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Abstract This paper constructs a new non-uniform Doo-Sabin subdivision scheme via eigen polygon.

The authors proved that the limit surface is always convergent and is G1 continuous for any valence

and any positive knot intervals under a minor assumption, that λ is the second and third eigenvalues

of the subdivision matrix. And then, a million of numerical experiments are tested with randomly

selecting positive knot intervals, which verify that our new subdivision scheme satisfies the assumption.

However this is not true for the other two existing non-uniform Doo-Sabin schemes in Sederberg, et al.

(1998), Huang and Wang (2013). In additional, numerical experiments indicate that the quality of the

new limit surface can be improved.

Keywords Doo-Sabin, non-uniform, splines, subdivision.

1 Introduction

Subdivision is a powerful technique for computer aided geometrical design (CAGD) to gen-
erate high quality surfaces in a simple and stable way[1, 2]. Given a control grid, a subdivision
scheme defines the rule to add new vertices as linear combinations of old ones and meanwhile
to keep or change the locations of old vertices in each step. Repeating the process leads to a
limit subdivision curve or surface. Approximating subdivision can be regarded as the general-
ization of the spline representation to arbitrary topology[1], such as Doo-Sabin subdivision[3],
Catmull-Clark subdivision[4], Loop subdivision[5],

√
3-subdivision[6], 4-8 subdivision[7, 8], and

Quad/triangle subdivision[9, 10]. The other classes of subdivision schemes are interpolatory,
such as the four-point curve subdivision scheme[11], Butterfly scheme[12, 13], interpolatory sub-
division for quadrilateral nets[14–16], interpolatory

√
3 and

√
2 subdivision[17, 18], interpolatory

subdivision from approximating subdivision[19–22]. Subdivision surfaces are also attractive in
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isogeometric analysis (IGA), which directly performs numerical simulation based on the models
from CAD[23–27]. Subdivision-based local refinement and its application in IGA have been stud-
ied for both Catmull-Clark subdivision[28, 29] and Loop subdivision[30]. In order to construct
the NURBS-compatible subdivision scheme, [32] firstly introduces the non-uniform parameter-
ization into the subdivision and later this issue is improved in [2, 31, 33–36].

In the paper[32], quadratic and cubic non-uniform recursive subdivision surfaces (NURSSes)
are constructed. However, Qin et al.[37] point out that the quadratic NURSSes converge only
when n ≤ 12, and may diverge when n > 12. [33] constructs a non-uniform Doo-Sabin subdi-
vision scheme by combining the non-uniform biquadratic B-spline and Catmull-Clark-variant
Doo-Sabin subdivision (CCVDS), which is called NURDSes. The paper concludes that the
scheme is G1 for any valence n, 3 ≤ n ≤ 30 extraordinary faces. However, our experiments find
out that the scheme is G1 for the extraordinary faces with only one variable knot interval but
it is only G0 with two or more variable knot intervals.

This paper generalizes the non-unform biquadratic B-spline to arbitrary topology via eigen
polygon, which can also be regarded as a generalization of CCVDS to non-uniform knot in-
tervals. Unlike the existing schemes in [32, 33], the subdivision scheme in the present paper
is proved to be G1 for any positive knot intervals and any valence under a minor assumption.
Also, the new scheme produces better quality limit surfaces. In summary, the main features of
the paper include:

1) The new subdivision scheme generalizes non-uniform biquadratic B-spline to arbitrary topol-
ogy;

2) The subdivision surface is proved to be always convergent and to be G1-continuous un-
der a minor assumption, which are stated in Theorems 4.1 and 4.2. To the authors’ best
knowledge, this is the minimum assumption for proving G1-continuous in non-uniform case.

3) The numerical experiments indicate that the limit surface is G1 and the limit surface of the
present paper has better geometric quality than the two existing non-uniform Doo-Sabin
subdivision schemes in [32, 33].

The rest of the paper is organized as following. Section 2 briefly discusses the background for
the paper, including knot intervals, Doo-Sabin subdivision, Catmull-Clark-variant Doo-Sabin
subdivision and non-uniform biquadratic B-spline refinement rules. Section 3 constructs the
non-uniform Doo-Sabin subdivision via eigen polygon. In Section 4, we propose the comparison
of new subdivision scheme with the existing two subdivision schemes on the continuity and shape
quality. The last section includes conclusion as well as future work.

2 Problem Statement

All the non-uniform Doo-Sabin subdivision schemes try to generalize the non-uniform bi-
quadratic B-spline representation to arbitrary topology. In this section, we review the bi-
quadratic B-splines, Doo-Sabin subdivision scheme and the basic framework to construct the
non-uniform Doo-Sabin subdivision scheme.
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2.1 Non-Uniform Bi-Quadratic B-Spline Surface

A non-uniform biquadratic B-spline surface is defined in terms of a control grid {Pi,j} that
is topological a rectangular grid (see Figure 1 (a)). Each control point Pi,j is assigned with a
horizonal non-negative knot interval di and a vertical non-negative knot interval ej , where each
row or column of control grid shares with the same knot interval di or ej . The non-uniform
biquadratic B-spline surface can be defined as the limit process of knot splitting, i.e., inserting
the midpoint knot for any two neighbor knots. In the following, all the subscripts are defined
in terms of the module of the valence of the vertex.

