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Abstract

This paper proposes a method to construct an G3 cubic spline curve from any given

open control polygon. For any two inner Bézier points on each edge of a control polygon,

we can define each Bézier junction point such that the spline curve is G2-continuous. Then

by suitably choosing the inner Bézier points, we can construct a global G3 spline curve.

The curvature combs and curvature plots show the advantage of the G3 cubic spline curve

in contrast with the traditional C2 cubic spline curve.
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1. Introduction

Curve modeling has a long history in computer graphics, which is widely used in drawing,

sketching, data fitting, interpolation, as well as animation. The basic goal of curve modeling is to

provide the algorithm to edit the shape of the curve with some certain geometric properties. In

industrial or conceptual design, one important question is how to construct a fair freeform curve.

Most CAD systems rely on some sort of curvature information to define a fair curve and the

prevailing tools are curvature combs and curvature plots [30,31]. The most used representations

in the industry design are cubic B-splines. However, the curvature plot or curvature comb has

some non-smooth junctions because the spline curve is at most C2-continuous, as shown in

Figure 1.1. This leads a very nature question: can we increase the continuity of a cubic spline

curve?

Fig. 1.1. The curvature comb of a cubic B-spline curve has some non-smooth junctions.

This paper gives a positive answer for this problem and proposes a method to construct a G3

cubic spline curve for any given open control polygon. First, for the given control polygon, we
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can select any two inner Bézier points on each edge and define the junction points to construct

a global G2 spline curve. And then, we can construct a global G3 spline curve by solving the

inner Bézier points. We prove that the solution always exists under a restriction on the control

polygon. Same as the B-spline curve, the curve satisfies the convex hull property and can be

modified by editing the control polygon. The curvature combs and curvature plots show the

advantage of the G3 cubic spline curve in contrast with the traditional C2 cubic spline curve.

1.1. Related work

Among all the representations, Non-Uniform Rational B-Spline (NURBS) is the industry

standard for the representation, design, and data exchange of geometric information processed

by computers [2]. Many different models of splines have been introduced for various purpose.

B-spline is introduced by Schoenberg [23] using divided difference which is not suitable for

computing [3]. And then, C. de Boor [5] and M. Cox [6] discover the recurrence relations inde-

pendently. The recurrence relation is used by Gordon and Riesenfeld [7] for efficient computing.

The B-Spline can also be regarded as the basis functions of a linear spline space [4]. Beta-spline

is introduced by Barsky [8] by replacing the derivatives with the tangent vector and curvature

vector [9], which preserves the geometric smoothness of the curve and gives greater flexibility

to control the shape [10, 11]. The definition of geometric continuity has been used by many

other authors, such as Manning [12], Nielson [13], Barsky and DeRose [14] and Böhm [15].

Pythagorean hodograph (PH) spline curves are defined in [16], which provide rational offset

curves and polynomial arc-length functions [17,18]. X-spline model is proposed in [19] to make

user manipulations more intuitively. The other geometrical continuous spline curve construc-

tions have been widely developed as well. Schaback [34] constructs a piecewise quadratic G2

Bézier interpolatory curve by satisfying certain generalized convexity conditions. Yan et al. [33]

construct almost everywhere curvature continuous piecewise quadratic curves, called κ–curves.

Miura et al. [36] design log-aesthetic spline curves with G2 continuity by solving the G2 Hermite

interpolation problem. Farin proposes the constructing of G2 cubic spline with the given control

polygon by using the Euclidean distances in [21,22]. The curvature continuous PH spline curves

have been constructed from any control polygon in [32]. However, all of these constructions

only involve G2 continuity at most.

