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Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence* 
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Argonne National Laboratory, Argonne, Illinois 

(Received 17 May 1965) 

The decay of donor luminescence in a rigid solution when modified by electronic energy transfer by the 
exchange mechanism is treated theoretically. The rate constant for the elementary process of energy transfer 
is taken to be of the Dexter form, const exp ( - 2R/ L), where R is the donor-acceptor distance and L is a 
positive constant. Calculations are made of the yield and decay time of the donor luminescence as functions 
of the acceptor concentration. The resulting relationship among the above quantities enables one to analyze 
experimental data in a quantitative manner, and thereby to obtain information about an intermolecular 
exchange interaction. As an example of such an analysis, Ermolaev's data on triplet-triplet transfer between 
some aromatic molecules are compared with our results, and very good agreement is found with a choice 
of the single parameter L. 

I. INTRODUCTION 

RESONANCE transfer of electronic excitation en­
ergy from one molecule (a "sensitizer," or "energy 

donor") to another (an "activator," or "energy ac­
ceptor") has been a subject of numerous investiga­
tions.I-4 Theories have been developed which give 
formulas for the rate of energy transfer by electric­
dipole-dipole interaction,5,6 electric-dipole-quadrupole 
interaction,6 and the exchange interaction.s While the 
former two of the interactions are electrostatic in origin, 
the last arises from requirement of the antisymmetry 
of the electronic wavefunction for the system consist­
ing of a donor molecule and an acceptor molecule. 
These transfer mechanisms differ from one another in 
the dependence of the transfer rate on donor-acceptor 
distance, but common to all is the condition that an 
overlap between the donor emission spectrum and the 
acceptor absorption spectrum is essential for the trans­
fer to occur. This is so even though we are concerned 
with virtual, not real, photon emission and reabsorption 
in the transfer process. 

Experimental studies of resonance transfer in a con­
densed system have most frequently been made through 
luminescence measurements: donor molecules are ex­
cited in the presence of acceptor molecules, and the 
luminescence yield of donor and/or acceptor and the 
decay time of donor luminescence are measured as 
functions of the acceptor concentration. When one 
attempts to interpret an observed result, for instance, 
that of donor luminescence yield, it becomes necessary 
to have a theoretical relationship between the yield 
and the acceptor concentration. For dipole-dipole 
transfer, where the transfer rate is proportional to 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

t Present address: Department of Chemistry, University of 
Minnesota, Minneapolis, Minnesota. 
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the inverse sixth power of the donor-acceptor distance, 
Forster derived the following formula for the donor 
luminescence yield TJ: 

TJ/rJo= 1- v7rxexp(x2) [1- erf(x)], 

_l~r / x- z ,7rC Co, ( 1) 

where TJo is the luminescence yield in the absence of 
acceptors, c the acceptor concentration, Co a parameter 
called the "critical transfer concentration" which is 
related to the transfer rate, and erf(x) the error func­
tion.1,7,8 The efficiency of energy transfer is simply 
1- TJ / TJo. Equation ( 1) has been found to explain a 
number of observations on sensitized fluorescence in 
condensed systems. 

The phenomenon of sensitized phosphorescence, or en­
ergy transfer between triplet states, was discovered by 
Terenin and Ermolaev,9,10 who interpreted it as arising 
from the exchange mechanism. 

We can briefly summarize their findings in a long 
series of investigations9- 2o by indicating those features 

7 Th. Forster, Z. Naturforsch. 4a, 321 (1949). 
8 M. D. Galanin, Zh. Eksperim. i Teor. Fiz. 28, 485 (1955) 

[English trans!.: Soviet Phys.-JETP I, 317 (1955)]. 
9 V. L. Ermolaev and A. N. Terenin, Pamiati S. I. Vavilova 

(Moscow, 1952) p. 137 [English trans!.: In Memory of S. 1. 
Vavilova, NRC TT-540]. 

10 A. N. Terenin and V. L. Ermolaev, Dokl. Akad. Nauk SSSR 
85,547 (1962) [English trans!': NRC TT-529]. 

11 V. L. Ermolaev, Dokl. Akad. Nauk SSSR 102, 925 (1955). 
12 A. N. Terenin and V. L. Ermolaev, Trans. Faraday Soc. 52, 

1042 (1956). 
13 V. L. Ermolaev, Izv. Akad. Nauk SSSR Ser. Fiz. 20, 514 

(1956) [English trans!.: Bull. Acad. Sci. USSR Phys. Ser. 20, 
471 (1956)]. 