Pi,j Pi+1,j

Pi,j+1

d i d i+1

e j

e j+1

P2
k

P0
k

P1
k

P3
k

V kE 0
k

E 1
k

E 2
k

E 3
k

P3
k+1

P2
k+1P1

k+1

P0
k+1

d1 d2

e 1

e 2

(a) Knot interval for a TP grid (b) Geometric rule

Figure 1 Define a non-uniform bi-quadratic B-spline surface in terms of knot split-

ting

As illustrated in Figure 1 (b), given a level k face with control points P k
i , i = 0, 1, 2, 3 and

knot intervals d1, d2, e1, e2, one round of knot insertion computes four face points P k+1
i for the

face. Denote

Ek
0 =

e1P
k
0 + e2P

k
1

e1 + e2
, Ek

2 =
e1P

k
3 + e2P

k
2

e1 + e2
,

Ek
1 =

d2P
k
1 + d1P

k
2

d1 + d2
, Ek

3 =
d2P

k
0 + d1P

k
3

d1 + d2
,

and

V k =
d2(e1 + e2)Ek

0 + e2(d1 + d2)Ek
1 + d1(e1 + e2)Ek

2 + e1(d1 + d2)Ek
3

2(d1 + d2)(e1 + e2)
, (1)

then P k+1
i = V k+Ek

i +Ek
i−1+P k

i

4 , i = 0, 1, 2, 3.

2.2 Doo-Sabin Subdivision Scheme

The Doo-Sabin subdivision scheme and Catmull-Clark-variant Doo-Sabin subdivision scheme
are generalizations of uniform biquadratic B-splines to arbitrary topological control grids. The
topological rule for the schemes can be considered as an iterative procedure that takes a mesh
as input and generates a new mesh based on the steps below.
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• For each vertex of each face, generate a new point as the linear combination of the vertices
of the face;

• For each valence n face, connect the new points that have been generated for each vertex
of the face to form a new valence n face;

• For each valence n vertex, connect the new points that have been generated for the faces
that are adjacent to this vertex to form a valence n face;

• For each edge, connect the new points that have been generated for the faces that are
adjacent to this edge to form a valence 4 face.

Pi

Pi+1
Pi-1Pi-1

P i

Pi+1

k

k
k k+1

k+1
k+1

initial grid (b) topological rule (c) geometric rule

Figure 2 The rules for Doo-Sabin subdivision

The geometric rules of Doo-Sabin subdivision and Catmull-Clark-variant Doo-Sabin subdi-
vision can be formalized in the similar way. For a valence n face in level k with vertices P k

i ,
i = 0, 1, · · · , n−1, after subdivision, a new valence n face with vertices P k+1

i , i = 0, 1, · · · , n−1
are computed. Each vertex P k+1

i is a linear combination of the vertices P k
i ,

P k+1
i =

n−1∑

j=0

ωi,jP
k
j . (2)

The weights ωi,j in the equation (2) have two forms. The first scheme is called Doo-Sabin
subdivision scheme[3], where the weights ωi,j are

ωi,j =

⎧
⎪⎨

⎪⎩

n + 5
4n

, i = j;

3 + 2 cos(2(j−i)π
n )

4n
, else.

(3)

The other possible scheme is called Catmull-Clark-variant Doo-Sabin subdivision scheme[4],
where the weights are

ωi,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2

+
1
4n

, i = j;

1
8

+
1
4n

, |i − j| = 1;

1
4n

, else.

(4)
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2.3 Non-Uniform Doo-Sabin Subdivision Scheme

The topological rule for the non-uniform Doo-Sabin subdivision is exactly same as that for
Doo-Sabin subdivision. However in the situation of arbitrary topology, the valence of the vertex
can be different from 4, so we can not define the two directional knot intervals as bi-quadratic
B-splines. For a non-uniform Doo-Sabin surface, each vertex is assigned a non-negative knot
interval (possibly different) for each edge incident to it, i.e., each valence n vertex is assigned
with n knot intervals. Referring to Figure 3 (a), for the control grid of the first level, the
notation d0

i,j indicates the knot interval for the vertex Pi along the edge PiPj . And dk
i,j denotes

the knot interval for the vertex Pi along the k-th edge encountered when rotating the edge PiPj

counter-clockwise. After subdivision, the new knot intervals, dk
i,j will be specified as follows[32],

d0
i,i+1 = d−1

i,i−1 = d0
i,i+1, d0

i,i−1 = d1
i,i+1 = d0

i,i−1. (5)