1.2. Organization

The rest of the paper is organized as follows. In Section 2, we recall some basic properties

of B-spline and present the derivatives of a B-spline curve respecting the arc length. In Section

3, we derive the G3 continuous condition and provide the algorithm to construct the G3 cubic

spline curves. We also prove that the solution always exists under a restriction on the control

polygon. The examples of the present construction and traditional B-spline are shown in Section

4. Finally, Section 5 presents the conclusion and future work.

2. Cubic B-spline curves

Given a knot vector U = {u−2, u−1, u0, · · · , un, un+1, un+2}, ui ≤ ui+1, ui < ui+4, and a

set of control points Pi, i = 0, . . . , n, a cubic B-spline curve is defined as

P(u) =

n∑
i=0

B3
i (u)Pi, (2.1)
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where B3
i (u) is a cubic B-spline basis function defined by the following recursive relation,

B0
i (u) =

{
1, if ui−2 ≤ u < ui−1
0, otherwise

Bdi (u) =
u− ui

ui+d − ui
Bd−1i (u) +

ui+d+1 − u
ui+d+1 − ui+1

Bd−1i+1 (u) (2.2)

A B-spline curve can be extracted into a set of Bézier curves, i.e., each segment has Bézier

control points {B3i, B3i+1, B3i+2,B3(i+1)}n−3i=0 , by Böhm algorihtm [28] or blossom [?, 25, 26].

As shown in Figure 2.1(b), the points B3(i−1)+1,B3(i−1)+2 are called inner Bézier points, and

the points B3i are junction points. Let knot interval di = ui+1 − ui, then we have{
|
−−−−−→
PiB3i−2| : |

−−−−−−−−→
B3i−2B3i−1| : |

−−−−−−−→
B3i−1Pi+1| = di−1 : di : di+1,

|
−−−−−−→
B3i−1B3i| : |

−−−−−−→
B3iB3i+1| = di : di+1.

(a) Knot intervals

𝑃𝑃𝑖𝑖

𝐵𝐵3𝑖𝑖

𝑃𝑃𝑖𝑖+2

𝑃𝑃𝑖𝑖+1

𝐵𝐵3𝑖𝑖−1

𝐵𝐵3𝑖𝑖+1

𝐵𝐵3𝑖𝑖−2

𝐵𝐵3𝑖𝑖+2

𝐵𝐵3𝑖𝑖−3

𝐵𝐵3𝑖𝑖+3

𝑃𝑃𝑖𝑖−1

𝑃𝑃𝑖𝑖+3

(b) Bézier control points

Fig. 2.1. Extract the Bézier control points for each segment of a cubic spline curve.

2.1. Derivative of a B-spline curve

Let P(u) be a regular planar curve, then the derivatives of P(u) with respecting to arc

length s is
dP

ds
= t(s) =

dP

du
/(

ds

du
) =

P′

|P′|
, (2.3)

where primes denote differentiation respecting to u and t(s) represents the tangent vector of

the curve P.

According to the equality P ·P = |P|2, we can obtain P ·P′ = |P| (d|P|/du) by differenti-

ation. Using this equality, we can get the second derivative,

d2P

ds2
= κ(s)n(s) =

d

ds

(dP

ds

)
=

d

du

( P′

|P′|
)
/s′

=
1

|P′|
( P′′

|P′|
− P′

|P′|2
· d|P′|

du

)
=

P′′

P′ ·P′
− P′ ·P′′

(P′ ·P′)2
P′ =

P′ × (P′′ ×P′)

(P′ ·P′)2
, (2.4)



4 W.-J. LIU AND X. LI

where n(s) is the normal vector and κ(s) is the curvature. The equality 2.4 uses the vector

triple product a× (b× c) = (a · c)b− (a · b)c.

