), and when n≥ 3, Nn,k (u, v) = b3,k (ξ(u), 𝜂 (v)).

Remark 5. Evaluation of B0(u, v) at (0, 0) in an irregular element needs the computation of limn→∞(S2)n−2. Following
Reference 40, we need to eigen-decompose S2 such that S2 = V𝚲V−1, where 𝚲 is a diagonal matrix containing the eigen-
values of S2 and V is an invertible matrix with columns being the corresponding eigenvectors. Accordingly, we have
limn→∞(S2)n−2 = limn→∞V𝚲n−2V−1. Recall that all the eigenvalues are smaller than 1 (and greater than 0) except the first
one 𝜆1 = 1, so limn→∞𝚲n−2 is a matrix whose entries are all zero except the first-row-first-column entry, which is one. On
the other hand, the derivatives of B0(u, v) are not bounded around (0, 0). We can see this by applying the chain rule, for
example,

𝜕B0 (u, v)
𝜕u

= 2n(TkS3(S2)n−2S1
)T 𝜕b3,k (ξ, 𝜂)

𝜕ξ
,

where the factor comes from dξ∕du = 2n. A differentiable version of B0 (with respect to certain parameters) can
be obtained via characteristic-map-based reparameterization.41 However, in this article, we are interested in apply-
ing tHNUS basis functions in the context of IGA, so we only need derivatives at quadrature points that are
away from (0, 0). Moreover, what we eventually need is derivatives with respect to the physical coordinates, for
example,

𝜕B0◦s−1(x, y)
𝜕x

= 𝜕B0

𝜕u
𝜕u
𝜕x

+ 𝜕B0

𝜕v
𝜕v
𝜕x

,

where s−1 is the inverse mapping of s(u, v). The troublesome factor 2n, which may cause overflow when n becomes too
large, is canceled out with that from 𝜕u/𝜕x (which is 2−n) and does not cause any numerical issues. The same argument
applies to higher order derivatives.

Remark 6. In Reference 40, the eigen structure (𝚲,V) is precomputed for different valence numbers and stored in
a file for repeated use. However, the same scheme cannot be applied to tHNUS because the subdivision matrix S2
depends on not only the valence number but also the surrounding knot intervals, leading to infinite possible cases of
S2. Therefore, the eigen structure of S2 needs to be found in real time for every irregular element. Alternatively, we
can directly perform matrix multiplications to compute (S2)n− 2, especially when the valence number is small and basis
functions need to be computed at points other than (0, 0). This is indeed the case in IGA where evaluation is needed at
quadrature points. In practice, we adopt a near-machine-precision tolerance (e.g., 10−13) to prevent a potential overflow
issue.

Remark 7. In the previous discussion, B0 is derived under the assumption that there is only one nonquad face next to
an irregular element, which, however, is not a necessary condition. When an irregular element has multiple adjacent
nonquad faces, we treat it as a macro element and pseudo-subdivide it once. Each of the resulting four subelements only
has one nonquad face, where basis functions are defined according to our previous discussion. In other words, basis
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functions are well defined on each quarter of the original macro element. This extension follows the same idea proposed
in Reference 18, which extends Stam’s derivation40 to arbitrary unstructured quad meshes.

4.2 Quadrature

To apply the standard Gauss quadrature rule, we need to guarantee that the involved basis functions are polynomials
(rather than piecewise polynomials) on each integration cell. However, the functions in B0 are piecewise smooth poly-
nomials defined on an infinite series of subdomains, that is, {Ωn

k}
∞
n=1 (k= 1, 2, 3). The straightforward way is to apply the

Gauss quadrature rule on each cell Ωn
k up to a certain fine level, which was adopted in several subdivision-based isogeo-

metric methods.18,42 We call such a quadrature the full quadrature scheme. In our patch test, we observe that the solution
achieves machine precision (∼10−16) when the 4-point rule is used and the level n is set to be 10. As a result, a total num-
ber of 496 quadrature points are needed for a single irregular element. Note that only 16 Gauss quadrature points are used
for a regular element.

Alternatively, we can “brutally” apply the Gauss quadrature rule to the entire irregular element without respecting
the fact that subdivision functions are piecewise polynomials. In other words, only 16 (rather than 496) Gauss quadrature
points are placed on an irregular element. We call it the reduced quadrature scheme due to this significant reduction in
the number of required quadrature points. In Section 5, we will observe that the reduced quadrature does not influence
convergence. In fact, it does not introduce noticeable numerical error in terms of the L2- or H1-norm error compared with
the full quadrature.