14 V. L. Ermolaev and A. Terenin, J. Chim. Phys. 55, 698 
(1958) . 

16 V. L. Ermolaev, Opt. i Spektroskopiya 6, 642 (1959) [English 
trans!.: Opt. Spectry. (USSR) 6,417 (1959)]. 

16 V. L. Ermolaev, Dok!. Akad. Nauk SSSR 139, 348 (1961) 
[English trans!': Soviet Phys.-Doklady 6,600 (1962)]. 

17 V. L. Ermolaev, Opt. i Spektroskopiya 13, 90 (1962) [English 
trans!.: Opt. Spectry. (USSR) 13, 49 (1962)]. 
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,. V. L. Ermolaev and E. B. Sveshnikova, Izv. Akad. Nauk 
SSSR Ser. Fiz. 26, 29 (1962) [English trans!.: Bull. Acad. Sci. 
USSR Phys. Ser. 26, 29 (1962)]. 

'0 V. L. Ermolaev, Usp. Fiz. Nauk 80, 3 (1963) [English 
trans!': Soviet Phys.-Usp. 80, 333 (1963)]. 
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which are distinct from dipole-dipole transfer. (1) The 
donor luminescence yield does not obey Eq. (1), but 
varies roughly as exp(-ac), where c is the acceptor 
concentration and a is a positive constant. (2) The 
decay time of the donor luminescence decreases much 
more slowly with increase in the acceptor concentra­
tion than it does for dipole-dipole transfer. To be 
more precise, if the acceptor with concentration c 
causes a decrease OT in the decay time T and decrease 
071 in the luminescence yield 71, the quantity 

1
. oTIT 
Im--

c-+O 071/71 

is much smaller (about 0.1) than the corresponding 
value (theoretically 0.5 8) for dipole-dipole transfer. 
(3) The efficiency of transfer is independent of the 
oscillator strength of the acceptor. Items (1) and (2) 
indicate that the transfer rate depends strongly on the 
donor-acceptor distance R and is of much shorter 
range than R-6 (see Appendix I). Item (3) rules out 
an electromagnetic mechanism of transfer. All these 
facts are exactly in accord with Dexter's theoretical 
predictions6 on transfer by the exchange mechanism.21 

Independent studies of energy transfer between tri­
plet states under different experimental conditions22 •23 

and by means of the ESR method24- 28 support the view 
of Terenin and Ermolaev. 

The present work consists in calculation of the yield 
and the decay time of donor luminescence as functions 
of the acceptor concentration, for energy transfer by 
the exchange mechanism. It is hoped that the result 
will provide a sound, quantitative basis for analyzing 
experimental data for this kind of energy transfer, 
just as Forster's formula (1) has long been doing for 
dipole-dipole transfer. Our results indicate, in particu­
lar, that careful measurement of the decay time is of 
vital importance to attainment of a full knowledge of 
energy transfer by the exchange mechanism. 

Section II starts with a discussion of a general rela­
tionship between the transfer rate and the luminescence 
decay, and then treats the specific case of energy trans­
fer by the exchange mechanism. Section III presents 

21 Since the phosphorescence from a large organic molecule is of 
electric-dipole character, which arises from singlet-triplet mixing 
due to spin-orbit coupling [So Weissman and D. Lipkin, J. Am. 
Chern. Soc. 64, 1916 (1942)], it would seem that a triplet-triplet 
transfer could, in principle, result also from the dipole-dipole 
interaction. Actually, however, the mixing seems to be too small 
to make this mechanism significant, at least for the most cases 
studied by Terenin and Ermolaev. 

22 H. L. J. Backstrom and K. Sandros, Acta Chern. Scand. 14, 
48 (1960). 

23 G. Porter and F. Wilkinson, Proc. Roy. Soc. (London) A264, 
1 (1961). 

24 J. B. Farmer, C. L. Gardner, and C. A. McDowell, J. Chern. 
Phys. 34, 1058 (1961). 

26 B. Smaller and J. R. Remko, Organic Crystal Symposium, 
National Research Council of Canada, Ottawa, Canada (October 
1962) . 

26 K. B. Eisenthal and R. Murashige, J. Chern. Phys. 39,2108 
(1963) . 

'n S. Siegel and K. B. Eisenthal, J. Chern. Phys. 38, 2785 (1963). 
28 S. Siegel!and H. Judeikis, J. Chern. Phys. 41, 648 (1964). 