P id i,i-1

P i+1
P i-1

P j
0 di,i+1

0
d i,j
0

di,i+1
0

Pi

Pi+1 Pi-1

k

kk
Pi-1k+1

Pik+1

Pi+1k+1

d i e i

(a) New knot intervals (b) Notation in this paper

Figure 3 The notations for the knot intervals

Given a face with vertices P 0
i , i = 0, 1, · · · , n− 1, the geometric rule is only associated with

the knot intervals d0
i,i+1 and d0

i,i−1. For simplicity, we denote the knot intervals di = d0
i,i+1 and

ei = d0
i,i−1 as illustrated in Figure 3. According to the new knot intervals rule, the knot intervals

are invariant to the level k. Denote the vertices of the face in level k to be P k
i . Defining an n×3

matrix P k = [P k
0 , P k

1 , · · · , P k
n−1]T and P k+1 = [P k+1

0 , P k+1
1 , · · · , P k+1

n−1 ]T, then the refinement
rule can be written into a matrix form as P k+1 = MkP k, where Mk is an n×n matrix, whose
element Mi,j is a function of the knot intervals and the valence n. It is easy to see that the
matrix Mk is stationary. Thus, we denote Mk as M in the following.

The scheme in [32] tries to combine the non-uniform biquadratic B-spline refinement rule
and Doo-Sabin subdivision scheme,

P k+1
i =

P + P k
i

2
+

di+1ei+3 + ei−1di−3

8
∑n−1

j=0 dj−1ej+1

⎛

⎝−nP k
i +

n−1∑

j=0

(
1 + 2 cos

(
2(i − j)π

n

))
P k

j

⎞

⎠ , (6)

where

P =

∑n−1
j=0 dj−1ej+1P

k
j∑n−1

j=0 dj−1ej+1

.
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The scheme in [33] tries to combine the non-uniform biquadratic B-spline refinement rule
and Catmull-Clark-variant Doo-Sabin scheme,

P k+1
i =

N + Ek
i + Ek

i−1 + P k
i

4
, (7)

where Ek
i = diP

k
i+1+ei+1P k

i

di+ei+1
, N =

∑n−1
j=0 cjP k

j∑ n−1
j=0 cj

and

ci =
1
2

⎛

⎝
n−1∏

j=0

dj +
n−1∏

j=0

ej

⎞

⎠ +
n−1∑

m=1

⎛

⎝
m∏

j=1

ei+j

n−1∏

j=m

di+j

⎞

⎠ . (8)

3 Non-Uniform Doo-Sabin Subdivision via Eigen Polygon

This section provides our new non-uniform recursive Doo-Sabin subdivision via eigen poly-
gon.

3.1 The Basic Idea of Eigen Polygon

Instead of defining the subdivision scheme by combining the Doo-Sabin subdivision and
bi-quadratic B-spline refinement rule in a heuristic way, the present paper tries to define a
polygon in the plane, for which the polygon after subdivision is only a scale and translation
of the given polygon. And then a subdivision matrix can be constructed by satisfying the
requirement. Under such construction, we can guarantee that the subdivision matrix has two
identical eigenvalues.

Definition 3.1 Polygon P̂ 0 ∈ R2 is an Eigen polygon of matrix M if there exist V̂ ∈ R
2

and λ ∈ R such that
P̂ 1 = M P̂ 0 = IV̂ + λ(P̂ 0 − IV̂ ), (9)

where M is a n × n matrix whose rows sum to one, I is a n × 1 vector of 1’s and P̂ 1 and P̂ 0

are n-element column vectors.

Remark 3.2 We can see that if the eigen polygon P̂ 0 exists, then

M(P̂ 0 − IV̂ ) = M P̂ 0 − IV̂ = λ(P̂ 0 − IV̂ ),

i.e., λ is the eigenvalue of the subdivision matrix M and x-coordinate and y-coordinate of
P̂ 0 − IV̂ correspond the two eigenvectors. This suggests that M will have an eigen polygon if
M has two identical eigen values.

Remark 3.3 Although the basic idea of eigen polygon is similar as that in [35], but there
is one key difference. For the eigen polygon, the new vertices are linear combination of all
the vertices but the face or edge points in [35] are written into a bi-linear form. We solve the
problem by adding a temporary point V̂ into the combination and compute the coefficients in
the similar way.
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3.2 Eigen Polygon for CCVDS and Non-Uniform Biquadratic B-Spline Refine-
ment Rule

As the Catmull-Clark-variant Doo-Sabin subdivision and non-uniform biquadratic B-spline
are G1, so there are two identical eigenvalues for the corresponding subdivision matrix. We can
compute the associated eigen polygon.

Catmull-Clark-variant Doo-Sabin eigen polygon A Catmull-Clark-variant Doo-Sabin
refinement matrix has an eigen polygon

P̂ 0
i =

(
cos

(
2iπ

n

)
, sin

(
2iπ

n

))
, i = 0, 1, · · · , n − 1 (10)

with λ = 1
4 + 1

2 cos2(π
n ) and V̂ = (0, 0). In Figure 4, we show the Catmull-Clark-variant

Doo-Sabin eigen polygon for valance 3, 5 and 6.