4.3 Properties

Now we briefly discuss several properties of tHNUS basis functions, including nonnegative partition of unity, refinability
(equivalent to nested spline spaces), and global linear independence. The nonnegative partition of unity of tHNUS basis
functions follows from the fact that all the entries in the subdivision matrix are nonnegative and each row sum of the
subdivision matrix is one. Refinability states that each basis function of a given mesh can be represented as a linear
combination of those defined on a refined mesh. In fact, we can see this property in the derivation of B0, where basis
functions are always expressed as linear combinations of functions in the refined meshes.

Finally, the global linear independence implies linear independence on the entire domain, and it can be easily shown
under the mild assumption that each irregular element has at least one regular element as its direct neighbor. Under this
assumption, every basis function has support on a certain regular element, where it is simply a B-spline. As B-splines are
linearly independent on such an element, we can conclude that all the basis functions are linearly independent on the
entire domain by going through all the regular elements. The proof on general meshes becomes more involving because
we need to resolve different configurations of nonquad faces, or equivalently, configurations of extraordinary vertices
in the input mesh. A complex configuration usually occurs when the mesh is very coarse such that many extraordi-
nary vertices may be next to one another. When this is the case, we can perform global refinement to guarantee linear
independence.

5 NUMERICAL EXAMPLES

In this section, we present several numerical examples using tHNUS surfaces in both geometric modeling and IGA.

5.1 Geometric modeling with tHNUS surfaces

We show some tHNUS limit surface examples and compare them with the existing nonuniform subdivision schemes. We
first show the graphs of blending functions for the extraordinary points (EPs) with different valences, such as valence-5
EP in Figure 9, valence-6 EP in Figure 10 and valence-7 EP in Figure 11. As stated in Reference 14, the approaches in
References 30,32 and 43 produce limit surfaces with very similar quality in all the examples. Therefore, we only show the
limit surface comparisons in one example as shown in Figure 9. All the rest of the examples only show the limit surface of
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(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

F I G U R E 9 The blending function
for a valence-5 nonuniform extraordinary
point using different approaches, where
the knot intervals of the red edges are 10
and those of the other edges are 1

(A) (B) (C)

F I G U R E 10 The blending
function for a valence-6 nonuniform
extraordinary point using different 𝜆

(A) (B) (C)

F I G U R E 11 The blending
function for a valence-7 nonuniform
extraordinary point using different 𝜆

the new tHNUS with different 𝜆. According to Lemma 2, 𝜆 is allowed to take any values in the range
(

1
4
, 1
)

. In particular,
we choose 𝜆 as 0.26, 0.35, and 0.65 to show noticeable differences in the resulting shapes. We can observe that all different
𝜆 can produce better shape quality than those approaches in References 30,32 and 43, but the small 𝜆 produces worse
shape quality surround the EPs, see Figures 12 and 13 for the details.

5.2 IGA applications using tHNUS basis functions

In this section, we test the performance of tHNUS basis functions in the context of IGA. We solve the Poisson’s equation
with several unstructured quad meshes as the input. We start with convergence tests on a unit square, whose input control
mesh has two EPs, one of valence 3 and the other of valence 5; see Figure 7(A). These tests are aimed at studying: (1) the
role of 𝜆 in convergence, (2) the feasibility of using reduced quadrature, (3) the influence of nonuniform parameterizations
on convergence, and (4) how the matrix conditioning varies with 𝜆.
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F I G U R E 12 The blending
function for a valence-6 nonuniform
extraordinary point using different 𝜆,
where larger 𝜆 produces more
satisfactory reflection lines

(A) (B) (C)

F I G U R E 13 A comparison of
different 𝜆 applied to the helmet model.
The artifact for the reflection lines exists
for 𝜆 = 0.26

(A) (B) (C)

(A) (B)

F I G U R E 14 Convergence plots using 𝜆 ∈ {0.65, 0.5, 0.26}. Particularly, 𝜆 = 0.5 corresponds to the original hybrid nonuniform
subdivision whereas 𝜆 = 0.26 recovers optimal convergence rates

First, we study the influence of the tuning parameter 𝜆 on the convergence behavior. We are primarily interested in
the case when 𝜆 ∈

(
1
4
,

1
2

]
, so we sample within this range and check the corresponding convergence. We intend to find the

largest possible value that recovers optimal convergence, which is called the critical parameter and is denoted as 𝜆c. We
will observe that 𝜆c is independent of geometries, knot interval configurations, and the solution field to be approximated.
To better highlight different convergence behaviors, here we only pick three values for 𝜆: 0.26, 0.5, and 0.65. Recall that
tHNUS is equivalent to the original HNUS when 𝜆 = 0.5.