some numerical results, and Sec. IV describes a pro­
cedure for analyzing experimental data on the basis 
of the present calculation. Appendix I gives a unified 
treatment of some simple cases including transfer by 
dipole-dipole, dipole-quadrupole, and quadrupole­
quadrupole interaction. An extensive tabulation of 
numerical results will be presented elsewhere.29 

n. FORMULATION 

Generalities 

Consider a system in which two different kinds of 
molecule, energy donors, and energy acceptors, are 
randomly distributed in an inert medium. Both the 
donor and the acceptor molecules are assumed to have 
only one excited electronic state in the pertinent energy 
region. Throughout the following discussion, three basic 
assumptions are made: (a) Brownian translational 
motion of all the molecules is slow enough so that 
each individual energy-transfer process may be con­
sidered to occur at a definite donor-acceptor distance. 
(b) The rate constant for energy transfer is taken as 
independent of the molecular orientation. This assump­
tion is permissible when the rate constant averaged 
over the molecular orientation may be used, for ex­
ample, when molecular rotation is fast enough com­
pared with the energy-transfer process. (c) Energy 
transfer occurs only from a donor to an acceptor (i.e., 
donor-donor transfer is negligible) . 

Suppose that a donor is excited at time t= O. When 
no acceptors are present, the probability pet) of finding 
the donor in the excited state at time t declines expo­
nentially, namely, pet) =exp( -tiro), where TO is the 
reciprocal of the rate constant for spontaneous deactiva­
tion (by light emission and internal quenching) of the 
donor. When acceptors are present, the probability 
decreases more rapidly because of the additional com­
peting process of energy transfer. Let n(Rk ) be the 
rate constant for energy transfer from a donor D to 
an acceptor Ak at a distance Rk • Then we have 

pet) = exp(-t)fr exp[ -tn(Rk ) J, (2) 
TO k=1 

where N is the total number of acceptors in a finite 
volume around the donor. The mode of decay described 
by pet) depends on the environment of the particular 
donor considered. Macroscopically significant is the 
statistical average cf>(t) of pet) over an infinitely large 
number of donors. If w(R) is the probability distribu­
tion of the donor-acceptor distance R in the volume 
V, we can write 

cf>(t) =exp(~ott_~~_J£ exp[-tn(R)]W(R)dVr· 

(3) 

29 M. Inokuti and F. Hirayama, "Tables for Analyzing Lumi­
nescence Data in Energy Transfer Studies," ANL-6996 (to be 
published) . 
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1980 M. INOKUTI AND F. HIRAYAMA 

Here the volume V over which integration is carried 
out should be chosen large enough to contain a macro­
scopic number of acceptors, and thus the limit N---7oo , 

V---700 should be taken so that N IV, the acceptor 
concentration, is finite. Assuming a random spatial 
distribution of acceptors around a donor, we put 
w(R)dV=471'R2dRIV and take the volume V as a 
sphere with radius Rv(V=471'Rv3/3) to obtain 

cf>(t)=exp(-t) lim {4v7I'(Rvexpc_tn(R)]R2dR}N. 
TO N ... oo.V ... oo Jo 

(4) 

The function cf>(t) is proportional to the intensity of 
the donor luminescence and therefore shall be called 
hereafter the decay function of donor luminescence. It 
is not, in general, an exponential function for the follow­
ing reason: As the decay proceeds, excited donors having 
unexcited acceptors in their close neighborhood tend to 
become exhausted, since the rate constant nCR) usually 
decreases with increasing distance R. Equation (4) 
enables one to calculate the decay function as soon 
as a dependence of the rate constant on the distance 
is specified. Our formalism so far is a straightforward 
generalization of Forster's treatment1 of dipole-dipole 
transfer. A further generalized version including the 
dependence of the rate constant on the molecular orien­
tation can be developed, as was done by Maksimov 
and Rozman.30 

It is customary and convenient for practical pur­
poses to introduce a "decay time" which characterizes 
the behavior of the decay function. Since the above 
cf>(t) is not in general an exponential function, there 
is no unique way of defining a decay time. We can 
consider at least the following two kinds of decay times. 
One is the "mean duration"8 Tm of donor luminescence, 
defined by31 

(5) 

The other is the "lie-decay time" T e, or the time inter­
val after which the donor luminescence has decreased 
by a factor of e from its value at t= 0. Thus Te is defined 

30 M. Z. Maksimov and r. M. Rozman, Opt. i Spektroskoeiya 
12,606 (1962) [English trans!.: Opt. Spectry. 12,337 (1962) J. 

31 A phase fluorometer using sinusoidally modulated exciting 
light measures Tm as long as it is operated at a low modulation 
frequency", such that "'Tm«1. (See, e.g., Refs. 32-36). 

82 E. Gaviola, Z. Physik 35, 748 (1926); Ann. Physik 81, 44 
(1926) • 

31 L. A. Tumerman, J. Phys. USSR 4,151 (1941). 
If S. F. Kilin, G. P. Prosin, and I. M. Rozman, Pribory i Tekhn. 

Eksperim. No. 21, 57 (1959) [English trans!.: Instr. Exptl. Tech. 
USSR 1959, 234J. 