The third derivative can be defined as

d3P

ds3
= κ′(s)n(s)− κ2(s)t(s) =

1

|P′|
d

du

(P′ × (P′′ ×P′)

(P′ ·P′)2
)

=
P′′ × (P′′ ×P′) + P′ × (P′′′ ×P′)

|P′| · (P′ ·P′)2
− 4(P′′ ·P′)P′ × (P′′ ×P′)

|P′| · (P′ ·P′)3
. (2.5)

For two planar vectors a,b and a nonzero vector c, there exists the below equivalent relation

a = b⇔
{

a× c = b× c

a · c = b · c. (2.6)

Using the vector calculus, we can obtain the dot and cross product of first derivative and

third derivative by the above equalities.

dP

ds
· d3P

ds3
=

(P′ ·P′′)2 − (P′ ·P′)(P′′ ·P′′)
(P′ ·P′)3

= −|P
′ ×P′′|2

(P′ ·P′)3
(2.7)

dP

ds
× d3P

ds3
= κ′(s)t(s)× n(s) = −3

(P′ ·P′′)(P′ ×P′′)

(P′ ·P′)3
+

P′ ×P′′′

(P′ ·P′)2
. (2.8)

We will take the following definition for the consideration of geometric continuity.

Definition 2.1. Two curves are n-order geometric continuity (Gn) at a common point, if and

only if they are Cn continuous with respect to their respective arc length at this point.

3. Framework to construct G3 cubic spline curves

In this section, we construct the G3 cubic spline curves from any given open control polygon

by solving a non-linear system. We prove that the solution of the system always exists under a

restriction on the control polygon.

3.1. G2 spline curve construction

Given a set of ordered control points P0,P1, · · · ,Pn, a set of knot intervals di, i =

−1, 0, . . . , n, we can create a global G2 spline curves by the following simple construction.

First, we associate each interior edge PiPi+1 with a parameter λi ∈ (0, 1), i = 0, 1, · · · , n − 1.

Then we can extract the two inner Bézier control points according to the following equations,

|
−−−−−−−−−−−−−−→
B3(i−1)+1B3(i−1)+2| = λi|

−−−−−→
PiPi+1|, (3.1)

|
−−−−−−−−→
PiB3(i−1)+1| =

di−1
di−1 + di+1

(1− λi)|
−−−−−→
PiPi+1|, (3.2)

|
−−−−−−−−−−→
B3(i−1)+2Pi+1| =

di+1

di−1 + di+1
(1− λi)|

−−−−−→
PiPi+1|. (3.3)

The junction point B3i(i = 0, 1, · · · , n− 2) is determined by G2 condition,

B3i =
δiB3i−1 + B3i+1

1 + δi
, (3.4)
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1

Fig. 3.1. The determination of Bézier junction point with G2 conditon

where

δ2i :=

(
|B3i+1 −B3i|
|B3i −B3i−1|

)2

=
di+1(di + di+2)

di(di−1 + di+1)
· λi+1(1− λi)
λi(1− λi+1)

.

Remark 3.1. If λi = di
di−1+di+di+1

, the above construction will produce the cubic B-spline

curve. And if d−1 = d0 = dn−1 = dn = 0, the final spline curve will interpolate the two end

points P0 and Pn.

Remark 3.2. If P0 = Pn and the spline curve corresponds a close curve, we can consider the

indices for the control points and knot intervals in terms of the module of n, and then we can

construct a global G2 curve in the similar procedure.

If the control polygon is open, then the spline curve can be extracted into n − 2 Bézier

segments. And for any λi ∈ (0, 1), we can construct a G2 spline curve. So the basic idea of

the paper is to optimize the parameters λi such that the final spline curve has higher order of

continuity.

3.2. G3 constraints

For the purpose of considering the higher continuity at the junction point B3i, we reparam-

eterize the spline of P(u) near the point B3i. Denote the left Bézier segment by L(α) and right

by R(β), as shown in the Figure 3.2.

Concretely, L(α) is the Bézier segment with control points B3i−3,B3i−2,B3i−1,B3i and

R(β) is the Bézier segment with control points B3i,B3i+1,B3i+2,B3i+3, i.e.,

L(α) =

3∑
j=0

B3(i−1)+j

(
j

3

)
αj(1− α)3−j , 0 ≤ α ≤ 1;

R(β) =

3∑
j=0

B3i+j

(
j

3

)
βj(1− β)3−j , 0 ≤ β ≤ 1.
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Fig. 3.2. Re-parametrization

By the differential calculus, we can obtain the below expressions.