We adopt uniform parameterization (i.e., same knot intervals) around EPs as well as full quadrature in this study.
With the manufactured solution u(x, y) = sin(𝜋x)sin(𝜋y), we summarize the convergence plots in Figure 14. We observe
that a smaller 𝜆 delivers a better convergence behavior, and particularly, optimal convergence rates are achieved when
𝜆 = 0.26 (i.e., 𝜆c = 0.26). The tuned Catmull–Clark subdivision (with uniform parameterization) was studied in Refer-
ence 20, where optimal convergence rates in the L2-norm were observed in the Poisson’s problem when 𝜆 = 0.39. It
indicates that the tuning parameter in tHNUS plays a less sensitive role than that in Reference 20 because tHNUS requires
a smaller 𝜆 to recover optimal convergence. The reason may be that 𝜆 brings more vertices to move further towards
each EP than in tHNUS. As a result, the tuned Catmull–Clark subdivision has a faster shrinkage in irregular regions.
We will provide insights about why reducing 𝜆 recovers optimal convergence later when we study the meshes with
high-valence EPs.
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Second, we compare the two quadrature schemes for irregular elements as discussed in Section 4.2, full quadra-
ture versus reduced quadrature, under uniform parameterization and with 𝜆 = 0.26 and 𝜆 = 0.5. We observe in
Figure 15(A) that there is no noticeable difference in terms of both L2- and H1-norm errors. In other words,
both quadrature schemes deliver the same level of accuracy when 𝜆 = 0.26. By contrast, quadrature plays an
important role when 𝜆 = 0.5, where the full quadrature yields nearly one-order higher convergence rates than
the reduced quadrature. This indicates that when 𝜆 = 0.26, the corresponding basis functions (piecewise polyno-
mials) in irregular elements can be better approximated by polynomials than those using 𝜆 = 0.5, and 16 quadra-
ture points seem to suffice to retain accuracy. We further conjecture that when a subdivision basis has the opti-
mal approximation property, quadrature may only play a secondary role, which is opposed to the subdivision
schemes that lead to suboptimal convergence. However, further study is needed to fully understand the mechanism
behind.

Third, we study several different nonuniform parameterizations for convergence test, which can be obtained by
assigning different knot intervals to the edges in the input control mesh. Semiuniform knot intervals are usually
adopted in the literature, where all the edges are assigned a unit knot interval except for those perpendicular to the
boundary, which are assigned a zero knot interval. To have nonuniform parameterization around EPs, we modify
the semiuniform setting in two ways: (1) the knot interval (denoted by d) of highlighted spoke edges takes values
d∈ {1, 2, 5, 10}; and (2) every spoke edge is assigned a different knot interval; see Figure 16(A,B). In both cases, we observe
in Figure 16(C,D) that tHNUS basis functions can achieve optimal convergence rates with 𝜆 = 0.26. We also observe
that the convergence plots corresponding to a larger d slightly shift up, meaning that larger difference in knot intervals
yields larger approximation error. In other words, the “distortion” in parameterization influences accuracy rather than
convergence.

Fourth, we check how 𝜆 influences the conditioning of stiffness matrices. The condition number is defined as the
ratio of the maximum eigenvalues versus the minimum, and it is computed on a series of refined meshes with 𝜆 = 0.26,
0.5, and 0.65. The corresponding results are summarized in Figure 17 for 𝜆 = 0.26 and 0.5. We observe that (1) the
condition number increases as expected with h2; and (2) the condition numbers are identical for different 𝜆’s. Indeed,
the condition number is also the same when 𝜆 = 0.65. The second discovery indicates that changing 𝜆 does not affect
conditioning.