811 A. Yu. Borisov and L. A. Tumerman, Izv. Akad. Nauk SSSR 
Ser. Fiz. 23, 97 (1959) [English trans!.: Bull. Acad. Sci. USSR 
Phys. Ser. 23, 94 (1959) J 

38 J. B. Birks and D. J. Dyson, J. Sci. Instr. 38, 282 (1961). 

as the root of the equation 

cf>(T.) =e-1• (6) 

If the decay function happens to be purely exponential, 
then Tm and Te coincide. Otherwise, they are in general 
different. 

So far we have dealt with luminescence decay after 
flash excitation. Under certain experimental circum­
stances, it is convenient to observe the luminescence 
decay after turning off a continuous exciting light, by 
which the system has been brought to a steady state 
with respect to the concentration of excited molecules. 
If the system has been excited with a constant inten­
sity for a time interval much longer than TO, and the 
exciting light is then turned off at time t= 0, the 
intensity of luminescence at a later time t is propor­
tional t037 

where cf>(t) is the decay function for flash excitation. 
For convenience we may consider 

cf>.(t) = l°Ocf>(t')dt' / ~oo4>(t')dt', (7) 

which is normalized in such a way that 4>.(0) = 1. If 
the decay function 4>(t) for flash excitation is purely 
exponential, then cf>.(t) =4>(t). Otherwise, cf>.(t) gener­
ally differs from €/J(t). 

We can define the "mean duration" Tm. of the donor 
luminescence after turning off a steady-state excita­
tion by 

Tm.= jOOt€/Js(t)dt/joo€/J8(t)dt, (8) 
o 0 

in analogy with Tm for flash excitation. It is easily seen 
that Tm. can be evaluated directly from cf>(t) by 

Tms=~1°Ot24>(t)dt /l°Ot€/J(t)dt. (9) 
o 0 

37 The intensity I (t) of luminescence, in appropriate units, 
resulting from exciting light whose intensity J (I) varies with 
time t in an arbitrary way can be expressed by a Duhamel integral 

I(t) = fO J(t-t')q,(t')dt', (a) 
o 

where q, (t) is the decay function for flash excitation. This is gen­
erally valid under the condition that the number of excited mole­
cules is small enough compared with the total number of molecules 
in the system and that the system does not undergo a permanent 
change such as a photochemical reaction. For a particular case of 
steady-state excitation turned off at t=O, we put J (t) = 1 for 
t<O and J(t) =0 for 1>0 in the above equation (a) to obtain 

I(t) = f."'q,(t')dt', 

Reference 38 gives an explicit verification of the above result for 
a particular case of dipole-dipole transfer. 

38 K. B. Eisenthal and S. Siegel, J. Chern. Phys. 41, 652 (1964). 
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The relative yield 7//7/0 of donor luminescence, de­
fined as the ratio of the luminescence yield in the pres­
ence of acceptor to that in its absence, is expressed biD 

7//7/0=ro-1fO cf>(t)dt. 
o 

(10) 

The efficiency of energy transfer is given by 1-7//7/0. 

Energy Transfer by the Exchange Mechanism 

Dexter6 has derived the following expression for the 
rate constant for energy transfer by the exchange mech­
anism: 

nCR) = 2; Z2jfD(E)FA(E)dE (11) 

with 
P=[(2 exp( -2R/ L), (12) 

where K is a constant with the dimension of energy, 
L a constant called the "effective average Bohr radius," 
fD (E) the donor emission spectrum, and FA (E) the 
acceptor absorption spectrum.40 The spectra should be 
normalized on the photon energy scale so that 

jfD(E)dE= j FA(E)dE= 1. (13) 

Integration in Eqs. (11) and (13) extends over the 
relevant spectral band, which is assumed to be well 
separated from other bands. In Eq. (12), Z is an 
asymptotic form of an exchange integral for the donor­
acceptor pair, and the exponential dependence, which 
is valid for large values of R, arises from the fact that 
electronic wavefunction of a molecule generally declines 
exponentially. (See Sec. V of Ref. 6 for details.) For 

311 Integration of Eq. (a) of Footnote 37 with respect to t gives 

This means the total luminescence energy emitted in a sufficiently 
long time interval is proportional to the total energy of the ex­
citing light in the same interval, and the proportionality constant 

corresponds, apart from a trival factor, to the luminescence 
yield, which is obviously independent of the mode of excitation. 
This has been explicitly verified for a particular case of dipole­
dipole transfer in Ref. 38. 