P 0P 1

P 0

P 1

P 0

P 1

Figure 4 Catmull-Clark-variant Doo-Sabin eigen polygon

Non-uniform biquadratic B-spline eigen polygon For the non-uniform biquadratic
B-splines, the knot intervals for di and ei cannot be chosen arbitrarily. Actually, di = ei−1.
And then, the associated refinement matrix can also be constructed from the eigen polygon,
which has the vertices

P̂ 0
0 = (−1,−1), P̂ 0

1 = (1,−1), P̂ 0
2 = (1, 1), P̂ 0

3 = (−1, 1) (11)

with λ = 1
2 and V̂ = (d0−d2

d0+d2
, d1−d3

d1+d3
). In the Figure 5, we shown the non-uniform biquadratic

B-spline eigen polygon with different knot intervals.

2 3
4

1

P 0

P 1

7 2
1

5

P 0

P 1

Figure 5 Non-uniform biquadratic B-spline Eigen polygon
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3.3 Define the Subdivision Rule from Eigen Polygon

In this section, we define the subdivision matrix M with the eigen polygon idea. Since
the rows of M express the combinations of the new vertices from the old ones, so the desired
subdivision scheme that combines the Catmull-Clark-variant Doo-sabin refinement and non-
uniform biquadratic B-spline refinement rule is equivalent to define the subdivision matrix that
satisfy the following three requirements.

• The eigen polygon must specialize to Catmull-Clark-variant Doo-Sabin eigen polygon if
the knot intervals are all equal;

• The eigen polygon must specialize to non-uniform biquadratic B-spline eigen polygon
when the valence is 4 with the B-spline knot intervals;

• M must satisfy the requirement of eigen polygon;

We first explain how to design an eigen polygon for a valence-n face with the knot intervals
di and ei, where the points P̂ 0

i are functions of n, di and ei. The simplest way to define the
eigen polygon is using the regular n-polygon because both non-uniform biquadratic B-spline
Eigen polygon and Catmull-Clark-variant Doo-Sabin eigen polygon are regular n-polygons,
as shown in Figure 6. Equation (9) also involves λ and V̂ , so we begin by finding equa-
tions for λ and V̂ that specialize to the non-uniform biquadratic B-spline and Catmull-Clark-
variant Doo-Sabin cases. Here we set λ = 1

4 + 1
2 cos2(π

n ) and let V̂ =
∑n−1

i=0 αiÊ
0
i , where

αi = (di+ei+1)(di−1+ei+2)∑ n−1
i=0 (di+ei+1)(di−1+ei+2)

and Ê0
i = diP̂

0
i+1+ei+1P̂ 0

i

di+ei+1
.

Remark 3.4 There are many degrees of freedoms to define the eigen polygon and V̂ . We
tried several other possible ways to define the eigen polygon and we find that the final shape
qualities are similar. So in the present paper, we choose the simplest way to define the eigen
polygon: The regular n-polygon. For the point V̂ , the reason to choose such weights because
we want the point V̂ always lies in the interior of P̂ 0

i and each quadrilateral V̂ Ê0
i−1P̂

0
i Ê0

i is a
convex quadrilateral, which can be used to prove that the subdivision is always convergent for
any non-negative knot intervals in Theorem 4.1.

P 0

P 1

V

d i e i
P 1

V

d i ei
Pi

Pi+1

Pi-1

0

0

0 Pi1
e i+1

E i
0

E i-1
0

β i,1
β i,2

(a) Eigen polygon (b) Define the subdivision rule

Figure 6 Eigen polygon for the new non-uniform Doo-Sabin subdivision surface and

we define the subdivision rule in terms of the eigen polygon
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We now discuss how to create a refinement matrix M for which P̂ 0 is an eigen polygon.
From the definition of the eigen polygon, we have

P̂ 1
i = V̂ + λ(P̂ 0

i − V̂ ). (12)

To devise a subdivision rule, we make the assumption that P̂ 1
i is the bi-linear combination

of V̂ , E0
i−1, E0

i and P̂ 0
i with the weights β1

i and β2
i , i.e,

P̂ 1
i = (1 − β1

i )(1 − β2
i )V̂ + β1

i (1 − β2
i )Ê0

i−1 + (1 − β1
i )β2

i Ê0
i + β1

i β2
i P̂ 0

i . (13)

The weights β1
i and β2

i can be solved via the following method. Denote v1 = P̂ 1
i − V̂ ,

v2 = P̂ 1
i − Ê0

i−1, v3 = P̂ 1
i − Ê0

i , v4 = P̂ 1
i − P̂ 0

i , and let Si = 1
2vi × vi+1, Ti = 1

2vi−1 × vi+1, then

β1
i =

2S4

2S4 − T1 + T2 +
√

D
, β2

i =
2S1

2S1 − T1 − T2 +
√

D
, (14)

where D = T 2
1 + T 2

2 + 2S1S3 + 2S2S4.
The process of defining the subdivision matrix M for a n-sided face with knot intervals di,

ei, i = 0, 1, · · · , n − 1 is summarized as the following algorithm 3.3.
Algorithm 1 The algorithm to construct the subdivision matrix