Now, we consider meshes with high-valence EPs (valence 6, 7, and 8), where each spoke edge is assigned a differ-
ent knot interval. Two different manufactured solutions are adopted: u(x, y) = sin(𝜋x)sin(𝜋y)and u(x, y) = exp((x + y)∕2).
The Dirichlet boundary condition is strongly imposed on the entire boundary, where a least-squares fitting is performed
to project the Dirichlet data on the spline space. We again observe optimal convergence rates with 𝜆 = 0.26 in all the
three meshes; see Figure 18. Moreover, let us have a close look at how 𝜆 influences parameterization around EPs.
In particular, we compare isoparametric lines using two different 𝜆’s (0.5 versus 0.26) around a valence-6 EP, where
the same input control mesh in Figure 18(A) is used in both cases. We find in Figure 19 that isoparametric lines are

(A) (B)

F I G U R E 15 Convergence plots using full and reduced quadrature
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F I G U R E 16 Convergence
plots under different
nonuniform parameterizations.
(A, B) The configurations of knot
intervals around extraordinary
points, and (C, D) convergence
plots in L2- and H1-norm errors

(A) (B)

(C) (D)

F I G U R E 17 Condition numbers with 𝜆 = 0.26 and 0.5

overlaid with one another in most regions, and with a smaller 𝜆, the isoparametric lines (blue curves) are more bent
towards the extraordinary surface point s(0, 0). Equivalently speaking, a smaller 𝜆 yields smaller refined irregular ele-
ments in the physical domain. Therefore, the mesh around s(0, 0) becomes denser than that using a larger 𝜆, and as
a result, the asymptotic approximation error controlled by s(0, 0) can be reduced using such a denser mesh. Ideally,
optimal convergence rates can be achieved by reducing 𝜆, which indeed is the case in all our numerical tests when
𝜆 = 0.26.
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(A)

(D) (E) (F)

(H)(G) (I)

(B) (C)

F I G U R E 18 Convergence plots using meshes with high-valence EPs. (A–C) The configurations of knot intervals around EPs, (D–F)
convergence plots with the solution u(x, y) = sin(𝜋x)sin(𝜋y), and (G–I) convergence plots with the solution u(x, y) = exp((x + y)∕2). EPs,
extraordinary points

Remark 8. Although the globally smooth tHNUS basis functions can be applied to solve 4th-order partial
differential equations (PDEs), our preliminary tests only show suboptimal convergence in solving the biharmonic
equation, where obtained convergence rates in terms of L2-, H1- and H2-norm errors are around 2, 2, and 1, respec-
tively. This is consistent with the result reported in Reference 38, where a thin-shell problem was solved and
the reported convergence rates in L2- and energy norm errors are 2 and 1, respectively. In other words, reduc-
ing 𝜆 alone is not sufficient for high-order PDEs. We conjecture that to recover the optimal convergence in this
case, we may need more degrees of freedom around EPs following similar ideas in References 24,27. However,
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F I G U R E 19 Isoparametric lines around the valence-6
extraordinary point under uniform parameterization. Orange and
blue curves are isoparametric lines corresponding to 𝜆 = 0.5 and
𝜆 = 0.26, respectively. Blue curves are not visible in most regions
because they are overlaid with orange ones. Black curves indicate
element boundaries in the physical domain

this would further complicate the current subdivision framework, so we postpone related results in a follow-up
work.

6 CONCLUSIONS AND FUTURE WORK

We have presented a tuned version of HNUS, tHNUS, by introducing a parameter 𝜆 ∈
(

1
4
, 1
)

, which is also the second
and third eigenvalues of the subdivision matrix. The tHNUS surface is proved to be G1-continuous for any positive knot
intervals and extraordinary vertices of any valence. The tHNUS surface has satisfactory shape quality for any 𝜆 under
nonuniform parameterization. However, the highest shape quality is achieved when 𝜆 = 0.5. In other words, the original
HNUS generally performs better in geometric modeling than tHNUS. On the other hand, tHNUS basis functions can
achieve optimal convergence rates when 𝜆 is reduced to 0.26, regardless of which quadrature scheme is used and whether
parameterizations are uniform or nonuniform around EPs.