40 The function FA (E) is difficult, if not entirely impossible, to 
determine directly from experiment, because the absorption 
associated with the forbidden transition is obviously weak. How­
ever, the emission band, which is more easily observed, serves as a 
basis for inferring an approximation to the function. Furthermore, 
the function FA(E) appearing in the expression (11) for the 
transfer rate may be equated with the shape of the absorption 
spectrum only under certain conditions, because the mechanism 
of transfer (exchange interaction) is different from that of light 
absorption (dipole interaction resulting from singlet-triplet 
mixing). (See Footnote 21.) 

small distances, the exchange integral depends on de­
tails of the molecular wavefunction and behaves in too 
complicated a way to permit a general statement. It 
may also depend on molecular orientation. However, 
in evaluating cf>(t) by (4), it is important to know only 
the behavior of the rate constant for large distances. 
Contributions from small distances, where the rate 
constant nCR) is in general high, are not significant, 
because, in Eq. (4), nCR) appears in the exponent, 
and besides there is a volume element factor R2. 

It is convenient for our analysis to rewrite the above 
rate constant in the form 

nCR) = (1/To) exp{'Y[l- (R/Ro)J), (14) 

where Ro and 'Yare constants related to Dexter's 
quantities by 

'Y=2Ro/L, (15) 

(16) 

We may, following Forster's terminology, call Ro "a 
critical transfer distance" in the sense that, for an 
isolated donor-acceptor pair separated by Ro, the en­
ergy transfer occurs with the same rate as the sponta­
neous deactivation in the donor. 

In order to calculate the decay function cf>(t) , we 
insert (14) into (4) and obtain, after changing inte­
gration variables, 

cf> (t) = exp( - t) lim [3'Y-a(Ro )3 
TO N-ro.Rv-oo Rv 

where 
z= ffYt/TO, 

yv=exp[-'Y(Rv/ Ro)]. 

(18) 

(19) 

The integral in (17) can be evaluated for small yv 
values in the following manner: 

11 exp ( - zy) (lny) 2y- 1dy= - l exp ( - ZYv) (lnyv) 3 
IIV 

+lz[f exp( -zy) (lny)3dy- [V exp( -zy) (Iny)3dY] 

= -!(lnyv )3-lg(z) + O[yv (lnYv)3]' (20) 

Here we have defined a function g(z) by 

g(z) = -z t exp( -zy) (Iny)3dy. (21) 
o 
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Thus, by use of (17) through (21), we can write ep(t) J.°F:::t::~"'EEE:!:t;::::::-r-r-rTTTrrr-,-----T---.--r-rTTTJ--r-.'l 

in the form 

ep(t) =exp( -t/TO) lim [1-'Y-3(Ro/ RV)3g(Z) ]N. 
N~ooJBv .... co 

(22) 

The result, after taking the limit, is conveniently ex­
pressed as 

cjJ(t) =exp[ -t/ro-'Y-sc/cog(e"Yt/To)], (23) 

where C is the acceptor concentration 

(24) 

and Co is a parameter, which is called the critical transfer 
concentration, defined by 

(25) 

Note that the above c and Co are in units of centi­
meters-So If concentration in units of moles per liter 
is used, then we have 

Ro= 7.346co-1/3 (angstrom). (26) 

.8 

.6 

.4 

.2 

(a) 

.8 

We now give properties of the function g(z) relevant .6 -

to numerical evaluation. First, it is easy to see that 
g(z) is positive and monotonically increasing for any I 
z>O. Second, expansion of the exponential in the inte- .4 

grand in (21) followed by term-by-term integration 
gives a Taylor series 

00 (-z)m 
g(z) =6zL I( +1)4' m=om. m 

(27) 

which is absolutely convergent for any Z. Finally, for 
sufficiently large values of z>o, g(z) can be expressed by 

g(z) = (lnz) 3+h1 (lnz) 2+h2(lnz) +h3+O[e-'(lnz) SZ-2], 

(28) 

where the coefficients hI, h2, and hs are related to deriva­
tives of the gamma function of argument unity: 

hl= -3r'(1) = 1.73164699, 

h2=3rl/(1) =5.93433597, 

h3= - rlll(l) =5.44487446. 

The derivation of (28) is given in Appendix II. 

(29) 

Thus numerical evaluation of g(z) is simple. For 
small values of z, the Taylor series (27) converges 
rapidly, while, for large values of z, the leading terms 
in (28) give g(z) with excellent accuracy. An absolute 
accuracy of 10-8 is achieved by use of (27) for z:::::; 10, 
and (28) for z> 10. 

Substitution of (23) into (5), (6), (9), and (10) 
gives Tm/TO, T./TO, TmB/TO, and n/no as functions of c/co. 
This stage of the calculation must be done numerically. 