L′(1) = 3(B3i −B3i−1) = 3∆B3i−1,

L′′(1) = 6(∆B3i−1 −∆B3i−2),

L′′′(1) = 6(∆B3i−1 − 2∆B3i−2 + ∆B3i−3),

R′(0) = 3(B3i+1 −B3i) = 3∆B3i,

R′′(0) = 6(∆B3i+1 −∆B3i),

R′′′(0) = 6(∆B3i+2 − 2∆B3i+1 + ∆B3i).

Due to dP
ds ·

d3P
ds3 = −κ2(s) = −d2P

ds2 ·
d2P
ds2 , we only need to consider the equation 2.7 according

to the equivalent relation 2.6. The G3 continuity condition of the curve P(u) at the point B3i

is deduced to(
−3

(L′ · L′′)(L′ × L′′)

(L′ · L′)3
+

L′ × L′′′

(L′ · L′)2

)
(1) =

(
−3

(R′ ·R′′)(R′ ×R′′)

(R′ ·R′)3
+

R′ ×R′′′

(R′ ·R′)2

)
(0). (3.5)

Remark 3.3. The cross product of two planar vectors is a vector perpendicular to the plane,

so we only need to consider the norm of the product vector and the direction of the product

vector is inward or outward of the plane.

3.3. Construct a G3 cubic spline curve

From the equations 3.1 and 3.4, the Bézier points B3i−3,B3i−2, · · · ,B3i+3 can be repre-

sented by the control points Pi−1,Pi,Pi+1,Pi+2,Pi+3 and the parameters λi−1, λi, λi+1, λi+2

such that the final curve is G3 condition at the Bézier junction point B3i (i = 1, · · · , n − 3).

The constraint is an equation involves unknowns λi−1, λi, λi+1, λi+2, which is denoted as

fi(Pi−1,Pi,Pi+1,Pi+2,Pi+3;λi−1, λi, λi+1, λi+2) = 0. (3.6)

For an open curve, there are n − 3 constraints and we have n unknowns. So we fix the λ0
and λn−1 and try to solved the other λi such that the constructed G2 cubic spline curve is G3 at

every Bézier junction point B3i, i = 1, 2, · · · , n − 3. Finally, the G3 constraints are formalized

in this nonlinear system with unknowns λis, which can be solved by damped least-squares

method. The nonlinear system is solved by the function fsolve in MATLAB 2018b, which is

called by a project of visual studio 2017. The programming is implemented in C++ under the

Windows 7 system, based on the Qt class with interactive design. For each parameter λi, we
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assign a default value λi = di
di−1+di+di+1

, i = 0, 1, · · · , n − 1. The algorithm can be formulated

as following.

Algorithm 3.1. Framework of constructing G3 spline curve

Input: The set of control points {P0,P1, · · · ,Pn};
Output: The control points Bi of (n− 2) Bézier segments;

1: Assign every polygon leg PiPi+1 a parameter λi ∈ (0, 1) and set a default value λi =
di

di−1+di+di+1
, i = 0, 1, · · · , n− 1.

2: Formulate the nonlinear system 3.6 according to the expressions 3.1, 3.4 and equation

3.5;

3: Solve the system 3.6 by damped least-squares method according to λi, i = 1, . . . , n− 2

and get the solution Λ = {λ1, · · · , λn−2};
4: Compute the interior Bézier points B3i+1,B3i+2 with Λ by 3.1;

5: Compute the junction point B3i with Λ by 3.4;

return the control points of Bézier segments {B3i,B3i+1,B3i+2,B3i+3}, i = 0, 1, · · · , n−3.

Remark 3.4. In the non-linear solver, the initial value is extremely important. In our imple-

mentation, we always set the initial value λi = di
di−1+di+di+1

, i = 0, 1, · · · , n− 1. And in all the

testing examples of interactive editing system, it always gives the solution for the initial values.