In the future, we can extend tHNUS in the following three issues. First, converting an input quad mesh to its hybrid
counterpart can be restricted locally to irregular regions without introducing zero-measure faces throughout the entire
mesh. This can be performed by allowing T-junctions4 in the hybrid mesh, but support of T-junctions in a hybrid mesh
requires a much more sophisticated data structure to accommodate both nonquad faces and quads with T-junctions. Sec-
ond, tHNUS can be adapted to hierarchical splines3 due to its refinability property, where the initial level corresponds to
the initial hybrid mesh. The construction of hierarchical tHNUS essentially follows those proposed for truncated hierar-
chical Catmull–Clark subdivision surfaces,17,18 but the differences lie in dealing with hybrid meshes and nonuniform knot
intervals. Third, improving tHNUS to achieve optimal convergence rates in solving high-order PDEs is another challeng-
ing but very interesting direction to pursue. Currently, we can only show optimal convergence in solving the second-order
PDE. In the case of high-order PDEs, our preliminary tests suggest that it is not sufficient to tune 𝜆 alone and additional
treatment is needed. We plan to our investigation by adding more control points around extraordinary vertices.
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APPENDIX 1

The control points Pj,k
i (1 ≤ j, k ≤ 3)of the characteristic map are listed as follows.

P1,1
i = −

(𝜆 − 2)((32𝜆3 − 100𝜆2 + 31𝜆 − 2)p − 12𝜆2 (v + w))
(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)

,

P1,2
i =

6𝜆2((256𝜆3 + 136𝜆2 − 2251𝜆 − 232)v + 2(128𝜆3 − 184𝜆2 − 149𝜆 + 10)w)
+(−4096𝜆6 + 18688𝜆5 − 14576𝜆4 − 22112𝜆3 + 8275𝜆2 − 608𝜆 + 20)p

(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)
,

P1,3
i =

6𝜆2(2(320𝜆3 − 919𝜆2 − 800𝜆 + 7)v + (160𝜆3 − 314𝜆2 − 13𝜆 + 2)w)
+(−2560𝜆6 + 15904𝜆5 − 29348𝜆4 + 3535𝜆3 + 928𝜆2 − 62𝜆 + 2)p

(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)
,

P2,1
i =

6𝜆2((256𝜆3 − 368𝜆2 − 298𝜆 + 20)v + (256𝜆3 + 136𝜆2 − 2251𝜆 − 232)w)+
(−4096𝜆6 + 18688𝜆5 − 14576𝜆4 − 22112𝜆3 + 8275𝜆2 − 608𝜆 + 20)p

(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)
,

P2,2
i =

6(4096𝜆4 + 33024𝜆3 − 96320𝜆2 − 11271𝜆 − 1160)𝜆2 (v + w)+
(−65536𝜆7 − 194560𝜆6 + 2362752𝜆5 − 4183824𝜆4 + 1165584𝜆3 − 71505𝜆2 + 976𝜆 + 100)p

(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
,

P2,3
i = 6𝜆2((74240𝜆4 − 139104𝜆3 − 145684𝜆2 − 8118𝜆 − 7)v + (58880𝜆4 − 106224𝜆3 − 32914𝜆2 − 2208𝜆 − 127)w)

2(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
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+
(−942080𝜆7 + 4816384𝜆6 − 6465888𝜆5 + 394032𝜆4 + 345858𝜆3 − 33192𝜆2 + 1313𝜆 − 1)p

2(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
,

P3,1
i =

6𝜆2((160𝜆3 − 314𝜆2 − 13𝜆 + 2)v + 2(320𝜆3 − 919𝜆2 − 800𝜆 + 7)w)
+(−2560𝜆6 + 15904𝜆5 − 29348𝜆4 + 3535𝜆3 + 928𝜆2 − 62𝜆 + 2)p

(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)
,

P3,2
i = 6𝜆2((58880𝜆4 − 106224𝜆3 − 32914𝜆2 − 2208𝜆 − 127)v + (74240𝜆4 − 139104𝜆3 − 145684𝜆2 − 8118𝜆 − 7)w)

2(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
(−942080𝜆7 + 4816384𝜆6 − 6465888𝜆5 + 394032𝜆4 + 345858𝜆3 − 33192𝜆2 + 1313𝜆 − 1)p

2(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
,

P3,3
i =

6(25600𝜆4 − 30144𝜆3 − 61166𝜆2 − 5685𝜆 − 236)𝜆2 (v + w)
+(−409600𝜆7 + 1923584𝜆6 − 1925280𝜆5 − 1010388𝜆4 + 470631𝜆3 − 36036𝜆2 + 1060𝜆 + 16)p

(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
.

The expressions of all Sj,k
2 (0 ≤ j, k ≤ 3)are listed as follows.