.2 

(b) 

.8 
'0. ~ 

~ 
,6 oj 

.4 

.2 

(c) 

FIG. 1. The relative yield and the decay time as functions of 
the acceptor concentration. Figures l(a), l(b), and l(c) refer to 
-y=10, 25, and 50, respectively. The abscissa represents cleo on a 
logarithmic scale, and the ordinate 1]/1]0, Tm/TO, Tm./TO, and T./TO' 
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III. NUMERICAL RESULTS AND DISCUSSION 

The relative yield 1]/1]0 and the decay times Tm/TO, 
Tms/TO, and Te/TO as functions of c/co for a number of 
values of"( were calculated on a computer. For evalu­
ation of the integrals necessary in computing 1]/1]0, 
Tm/rO, and Tms/TO, we used a subroutine which allows 
the programmer to prescribe a limit of error in numeri­
cal integration. The quantity Te/TO was obtained by 
solving the transcendental equation (6) through a 
standard regula falsi method. 

Table I shows some of our numerical results. The 
entries have been rounded off at the fifth decimal 
place so that the error is at most 5 X 10-5• Figures 1 (a) , 
1 (b), and 1 (c) are plots of 1]/1]0, Tm/TO, Tms/ro, and TeiTO 
as functions of c/co for "(= 10, 25, SO, respectively. One 
readily observes that the curves for Tm/TO and Tms/TO 
are sensitive to the parameter "( and gradually shift 
towards high c/co values with an increase in "(. The 
curves for 1]/1]0 and Te/TO are less sensitive to "(. All of 
them differ considerably from the corresponding curves 
for dipole-dipole transfer, the difference becoming more 
and more pronounced with an increase in "(. (For a 
detailed comparison, the reader is referred to Ref. 29.) 
Figures 2 and 3 give another kind of representation, 
showing a plot of 1]/1]0 vs Tm/TO and Te/TO, and of 1]/1]0 vs 
TmB/TO, respectively, which we call 1]-T plots. This 
representation is quite convenient for comparison with 
experiment, because one does not need to know a value 
of co. As "( increases, the dependence of the rate con­
stant on the distance becomes stronger, and as ex-

FIG. 2. The relative yield vs the decay time for flash excitation. 
The abscissa represents Tm/TO or T./TO, and the ordinate '1//'1/0' The 
numeral on a curve denotes the value of 'Y. The Stern-Volmer 
model, for which '1//'1/0=Tm/TO=T./TO, gives the diagonal straight 
line. The Perrin model gives relations '1//'1/o=exp (T./TO-1) and 
Tm/TO= 1 (for any '1//'1/0). The former is represented by the broken 
curve and the latter by the vertical straight line at the right 
side of the figure. 

FIG. 3. The relative yield vs the decay time for steady-state 
excitation. The abscissa represents Tm8/TO and the ordinate '1/1710. 
The numeral on a curve denotes the value of 'Y. 

pected, the 1]-T plot departs farther from that for the 
Stern-Volmer model and approaches that for the Perrin 
model. [See Eqs. (A3)-(A6) and (AlO) in Appendix I.J 

In order to understand the behavior of 1]/1]0 for a 
given "( as a function of c/ co, it is helpful to introduce 
quantities 0: and (3 such that 

1]/1]O=exp( -O:C/CO) , 

1]/1]0= (l+{3c/co)-I. 

(30) 

(31) 

The right-hand sides of the above equations are of 
the forms derived from the Perrin model and the Stern­
Volmer model, respectively, but modified with the fac­
tors 0: and {3 in front of c/co, (See Appendix I.) We can 
put our calculated value of 1]/1]0 in the left-hand sides 
and solve for 0: and {3. The resulting 0: and {3 are func­
tions of c/co. We have found that 0: indeed decreases 
with c/co but that the change in 0: is not very significant 
for moderate c/ Co values. For example, in the region 
0.01:=:;c/co:=:;3, 0: decreases from 1.1 to 0.9 for "(= 10, 
from 1.02 to 0.98 for "(= 25, and from 1.005 to 0.996 
for "(=50. Thus we see that the relative yield 1]/1]0 for 
moderate c/co values behaves approximately like the 
Perrin model with an accuracy increasing with "(. On 
the other hand, {3 increases rather steeply with c/ co. 
For example, even in the smaller region O.01:=:;c/co:=:; 1, 
{3 increases from 1.11 to 1.81 for "(= 10, from 1.02 to 
1.73 for ,,(=25, and from 1.01 to 1.72 for ,,(=50. In 
view of this large variation of {3, approximation by the 
Stern-Volmer equation (31) with a constant {3 is less 
meaningful. 