3.4. The Existence of the parameters λi

As we known, it is a difficult task to solve a non-linear system. And in general it may have

no solution. But for our non-linear system, we prove that the solution always exists under a

restriction on the control polygon, as shown in the theorem 3.1.

Theorem 3.1. Given a open control polygon with control points P0,P1, · · · ,Pn, n ≥ 3, suppose

for any i = 0, 1, · · · , n− 1, ∆Pi×∆Pi+1 6= 0, and for any i = 1, · · · , n− 2, τi > 0 or τi+1 > 0,

where τi = (∆Pi−1 ×∆Pi) · (∆Pi ×∆Pi+1). Then the G3 continuity nonlinear system 3.6 has

a solution Λ = {λ1, λ2, · · · , λn−2}, 0 < λi < 1, i = 1, · · · , n− 2.

Proof. We prove the theorem by induction on the number of Bézier segments l = n− 2 (n ≥
3). If n = 3, the spline curve only has one Bézier segment without any constraint. Thus

the lemma is right obviously for any shape of control polygon and any λ0, λ1, λ2. Assume

the theorem is correct for n < m and now we consider n = m. Suppose the control polygon

is Pi, i = 0, . . . ,m, then for any 1 < i < m, and any λ0, λi, λi+1, λm−1, according to the

assumption, there exist λ1, λ2, · · · , λi−1 such that P0,P1, . . . ,Pi, B3i−1,B3i can define a G3

spline curve Cl and there exist λi+2, λi+3, · · · , λm−2 such that B3i,B3i+1, Pi+2,Pi+3, . . . ,Pn

can define a G3 spline curve Cr. Thus, we only need to prove that there exists appropriate

λi, λi+1, 0 < λi, λi+1 < 1 such that the spline curve is G3 at B3i, where

B3i =
1

1 + δi
(δiB3i−1 + B3i+1)

and

δi =

(
di+1(di + di+2)

di(di−1 + di+1)
· λi+1(1− λi)
λi(1− λi+1)

) 1
2

.
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As shown in the Figure 3.3, for the point Pi+1, there are four different possible situations to

be considered. The first is that τi > 0 and τi+1 > 0, the second one is that τi < 0 and τi+1 > 0,

the third one is that τi > 0 and τi+1 < 0, and the fourth is τi < 0 and τi+1 < 0 which is not

allowed in the present proof.