S0,0
2 = 3𝜆(28672𝜆4 − 44160𝜆3 − 104888𝜆2 − 4242𝜆 − 59)v

2(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+ 3𝜆(−20480𝜆4 + 125568𝜆3 + 2296𝜆2 − 2886𝜆 − 107)w
2(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
(−589824𝜆7 + 2557952𝜆6 − 1417856𝜆5 − 723088𝜆4 + 318940𝜆3 − 25264𝜆2 + 853𝜆 + 3)p

4(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

S1,0
2 = − 6𝜆(14336𝜆4 − 53888𝜆3 + 58744𝜆2 + 2009𝜆 + 30)v

(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− 12𝜆(5120𝜆4 − 11808𝜆3 + 1904𝜆2 − 234𝜆 + 41)w
(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
2(81920𝜆7 − 467968𝜆6 + 851904𝜆5 − 540792𝜆4 + 116238𝜆3 − 7683𝜆2 + 211𝜆 + 1)p

(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

S2,0
2 = −(163840𝜆5 − 360448𝜆4 + 20512𝜆3 + 2732𝜆2 + 571𝜆 + 47)w

4(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− (458752𝜆6 − 1579008𝜆5 + 1185408𝜆4 + 775632𝜆3 − 25056𝜆2 + 567𝜆 − 4)v
8(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
(2621440𝜆8 − 14696448𝜆7 + 25499648𝜆6 − 13590144𝜆5 + 1352256𝜆4 + 248436𝜆3 − 23683𝜆2 + 897𝜆 − 5)p

24(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
,

S0,1
2 = 18𝜆(2048𝜆4 − 1856𝜆3 − 7028𝜆2 − 669𝜆 − 13)v

(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+ 18𝜆(−2048𝜆4 + 12288𝜆3 + 1904𝜆2 − 556𝜆 − 17)w
(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

−
3(32768𝜆7 − 129024𝜆6 + 47872𝜆5 + 108496𝜆4 − 38716𝜆3 + 3018𝜆2 − 95𝜆 − 1)p

(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

S1,1
2 = − 6𝜆(12288𝜆4 − 38912𝜆3 + 43904𝜆2 + 4127𝜆 + 76)v

(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− 12𝜆(6144𝜆4 − 14080𝜆3 + 1036𝜆2 − 299𝜆 + 80)w
(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
2(98304𝜆7 − 553984𝜆6 + 985152𝜆5 − 637296𝜆4 + 138348𝜆3 − 9009𝜆2 + 216𝜆 + 4)p

(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
,
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S2,1
2 = −3(32768𝜆5 − 93184𝜆4 + 70336𝜆3 + 61032𝜆2 − 210𝜆 + 7)v

2(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− 3(32768𝜆5 − 70656𝜆4 − 4768𝜆3 + 888𝜆2 + 236𝜆 + 15)w
2(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
(524288𝜆8 − 2883584𝜆7 + 4827136𝜆6 − 2557248𝜆5 + 206544𝜆4 + 64080𝜆3 − 6056𝜆2 + 233𝜆 − 1)p

4(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

S0,2
2 = 6𝜆(4096𝜆4 − 1024𝜆3 − 19348𝜆2 − 1877𝜆 − 117)v

(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+ 6𝜆(−4096𝜆4 + 21888𝜆3 + 20552𝜆2 − 3786𝜆 − 97)w
(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
(−65536𝜆7 + 215040𝜆6 + 122880𝜆5 − 518496𝜆4 + 160368𝜆3 − 11706𝜆2 + 295𝜆 + 9)p

(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

S1,2
2 = − 6𝜆(8192𝜆4 − 28928𝜆3 + 34888𝜆2 + 4205𝜆 + 228)v

(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− 48𝜆(1024𝜆4 − 2272𝜆3 − 868𝜆2 − 65𝜆 + 39)w
(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
2(65536𝜆7 − 393216𝜆6 + 768768𝜆5 − 550584𝜆4 + 120330𝜆3 − 6531𝜆2 + 32𝜆 + 12)p

(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

S2,2
2 = −(32768𝜆5 − 100352𝜆4 + 78176𝜆3 + 82984𝜆2 + 1862𝜆 + 7)v

(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− (32768𝜆5 − 63488𝜆4 − 49120𝜆3 + 2596𝜆2 + 845𝜆 + 43)w
(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
(524288𝜆8 − 2998272𝜆7 + 5300224𝜆6 − 2834112𝜆5 − 22440𝜆4 + 158118𝜆3 − 13784𝜆2 + 513𝜆 − 1)p