In conclusion, we may point out that our calculated 
results are in accord with the features (1) and (2) of 
Sec. I which summarize the observation of triplet­
triplet energy transfer by Terenin and Ermolaev. 
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TABLE I. The relative yield and decay time of donor luminescence as functions of the acceptor concentration. 

,,),=10 ")'=15 
c/Co 7]/7]0 rm/ro 'Tm./'TO r./ro 7]/7]0 Tm./TO 7 mB/TO r,/ro 

0.010 0.9891 0.9969 0.9982 ·0.9817 0.9896 0.9980 0.9989 0.9886 
0.015 0.9837 0.9954 0.9972 0.9815 0.9845 0.9970 0.9983 0.9829 
0.020 0.9783 0.9938 0.9963 0.9754 0.9193 0.9959 0.9911 0.9172 
0.025 0.9129 0.9923 0.9954 0.9693 0.9143 0.9949 0.9971 0.9116 
0.030 0.9616 0.9901 0.9945 0.9632 0.9692 0.9939 0.9966 0.9659 
0.040 0.9511 0.9816 0.9926 0.9512 0.9591 0.9919 0.9954 0.9541 
0.050 0.9461 0.9846 0.9908 0.9392 0.9492 0.9899 0.9943 0.9435 
0.010 0.9263 0.9784 0.9871 0.9154 0.9291 0.9858 0.9920 0.9212 
0.100 0.8965 0.9693 0.9816 0.8805 0.9011 0.9198 0.9885 0.8882 
0.150 0.8493 0.9541 0.9724 0.8240 0.8556 0.9691 0.9828 0.8343 
0.200 0.8047 0.9391 {).9633 0.7698 0.8125 0.9591 0.9171 0.1818 
0.250 0.7628 0~9241 0.9542 0.7179 0.7117 0.9498 0.9.714 0.7308 
0.300 0.7233 0.9()'94 O.94~ 0.6683 0.7330 0.9399 0.9657 0.6814 
0.400 0.6509 0.8802 0 .. 92 0.5761 0.6617 0.9201 0.9544 0.5873 
0.500 0.5865 0.8516 0.9094 0.4935 0.5917 0.9006 0.9431 0.5002 
0.700 0.4781 0.7960 0.8742 iJ.3565 0.4885 0.8620 0.9207 0.3491 
1.000 0.3554 0.7168 0.8227 0.2146 0.3627 0.8055 0.8873 0.1850 
1.500 0.2225 0.5965 0.7402 0.0965 0.2236 0.7151 0.8326 0.0572 
2.000 0.l't41 0.4910 0.6622 0.0499 0.1402 0.6299 0.7191 0.0203 
2.500 0.0964 0.4001 0.5890 0.0295 0.089lt 0.5503 0.7269 0.0090 
3.000 0.0666 0.3233 0.5207 0.0194 0.0581 0.4766 0.6161 0.0047 
It.OOO 0~03lt8 0.2073 0.3997 0~0102 0.0260 0.3482 0.5790 0.0018 
5.000 0.0202 0.1318 0.2999 C.0064 0.0125 0.2456 0.4886 0.0009 
7.000 0.0088 0.0552 0.1608 0.0033 0.0031 0.1122 0.3310 0.0003 

10.000 0.0038 0.0187 0.0613 0.0018 0~0010 0.0315 0~1613 0.0001 
15.000 0.0.016 0.0055 0.0159 0.0009 0.G002 0.0051 0.0313 0.0001 
20.000 0;;-0009 0.0026 0.0061 0.0006 0.0001 0.0014 0.0088 0.0000 
25.000 0.0006 0.0015 0.0031 c.oaOlt 0.0000 0.0006 0.0027 0.0000 
30.000 0.0005 0.0010 0.0019 C.OOOlt 0.0000 0.0003 {J.OOll 0.0000 
40.000 0.0003 0.0005 0.0009 0.0002 0.0000 .0~0002 0.0003 0.0000 
50.000 0.0002 0.0004 0.0005 0.0002 0.0000 0.0001 0.0001 O~OOOO 
70.000 0.0001 0.0002 0.0003 0.0001 O.COOO 0.0001 0.0001 0.0000 