Require: valence n, knot intervals di, ei;
Ensure: The subdivision matrix M ;
1: Define the eigen polygon to be a regular n-polygon;
2: Compute ci according to Equation (8);
3: for i = 0 to n − 1 do
4: Compute β1

i and β2
i according to Equation (14);

5: end for
6: for i = 0 to n − 1 do
7: for j = 0 to n − 1 do
8: Mi,j = (1 − β1

i )(1 − β2
i )αj

ej+1
dj+ej+1

9: Mi,j+1 = (1 − β1
i )(1 − β2

i )αj
dj

dj+ej+1

10: end for
11: Mi,i−1+ = β1

i (1 − β2
i ) ei

ei+di−1

12: Mi,i+1+ = (1 − β1
i )β2

i
di

ei+1+di

13: Mi,i+ = β1
i β2

i + β1
i (1 − β2

i ) di−1
ei+di−1

+ (1 − β1
i )β2

i
ei+1

ei+1+di

14: end for

Theorem 3.5 If all the knot intervals are equal, then the present scheme will reduce to
Catmull-Clark-variant Doo-sabin scheme. If the valence is four and the knot intervals satisfy the
B-spline requirement, then the present scheme will reduce to non-uniform biquadratic B-spline
refinement scheme.

Proof If all the knot intervals are all equal, then αi = 1
n and

V̂ =
n−1∑

i=0

αiÊ
0
i = (0, 0), (15)
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so we can verify that β1
i = β2

i = 1
2 for all 0 ≤ i ≤ n − 1. In this case, the subdivision scheme is

same as that of Catmull-Clark-variant Doo-sabin subdivision rule.
If n = 4 and the knot intervals satisfy the B-spline requirement, then

V̂ =
3∑

i=0

αiÊ
0
i =

(
d0 − d2

d0 + d2
,
d1 − d3

d1 + d3

)
, (16)

and β1
i = β2

i = 1
2 for all 0 ≤ i ≤ 3. So we can verify that the subdivision scheme is same as

that of non-uniform biquadratic B-spline refinement rule.

4 Result

While the subdivision matrix M is constructed only for a special planar polygon, but ap-
plying the matrix to arbitrary control meshes in R3 yields better results. In this section, we
analyze the convergence, continuity of the subdivision scheme and show the limit surfaces of
three non-uniform Doo-Sabin subdivision schemes.

4.1 Convergence and Continuity Analysis

Firstly, we proved that our new non-uniform Doo-Sabin subdivision scheme is always con-
vergent.

Theorem 4.1 The non-uniform Doo-Sabin subdivision scheme in the present paper is
always convergent.

Proof Suppose the i-th row, j-th column element of the subdivision matrix M is Mi,j and
let the eigenvalues for the subdivision matrix M be λk, k = 0, · · · , n − 1, where |λi| ≤ |λi−1|.
According to [38], the subdivision is convergent if and only if λ0 = 1.

The proof includes two steps. First, we prove that for all i, β1
i , β2

i ∈ (0, 1). Actually, since
P̂ 0 is a regular n-polygon, and Ê0

i is the convex combination of P̂ 0
i and P̂ 0

i+1, so n-polygon
Ê0

0 Ê0
1 · · · Ê0

n−1 is a convex n-polygon. So V̂ is inside the n-polygon because it is the convex
combination of all Ê0

i . Thus, the quadrilateral V̂ Ê0
i−1P̂

0
i Ê0

i is a convex quadrilateral. As the
point P̂ 1

i is in the interior of the quadrilateral, so there exist unique β1
i , β2

i ∈ (0, 1) satisfy
Equation (13).

Now we prove that λ0 = 1. Because
∑n−1

j=0 Mi,j = 1, i = 0, 1, · · · , n − 1, so 1 must be one
of the eigenvalues. And β1

i , β2
i ∈ (0, 1), so Mi,j > 0. If λ0 > 1, suppose (v0, · · · , vn−1) is the

corresponding eigenvector, and v = maxi=0,··· ,n−1{|vi|} .= |vk|, then

|λ0vk| = |
n−1∑

j=0

ck,jvj | ≤
n−1∑

j=0

ck,j |vj |

≤
n−1∑

j=0

ck,j |vk| = |vk|,

which is obvious not right. Thus, the new non-uniform Doo-Sabin subdivision scheme is con-
vergent.
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Ei-1

Ei

C

P i0,0
P i1,0

P i2,0

P i0,1

Pi0,2

Pi2,1

P i1,2

P i2,2

P1

P2

P3

Figure 7 Part of the control points of the characteristic map

Theorem 4.2 If the second and third eigenvalues for the subdivision matrix are λ, the
limit surface of the new non-uniform Doo-Sabin subdivision scheme is G1.