6(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

S0,3
2 = (393216𝜆7 + 233472𝜆6 − 2491392𝜆5 − 285864𝜆4 − 21918𝜆3 − 258𝜆2)v

24(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+ (−393216𝜆7 + 1769472𝜆6 + 3983616𝜆5 − 415440𝜆4 − 81576𝜆3 + 1449𝜆2 − 12𝜆)w
24(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
(−1048576𝜆8 + 2555904𝜆7 + 6412288𝜆6 − 14197248𝜆5 + 3735840𝜆4 − 144900𝜆3 − 5573𝜆2 + 717𝜆 − 1)p

24(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

S1,3
2 = −(65536𝜆5 − 262144𝜆4 + 334720𝜆3 + 52988𝜆2 + 3718𝜆 + 41)v

2(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− (65536𝜆5 − 139264𝜆4 − 137984𝜆3 − 23368𝜆2 + 8098𝜆 − 7)w
2(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
(1048576𝜆8 − 6782976𝜆7 + 14569472𝜆6 − 11210496𝜆5 + 2223408𝜆4 − 32748𝜆3 − 8632𝜆2 + 615𝜆 + 1)p

12(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

S2,3
2 = −(65536𝜆5 − 219136𝜆4 + 173056𝜆3 + 229220𝜆2 + 9745𝜆 + 131)v

3(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− (65536𝜆5 − 108544𝜆4 − 208832𝜆3 − 11944𝜆2 + 6694𝜆 + 239)w
3(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
(1048576𝜆8 − 6291456𝜆7 + 11761664𝜆6 − 6099072𝜆5 − 1021344𝜆4 + 664680𝜆3 − 54730𝜆2 + 1881𝜆 + 7)p

18(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
.

The expressions of all Tj,k
2 (0≤ j, k≤ 3) are listed as follows.

T0,0
2 = − 3𝜆(20480𝜆4 − 125568𝜆3 − 2296𝜆2 + 2886𝜆 + 107)v

2(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
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− 3𝜆(−28672𝜆4 + 44160𝜆3 + 104888𝜆2 + 4242𝜆 + 59)w
2(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
(−589824𝜆7 + 2557952𝜆6 − 1417856𝜆5 − 723088𝜆4 + 318940𝜆3 − 25264𝜆2 + 853𝜆 + 3)p

4(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
,

T1,0
2 = − 18𝜆(2048𝜆4 − 12288𝜆3 − 1904𝜆2 + 556𝜆 + 17)v

(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− 18𝜆(−2048𝜆4 + 1856𝜆3 + 7028𝜆2 + 669𝜆 + 13)w
(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

−
3(32768𝜆7 − 129024𝜆6 + 47872𝜆5 + 108496𝜆4 − 38716𝜆3 + 3018𝜆2 − 95𝜆 − 1)p

(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

T2,0
2 = − 6𝜆(4096𝜆4 − 21888𝜆3 − 20552𝜆2 + 3786𝜆 + 97)v

(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− 6𝜆(−4096𝜆4 + 1024𝜆3 + 19348𝜆2 + 1877𝜆 + 117)w
(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
(−65536𝜆7 + 215040𝜆6 + 122880𝜆5 − 518496𝜆4 + 160368𝜆3 − 11706𝜆2 + 295𝜆 + 9)p

(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
,

T3,0
2 = −(−65536𝜆5 − 38912𝜆4 + 415232𝜆3 + 47644𝜆2 + 3653𝜆 + 43)w

4(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− (131072𝜆6 − 589824𝜆5 − 1327872𝜆4 + 138480𝜆3 + 27192𝜆2 − 483𝜆 + 4)v
8(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
(−1048576𝜆8 + 2555904𝜆7 + 6412288𝜆6 − 14197248𝜆5 + 3735840𝜆4 − 144900𝜆3 − 5573𝜆2 + 717𝜆 − 1)p