𝑃𝑃𝑖𝑖+1

𝑃𝑃𝑖𝑖

𝑃𝑃𝑖𝑖+2

𝑃𝑃𝑖𝑖−1
𝑃𝑃𝑖𝑖+3

𝑃𝑃𝑖𝑖+1

𝑃𝑃𝑖𝑖 𝑃𝑃𝑖𝑖+2

𝑃𝑃𝑖𝑖−1 𝑃𝑃𝑖𝑖+3

(a) τi > 0 and τi+1 > 0

𝑃𝑃𝑖𝑖+1

𝑃𝑃𝑖𝑖

𝑃𝑃𝑖𝑖+2𝑃𝑃𝑖𝑖−1

𝑃𝑃𝑖𝑖+3 𝑃𝑃𝑖𝑖+1

𝑃𝑃𝑖𝑖

𝑃𝑃𝑖𝑖+2

𝑃𝑃𝑖𝑖−1

𝑃𝑃𝑖𝑖+3

(b) τi < 0 and τi+1 > 0

𝑃𝑃𝑖𝑖+1𝑃𝑃𝑖𝑖

𝑃𝑃𝑖𝑖+2𝑃𝑃𝑖𝑖−1

𝑃𝑃𝑖𝑖+3

𝑃𝑃𝑖𝑖+1

𝑃𝑃𝑖𝑖

𝑃𝑃𝑖𝑖+2

𝑃𝑃𝑖𝑖−1
𝑃𝑃𝑖𝑖+3

(c) τi > 0 and τi+1 < 0

𝑃𝑃𝑖𝑖+1

𝑃𝑃𝑖𝑖
𝑃𝑃𝑖𝑖+2

𝑃𝑃𝑖𝑖−1
𝑃𝑃𝑖𝑖+3

𝑃𝑃𝑖𝑖+1

𝑃𝑃𝑖𝑖 𝑃𝑃𝑖𝑖+2

𝑃𝑃𝑖𝑖−1
𝑃𝑃𝑖𝑖+3

(d) τi < 0 and τi+1 < 0

Fig. 3.3. Four possible situations for point Pi+1, where the fourth one is not allowed in the proof of

the theorem.

The proof of the three situations are analogous. Specifically, we fix λi or λi+1 for the first

situation and fix λi for the second situation while fix λi+1 for the third situation. We present

the detail proof for the first situation. The discussion of other situation is similar. By fixing the

λi, let λi+1 change from 0 to 1, δi will change from 0 to ∞. So, B3i+1 and B3i+2 will change

from the central region of the polygon edge Pi+1Pi+2 to Pi+1 and Pi+2 respectively. And B3i

will change from B3i+1 to B3i−1.

Let El = the left side of Eq. (3.5) and Er = the right side of Eq. (3.5), i.e.,

El =
4
(
∆B3i−1 · (2∆B3i−1 − 3∆B3i−2)

)
(∆B3i−1 ×∆B3i−2)

9(∆B3i−1 ·∆B3i−1)3
+

2∆B3i−1 ×∆B3i−3

9(∆B3i−1 ·∆B3i−1)2
,

Er =
4
(
∆B3i · (2∆B3i − 3∆B3i+1)

)
(∆B3i ×∆B3i+1)

9(∆B3i ·∆B3i)3
+

2∆B3i ×∆B3i+2

9(∆B3i ·∆B3i)2
.

Then, we have

lim
λi+1→0

El = c1

which is a constant. On the other hand, lim
λi+1→0

Er = 0
0 is indeterminate form, but we can

analyze the order of the indeterminate to know it diverges to +∞.

We can represent El, Er with Pi and λi by the expression 3.1 and 3.4. Then we separate

the λi part from El and Er, and denote the other part by below symbols for ease of notations.

We just show the detail expression of Er, cause the similar consideration can be done with El.

Let

ϕi =
√
di+1(di + di+2), (3.7)

ψi =
√
di(di−1 + di+1), (3.8)

ωi = ϕi
√
λi+1(1− λi) + ψi

√
λi(1− λi+1); (3.9)

Ri =
di+1(λi − 1)

di−1 + di+1
Pi +

(
diλi+1 + di+2

di + di+2
− di−1 + di+1λi

di−1 + di+1

)
Pi+1 +

di(1− λi+1)

di + di+2
Pi+2, (3.10)
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and Qi = ∆Pi := Pi+1 −Pi, we have

Er =

(
4ϕ2

iλ
2
i+1(1− λi)
ω2
i

Ri ·
(2ϕi

√
λi+1(1− λi)
ωi

Ri − 3λi+1Qi+1

)
(Ri ×Qi+1)

+
ϕ2
iλi+1(1− λi)

ω2
i

Ri ·Ri

(2ϕi
√
λi+1(1− λi)
ωi

Ri ×
ψi+1

√
λi+1(1− λi+2)

ωi+1
Ri+1

))
/(

9
(ϕ2

iλi(1− λi)
ω2
i

Ri ·Ri

)3)
.