Proof According to the construction of the subdivision scheme, it is obvious that λ =
1
4 + 1

2 cos2(π
n ) must be the eigenvalue of the subdivision matrix M . If λ is the second and third

eigenvalues, then in order to prove the limit surface is tangent continuous, we need to verify
that the characteristic map exists and it is regular and injective[38]. To verify regularity and
injectivity, we need to examine the characteristic map defined by three rings of control points.
For a valence n face, referring to Figure 7, suppose the subdivision matrix of the three rings of
control points is Sn, and let the control points for the characteristic map be P j,k

i , 0 ≤ j, k ≤ 2,
0 ≤ i ≤ n − 1. Denote Pi = (cos(2iπ

n ), sin(2iπ
n )) ∈ R2, i = 0, · · · , n − 1, Ei = di

di+di+2
Pi+1 +

di+2
di+di+2

Pi, C =
∑n−1

i=0 αiEi, then M [P0−C, · · · , Pn−1−C]T = λ[P0−C, · · · , Pn−1−C]T. Thus,

we can set P 0,0
i = Pi − C.

For the points P 0,1
i−1 and P 1,0

i , according to the fact that the new grid after subdivision is
the scale of λ of the given control grid. Using this relationship, we have

(P 1,0
i − P 0,0

i )λ =
3
4

(2di−1 + ei)P
0,0
i + eiP

0,0
i−1

2(di−1 + ei)
− λP 0,0

i − (1 − λ)C +
1
4

(2di−1 + ei)P
1,0
i + eiP

0,1
i−1

2(di−1 + ei)

(P 0,1
i−1 − P 0,0

i−1)λ =
3
4

di−1P
0,0
i + (di−1 + 2ei)P

0,0
i−1

2(di−1 + ei)
− λP 0,0

i−1 − (1 − λ)C +
1
4

di−1P
1,0
i + (di−1 + 2ei)P

0,1
i−1

2(di−1 + ei)
.

Solving the linear systems we get

P 1,0
i − P 0,0

i =
12λ

(4λ − 1)(8λ − 1)
(Ei−1 − C) − 8λ − 4

8λ − 1
(P 0,0

i − C),

P 0,1
i−1 − P 0,0

i−1 =
12λ

(4λ − 1)(8λ − 1)
(Ei−1 − C) − 8λ − 4

8λ − 1
(P 0,0

i−1 − C).

Similarly, we can compute P 2,0
i , P 0,2

i−1 as

P 2,0
i − P 1,0

i =
6

(4λ − 1)(8λ − 1)
(Ei−1 − C) − 2λ − 1

λ(8λ − 1)
(P 0,0

i − C),

P 0,2
i−1 − P 0,1

i−1 =
6

(4λ − 1)(8λ − 1)
(Ei−1 − C) − 2λ − 1

λ(8λ − 1)
(P 0,0

i−1 − C).
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Let pi = P 0,0
i − C, vi = Ei − C, then we compute the remaining control points P j,k

i such
that Sn[P 0,0

0 −C, P 1,0
0 −C, · · · , P 2,2

n−1 −C]T = λ[P 0,0
0 −C, P 1,0

0 −C, · · · , P 2,2
n−1 −C]T. We obtain

P 1,1
i =

9
(
32λ2 − 4λ − 1

)
pi + 36λvi−1 + 36λvi

(4λ − 1)(8λ − 1)(16λ − 1)
,

P 2,1
i =

3
(
32λ2 + 44λ − 13

)
pi + 108λvi−1 + 6(2λ + 1)vi

(4λ − 1)(8λ − 1)(16λ − 1)
,

P 1,2
i =

3
(
32λ2 + 44λ − 13

)
pi + 108λvi + 6(2λ + 1)vi−1

(4λ − 1)(8λ − 1)(16λ − 1)
,

P 2,2
i =

(32λ3 + 220λ2 − 41λ− 4)pi + 18λ(2λ + 1)vi−1 + 18λ(2λ + 1)vi

λ(4λ − 1)(8λ − 1)(16λ − 1)
.

With all these control points, we can extract the Bézier control points for the patches
P1, P2 and P3 and compute the two directional derivatives of patch. For example, the two
directional derivatives of patch P2, ∂P2

∂t and ∂P2
∂s , are bi-degree 2 × 1 and 1 × 2 Bézier patches

respectively, where vectors of the control points are denoted as Ti,j , 0 ≤ i ≤ 2, 0 ≤ j ≤ 1 and
Si,j , 0 ≤ i ≤ 1, 0 ≤ j ≤ 2. We have

S0,0 = − 2
(−24λ2 − 3λ

)
vi−1

(4λ − 1)(8λ − 1)(16λ − 1)
− 2

(
24λ2 − 6λ

)
vi

(4λ − 1)(8λ − 1)(16λ − 1)
− 2

(
64λ3 − 64λ2 + 8λ + 1

)
pi

(4λ − 1)(8λ − 1)(16λ − 1)

S1,0 = −
(
320λ3 − 272λ2 + 52λ − 1

)
pi

4λ(4λ − 1)(8λ − 1)(16λ − 1)
+

(
512λ3 + 256λ2 + 16λ − 1

)
vi−1

16λ(4λ − 1)(8λ − 1)(16λ − 1)
+

3(1 − 4λ)vi

2(4λ − 1)(8λ − 1)(16λ − 1)