24(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
,

T0,1
2 = − 12𝜆(5120𝜆4 − 11808𝜆3 + 1904𝜆2 − 234𝜆 + 41)v

(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− 6𝜆(14336𝜆4 − 53888𝜆3 + 58744𝜆2 + 2009𝜆 + 30)w
(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
2(81920𝜆7 − 467968𝜆6 + 851904𝜆5 − 540792𝜆4 + 116238𝜆3 − 7683𝜆2 + 211𝜆 + 1)p

(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
,

T1,1
2 = − 12𝜆(6144𝜆4 − 14080𝜆3 + 1036𝜆2 − 299𝜆 + 80)v

(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− 6𝜆(12288𝜆4 − 38912𝜆3 + 43904𝜆2 + 4127𝜆 + 76)w
(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
2(98304𝜆7 − 553984𝜆6 + 985152𝜆5 − 637296𝜆4 + 138348𝜆3 − 9009𝜆2 + 216𝜆 + 4)p

(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
,

T2,1
2 = − 48𝜆(1024𝜆4 − 2272𝜆3 − 868𝜆2 − 65𝜆 + 39)v

(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− 6𝜆(8192𝜆4 − 28928𝜆3 + 34888𝜆2 + 4205𝜆 + 228)w
(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
2(65536𝜆7 − 393216𝜆6 + 768768𝜆5 − 550584𝜆4 + 120330𝜆3 − 6531𝜆2 + 32𝜆 + 12)p

(𝜆 − 4)𝜆(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
,

T3,1
2 = −(65536𝜆5 − 139264𝜆4 − 137984𝜆3 − 23368𝜆2 + 8098𝜆 − 7)v

2(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− (65536𝜆5 − 262144𝜆4 + 334720𝜆3 + 52988𝜆2 + 3718𝜆 + 41)w
2(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
(1048576𝜆8 − 6782976𝜆7 + 14569472𝜆6 − 11210496𝜆5 + 2223408𝜆4 − 32748𝜆3 − 8632𝜆2 + 615𝜆 + 1)p

12(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
,

T0,2
2 = (−983040𝜆7 + 2162688𝜆6 − 123072𝜆5 − 16392𝜆4 − 3426𝜆3 − 282𝜆2)v

24(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+ (−1376256𝜆7 + 4737024𝜆6 − 3556224𝜆5 − 2326896𝜆4 + 75168𝜆3 − 1701𝜆2 + 12𝜆)w
24(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
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+
(2621440𝜆8 − 14696448𝜆7 + 25499648𝜆6 − 13590144𝜆5 + 1352256𝜆4 + 248436𝜆3 − 23683𝜆2 + 897𝜆 − 5)p

24(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
,

T1,2
2 = −3(32768𝜆5 − 70656𝜆4 − 4768𝜆3 + 888𝜆2 + 236𝜆 + 15)v

2(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− 3(32768𝜆5 − 93184𝜆4 + 70336𝜆3 + 61032𝜆2 − 210𝜆 + 7)w
2(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
(524288𝜆8 − 2883584𝜆7 + 4827136𝜆6 − 2557248𝜆5 + 206544𝜆4 + 64080𝜆3 − 6056𝜆2 + 233𝜆 − 1)p

4(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
,

T2,2
2 = −(32768𝜆5 − 63488𝜆4 − 49120𝜆3 + 2596𝜆2 + 845𝜆 + 43)v

(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− (32768𝜆5 − 100352𝜆4 + 78176𝜆3 + 82984𝜆2 + 1862𝜆 + 7)w
(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
(524288𝜆8 − 2998272𝜆7 + 5300224𝜆6 − 2834112𝜆5 − 22440𝜆4 + 158118𝜆3 − 13784𝜆2 + 513𝜆 − 1)p

6(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
,

T3,2
2 = −(65536𝜆5 − 108544𝜆4 − 208832𝜆3 − 11944𝜆2 + 6694𝜆 + 239)v

3(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

− (65536𝜆5 − 219136𝜆4 + 173056𝜆3 + 229220𝜆2 + 9745𝜆 + 131)w
3(𝜆 − 4)(4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)

+
(1048576𝜆8 − 6291456𝜆7 + 11761664𝜆6 − 6099072𝜆5 − 1021344𝜆4 + 664680𝜆3 − 54730𝜆2 + 1881𝜆 + 7)p

18(𝜆 − 4)𝜆2 (4𝜆 − 1)(8𝜆 − 1)(16𝜆 − 1)(32𝜆 − 1)(64𝜆 − 1)
.
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The following mathematica code has been used to compute the above control points.