In order to analysis the order of the expression, we organize the numerator and denominator

of the expression to

Er =ω3
i

(
4ωi+1ϕ

2
iλ

5
2
i+1(1− λi)Ri ·

(
2ϕi
√

1− λiRi − 3ωi
√
λi+1Qi+1

)
(Ri ×Qi+1)

+ 2ϕ3
iψi+1λ

2
i+1(1− λi)

3
2 (1− λi+2)

1
2 Ri ·Ri(Ri ×Ri+1)

)
/(

9ωi+1ϕ
6
iλ

3
i+1(1− λi)3(Ri ·Ri)

3

)
. (3.11)

From the above analysis of the order of El, Er about λi, we have the asymptotic relation

El ∼
O
(
λ

5
2
i (1− λi+1)

)
+O

(
λ2i (1− λi+1)

3
2 (1− λi−1)

1
2

)
O
(
λ3i (1− λi+1)3

) ,

Er ∼
O
(
λ

5
2
i+1(1− λi)

)
+O

(
λ2i+1(1− λi)

3
2 (1− λi+2)

1
2

)
O
(
λ3i+1(1− λi)3

) .

When we eliminate λ2i+1 from denominator and numerator of Er, we can know the denominator

tends to 0 but the numerator not. Consequently lim
λi+1→0

Er = ±∞, and the sign depend on the

numerator. More concretely, the sign rely on the sign of numerator’s second term ∆B3i×∆B3i+2

since the first term tends to 0. If we take the outward direction of the paper as sign +, we

know the sign of the ∆B3i×∆B3i+2 is positive according to the right hand rule of vector cross

product. We then have

lim
λi+1→0

Er = +∞.

When λi+1 → 1, we have

lim
λi+1→1

Er = c2

which is another constant. And lim
λi+1→1

El = 0
0 is indeterminate form. We can analysis the order

of the indeterminate to know it is also +∞ with the similar consideration of last paragraph.

Because the denominator tends to 0 but the numerator not. The sign depends on the first term

of numerator cause the second term tends to 0. While λi+1 tends to 1, B3i tends to B3i−1 and

B3i+1 tends to Pi+1. So, 2∆B3i−1 · ∆B3i−1 − 3∆B3i−1 · ∆B3i−2 is a negative number and

∆B3i−1 ×∆B3i−2 is also a negative number(actually a vector perpendicular to the paper with

inward direction). Therefore,

lim
λi+1→1

El = +∞.

Consequently, we have

lim
λi+1→0

El − Er = −∞, lim
λi+1→1

El − Er = +∞. (3.12)
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According to the zero theorem, there must be exist a λi+1 such that El(λi+1) = Er(λi+1). The

proof is complete.

Remark 3.5. Although the proof cannot be applied for the case of τi < 0 and τi+1 < 0, but all

our numerical experiment show that the solution always exists. So a better proof needs more

consideration which is left as a further work.

4. Numerical Results

In this section, we list some examples to compare the newG3 spline curve with the traditional

cubic B-spline curves. In each example, the two representations have the same control polygon

and knot intervals. We can also see that in all the examples, the G3 curves and the B-spline

curves are very similar, but the curvature of the G3 curves is smoother than that of cubic

B-spline curves 4.5. The knot intervals of all the examples are given as di = li + li+1 + li+2,

i = 1, 2, · · · , n − 2, where lj = |Pj−1Pj | is the length of polygon edge. In the example with

end condition, we set d−1 = d0 = dn−1 = dn = 0 and in the other example, we set d−1 = d0 =

d1, dn = dn−1 = dn−2.

Example 4.1. Let P0 = (241, 141), P1 = (315, 101), P2 = (364, 251), P3 = (578, 249), P4 =

(629, 95), P5 = (758, 82), P6 = (833, 140).The corresponding B-spline curve is shown in Fig-

ure 4.1b. We can clearly see that the curvature has some junctions. By using our new con-

struction, after only three iterations, we can get the solution to be Λ = { 13 , 0.273429, 0.30181,

0.311446, 0.251477, 1
3}.

(a) The G3 spline curve and the curvature

comb

(b) The cubic B-spline curve and the cur-

vature comb

Fig. 4.1. Curvature combs of the two spline curves for the control polygon in Example 4.1.