S0,1 =
6

(
8λ2 + 2λ − 1

)
pi

(4λ − 1)(8λ − 1)(16λ − 1)
+

18λvi−1

(4λ − 1)(8λ − 1)(16λ − 1)
+

24λ(1 − 4λ)vi

(4λ − 1)(8λ − 1)(16λ − 1)

S1,1 =
3

(−32λ2 + 28λ − 5
)
pi

(4λ − 1)(8λ − 1)(16λ − 1)
+

36λvi−1

(4λ − 1)(8λ − 1)(16λ − 1)
+

3(1 − 4λ)vi

(4λ − 1)(8λ − 1)(16λ − 1)

S0,2 =

(
192λ2 + 24λ

)
vi−1

16λ(4λ − 1)(8λ − 1)(16λ − 1)
+

(
128λ3 + 112λ2 − 32λ − 1

)
pi

4λ(4λ − 1)(8λ − 1)(16λ − 1)
+

(−2048λ3 + 704λ2 − 16λ + 1
)
vi

16λ(4λ − 1)(8λ − 1)(16λ − 1)

S1,2 =

(
24λ2 + 3λ

)
vi−1

λ(4λ − 1)(8λ − 1)(16λ − 1)
+

(
6λ − 24λ2

)
vi

λ(4λ − 1)(8λ − 1)(16λ − 1)
+

(−64λ3 + 64λ2 − 8λ − 1
)
pi

λ(4λ − 1)(8λ − 1)(16λ − 1)

T0,0 = −2
(
64λ3 − 64λ2 + 8λ + 1

)
pi

(4λ − 1)(8λ − 1)(16λ − 1)
− 6λ(8λ − 2)vi−1

(4λ − 1)(8λ − 1)(16λ − 1)
+

6λ(8λ + 1)vi

(4λ − 1)(8λ − 1)(16λ − 1)

T1,0 =
6

(
8λ2 + 2λ − 1

)
pi

(4λ − 1)(8λ − 1)(16λ − 1)
+

6λ(4 − 16λ)vi−1

(4λ − 1)(8λ − 1)(16λ − 1)
+

18λvi

(4λ − 1)(8λ − 1)(16λ − 1)

T2,0 =

(
128λ3 + 112λ2 − 32λ − 1

)
pi

4λ(4λ − 1)(8λ − 1)(16λ − 1)
+

(−2048λ3 + 704λ2 − 16λ + 1
)
vi−1

16λ(4λ − 1)(8λ − 1)(16λ − 1)
+

3(8λ + 1)vi

2(4λ − 1)(8λ − 1)(16λ − 1)

T0,1 = −
(
96λ2 − 24λ

)
vi−1

16λ(4λ − 1)(8λ − 1)(16λ − 1)
−

(
320λ3 − 272λ2 + 52λ − 1

)
pi

4λ(4λ − 1)(8λ − 1)(16λ − 1)
−

(−512λ3 − 256λ2 − 16λ + 1
)
vi

16λ(4λ − 1)(8λ − 1)(16λ − 1)

T1,1 =
3

(−32λ2 + 28λ − 5
)
pi

(4λ − 1)(8λ − 1)(16λ − 1)
+

3(1 − 4λ)vi−1

(4λ − 1)(8λ − 1)(16λ − 1)
+

36λvi

(4λ − 1)(8λ − 1)(16λ − 1)

T2,1 =

(
24λ2 + 3λ

)
vi

λ(4λ − 1)(8λ − 1)(16λ − 1)
+

(−64λ3 + 64λ2 − 8λ − 1
)
pi

λ(4λ − 1)(8λ − 1)(16λ − 1)
+

3(2 − 8λ)vi−1

(4λ − 1)(8λ − 1)(16λ − 1)
.
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The control points for ∂P2
∂t are convex combinations of vectors pi, −vi−1 and vi, while the

control points for ∂P2
∂s are convex combinations of vectors pi, vi−1 and −vi, so the patch of P2 is

regular and injective. On the other hand, because C is a convex combination of the points Ei,
we can observe that for any i, the points P j,k

i , 0 ≤ j, k ≤ 2 lie in the regions bounded by two
rays CEi−1 and CEi. Thus, the characteristic map of the subdivision is regular and injective
for any valence and any positive knot intervals, which concludes that the surface is G1.

It is much better if we can prove mathematically that the λ must be the second and third
eigenvalues. However, we do not have an analytical proof for this. But we did a wild range
of numerical tests. For each valence n, 3 ≤ n ≤ 30 faces, we generated a set of random knot
intervals di, ei ∈ [1, 106], and preform three non-uniform subdivision scheme on the models. For
each model, we calculate the eigenvalues verify that whether the second and third eigenvalues
are the same. In all the million tests, λ is the second and third eigenvalue of subdivision matrix.
In other words, according to Theorem 4.2, the limit surface in all these tests are G1 continuous.
The example characteristic maps of the new subdivision scheme for valence 3, 5, 6, 7, 8, 9 with
non-uniform knot intervals are shown in Figure 8.

Figure 8 The example characteristic maps of the new subdivision scheme for valence

3 to 9 with non-uniform knot intervals

Similar numerical experiments have been done for NURDS scheme[33] and NURSS scheme[32].
We find that for 3 ≤ n ≤ 30, the NURDS limit surface is G1 continuity in the case of only one
knot being different from the others. However, the scheme is only G0 for almost all the other
cases. For example, for the valence 3, if {di} = {9, 7, 2} and {ei} = {6, 1, 5} the limit surface
is only G0. For valence 5, if {di} = {6, 7, 3, 7, 7} and {ei} = {10, 4, 1, 5, 7}, the limit surface is
also only G0.

For quadratic NURSS scheme[32], the authors proved that eigenvalue satisfies the require-
ment for G1 continuous when the valence n is less than 9. However, for higher valence, both [37]
and [33] point out that quadratic NURSSes converge for n ≤ 12, but may diverge when n > 12.
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Our experiments find the similar result and we also find that in some cases, the scheme is
convergent but the limit surface is only G0. For example, in a valence 14 face, if we define the
knot intervals {di} to be {9718, 478, 5255, 4437, 1335, 1745, 1366, 3849, 1946, 8204, 294, 9208,
408, 1219} and {ei} to be {75, 1770, 9495, 4072, 6188, 924, 2280, 1454, 1852, 7743, 3283, 16,
7617, 387}, the limit surface is only G0.

4.2 Limit Surfaces

In order to show the quality of our new subdivision scheme, we present some numerical
experiments on our new scheme and compare them with two existing non-uniform Doo-Sabin
subdivision methods (see Figures 9,13,14). We marked the knot intervals in the initial control
grid in each example where all the non-marked knot intervals are ones. As in all our experi-
ments, the NURSS scheme and NURDS scheme provide very similar quality limit surfaces, so
in the following, we only show one of the limit surfaces. And in our experiments, all three
subdivision schemes produce very similar result limit surfaces for valence three. However, our
new subdivision scheme produces better shape quality for the rest valences.

Figure 9 shows the limit surfaces produced by NURSS and the new schemes for a valences
five extraordinary face. The NURSS limit surface has unwanted creases as shown in Figure 9
(b). In additional, some points on the limit surface lie under the xy-plane. In other words, the
NURSS scheme does not satisfy the convex hull property. Figure 9 (c) shows the limit surface
generated by our new scheme which produces better limit surface. As all the elements for our
subdivision matrix are non-negative, so our scheme satisfies the convex hull properties.

0.20.2

(a) Initial control grid (b) NURSS (c) The present scheme

Figure 9 Comparison of the limit surface of a valence five extraordinary face for

NURSS scheme and our new subdivision scheme

Figures 10, 11, 12, 13 and 14 show the limit surfaces created by NURDS or NURSS scheme
and our new scheme for valences six, seven, eight, nine extraordinary faces and a ring model.
We can obverse the similar conclusion as well.
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5

5

(a) Initial control grid (b) NURDS (c) The new scheme

Figure 10 Comparison of the limit surface of a valence six extraordinary face for

NURDS scheme and our new subdivision scheme

0.3

0.3

(a) Initial control grid (b) NURSS (c) The new scheme

Figure 11 Comparison of the limit surface of a valence seven extraordinary face for

NURSS scheme and our new subdivision scheme

0.3

0.3

(a) Initial control grid (b) NURSS (c) The new scheme

Figure 12 Comparison of the limit surface of a valence eight extraordinary face for

NURSS scheme and our new subdivision scheme

5

5

(a) Initial control grid (b) NURDS (c) The new scheme

Figure 13 Comparison of the limit surface of a valence nine extraordinary face for

NURDS scheme and our new subdivision scheme
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(a) Initial control grid (b) NURSS (c) The new scheme

Figure 14 Comparison of the limit surface of a ring model for NURSS scheme and

our new subdivision scheme

5 Summary and Future Work

In this paper, the eigen polygon has been successfully implemented to construct a new non-
uniform Doo-sabin subdivision scheme, which is a generalization of Catmull-Clark-variant Doo-
Sabin subdivision scheme to non-uniform knot intervals and also a generalization of nonuniform
biquadratic B-spline to arbitrary topology. This paper proved that the subdivision surfaces are
always G1 for any given random selecting knot intervals for all the valence between 3 and 30
if the subdivision matrix has two identical eigenvalues λ. Comparing the currently proposed
scheme with the other two schemes we observe that our scheme gives better quality shape as
shown in Figures 9, 13, 14.

There are many interesting problems to be further explored. For example, the eigen polygon
idea has been applied to construct the subdivision scheme for odd degrees in [35] and even
degrees in the present paper. The natural question is how to generalize the method to handle
arbitrary degrees. There are some degrees of freedom to define the eigen polygon, so what is the
behavior of the other eigen polygons? We don’t have a mathematical proof for the subdivision
surface is always G1, and suggest that this is also an interesting problem for future directions.
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