Example 4.2. Let P0 = (408, 239), P1 = (296, 308), P2 = (155, 192), P3 = (229, 48), P4 =

(420, 48), P5 = (523, 184), P6 = (693, 43), P7 = (827, 112), P8 = (796, 185).After nine iterations,

we get the solution to be Λ = { 13 , 0.243793, 0.389213, 0.268012, 0.266559, 0.301462, 0.243636,
1
3}. The curve and curvature information for both construction are shown in the Figure 4.2.

Example 4.3. The control points of the Example 3 in the figure 4.3 are P0 = (219, 414),

P1 = (79, 287), P2 = (98, 149), P3 = (269, 34), P4 = (446, 94), P5 = (483, 233), P6 = (465, 352),

P7 = (366, 413) with Bézier end condition. After optimization, we get Λ = {0, 0.619972,

0.300474, 0.342834, 0.290912, 0.66966, 0}.

Example 4.4. The control points of this example are P0 = (157, 156), P1 = (248, 118), P2 =

(326, 171), P3 = (431, 119), P4 = (535, 201), P5 = (640, 123), P6 = (729, 170), P7 = (860, 123).

Then we solve the Λ = {0, 0.39748, 0.140545, 0.362066, 0.167863, 0.405231, 0}.
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(a) The G3 spline curve and curvature com-

b

(b) The cubic B-spline curve and curvature

comb

Fig. 4.2. Curvature combs of the spline curves for the control polygon in Example 4.2.

(a) The G3 spline curve and curvature comb (b) The cubic B-spline curve and curvature

comb

Fig. 4.3. Curvature combs of the two spline curves constructed from the control polygon in Example 4.3.

5. Conclusions and discussion

We have presented a method to construct a G3 cubic spline curve with any given control

polygon formed by a set of ordered points P0,P1, · · · ,Pn that satisfy ∆Pi ×∆Pi+1 6= 0, i =

0, 1, · · · , n − 1. The constructing procedure involves to solve a non-linear system. Although

we only prove that the solutions of the non-linear system exist under some constraints on

the control polygon, but our numerical experiment show that the solution always exists. The

curvature combs and curvature plots of G3 cubic spline curve are smoother than C2 spline curve

because the curvature for the G3 spline curve is C1 continuous.

We only consider the construction for the open curve. The construction can be generalized

to close curves. Actually, if the spline curve is a close curve, then the spline curve can be

extracted into n Bézier segments. In this case, for each junction point B3i(i = 0, 1, · · · , n− 1),

we have n G3 constraints which can be formalized into the similar non-linear equations with n

unknowns. And we can solve the system in the same framework. However, we cannot prove

the existence of the solution for the close curves. Example 5.1 gives a close curve where the G3

(a) The G3 spline curve and curvature comb (b) The cubic B-spline curve and curvature

comb

Fig. 4.4. Curvature combs of the two spline curves constructed from the control polygon in Example 4.4.
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Fig. 4.5. The curvature plots for the four examples.

spline curve provides smoother curvature plots and curvature comb, see Figure 5.1.

Example 5.1. Given a close control polygon with control points P0 = (126, 446), P1 = (88, 257),

P2 = (199, 64), P3 = (482, 103), P4 = (582, 265), P5 = (502, 468), P6 = (280, 524),, we can solve

the Λ = {0.301067, 0.372913, 0.268934, 0.394516, 0.278922, 0.341441, 0.321163}.

(a) The G3 spline curve and cur-

vature comb

(b) The cubic B-spline curve and

curvature comb
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Fig. 5.1. Curvature combs and curvature plots of a close curve.

There are some problems worthy of further investigation. First, the constructing procedure

for constructing G3 cubic spline lacks locality. Once a new control point is added or a old control

point is modified, the solution of the system 3.6 should be updated. Although the system can

be solved in the realtime when the control points less than 50, but how to construct and modify
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the spline locally is the most important problem to be considered. Second, theorem 3.1 cannot

handle arbitrary situation. An improved proof of the existence will be left as a future work.

Finally, how to generalize the approach to handle close curves and space curves is also a very

interesting future problem.
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