,,),=20 ")'=25 

0.010 0.9898 0.9985 0.9992 0.9890 0.9899 0.9988 0.9994 0.9892 
0.015 0.9847 0.9977 0.9988 0.9835 0.9849 0.9982 0.9990 0.9838 
0.020 0.9797 0.9970 0.9983 0.9780 0.9799 0.9976 0.9981 0.9785 
0.025 0.97lt7 0.9962 0~9919 0.9726 0.9149 0~9970 0.9984 0.9131 
0.030 0.9697 0.9955 0.9915 0.9671 0.9700 0.9964 0.9981 0.9618 
0.040 0.9599 '0.9940 .0.9967 0.9562 0.9602 0.9952 0.9914 0.9571 
0.050 0 •. 9501 0.9925 0.9959 0.9453 0.9505 0.991t0 0.9968 0.9461t 
0.070 0.9309 g.9891t 0.9942 0.9231 0.9.314 0.9916 0.9954 0.9251 
oaoo 0.9021 .• 98lt9 0.9917 0.8916 0.9035 0.9880 0.9935 0.8935 
0.150 0.8578 O.977lt 0.9876 0.8389 0.8589 0.9820 0.9902 0.8414 
0.200 0.8152 0.9699 0.9834 0.7871 0.8165 0.9760 0.9870 0.7901 
0.250 0.1748 0 .. 9621t 0.9793 0.7365 0.7162 0.9700 0.9838 0.7396 
0.300 0.7364 0.9550 0.9151 0.6870 0.7380 0.9640 0.91l05 0.6901 
0.400 0.6655 0.9401 0.9669 0.5918 0.6612 0.9521 0.9140 0.5941 
0.500 0.6.016' 0.9253 0.9587 0.5021' 0.6034 0.9402 0 .• 9675 0.5026 
0.100 0.4921 0.8959 0.9422 0.3421 0.4938 0.9165 0.9546 0.3366 
1.000 0.3651 0.8524 0.9171 0.1627 0.3661 0.8813 0.9353 0.1457 
1.500 0.2236 0.78l1 0.8772 0.0334 0.2235 0.8235 0.9033 0.0192 
2.000 0.1383 0.7131 0.8373 0.0078 0.1373 0.1669 0.8715 0.0029 
2.500 0.0864 0.6ltl0 0.7978 0.0026 O.081t? 0.1115 0.8399 0.0007 
3.000 O.051t6 0.5836 0.7588 0.0011 0.0529 0.6515 0.B087 0.0002 
4.000 0.0226 0.4659 0.6826 0~0003 0.0210 0.5542 O.1It69 0.0001 
5.000 0.0098 0.3.619 0.6090 0.0001 0.0086 0.4581 0.6864 O~OOOO 
1.000 0.0022 0.1993 0.4709 0.0000 0.0016 0.2927 0.5695 0.0000 

10.000 0.0003 0.0668 0.2926 0.0000 0.0002 0.1234 0.4073 0.0000 
15.000 0.0000 0.0088 0.0976 0.0000· O.COOO 0.0188 0.1895 0.0000 
20.000 0.0000 0.0016 0.0231 0.0000 0.0000 0.0029 0.0619 0.0000 
25.000 0.0000 0.0005 0.0051 0.0000 0.0000 0.0001 0.0146 0.0000 
30.000 0.0000 0.0003 0.0014 0.0000 O~COOO 0.0003 0.0032 0.0000 
40~00O O~OOOO 0.0001 0.0002 0.0000 0.0000 0.0001 0.0003 0.0000 
50.000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0001 0.0001 0.0000 
10.000 O~OOOO 0.0001 0.0001 0.0000 O~COOO 0.0001 0.0000 0.0000 

The decay of the donor luminescence after flash state excitation, is calculated by putting (23) into 
excitation is described by ep(t) of Eg. (23). The solid (7). The dashed curves in Figs. 4(a), 4(b), and 4(c) 
curves in Figs. 4(a), 4(b), and 4(c) show a plot of show the functions ep.(t). One readily sees that ep.(t) 
loglOep(t) against tiro for several clco values, correspond- decays more slowly and thus exhibits less distinctive 
ing to 'Y= 10, 25, and SO, respectively. The nonexpo- nonexponentiality than ep(t) , in agreement with an 
nentiality is obviously more pronounced for larger clco observed result.19 

values. As 'Y increases, the curves tend to show an 
IV. ANALYSIS OF EXPERIMENTAL DATA increasingly rapid initial drop followed by a nearly 

exponential decay. The function ep.(t) , which repre- Here we show a procedure for analyzing experimen-
sents the decay of the donor luminescence after steady- tal data on energy transfer by the exchange mecha-
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T ABLE I (Continued) 

-y=30 

0.010 0 .• 9899 0.9990 0.9995 0.9894 
0.015 0.9849 0.9985 0.9992 0.9841 
0.020 0.9.800 0.9980 0.9989 0.9788 
0.025 0.9750 0.9975 0.9987 0.9735 
0.030 0.9701 0.9970 0.9984 0.9682 
0.040 0.9604 0.9960 0.9'179 0.9576 
0.050 0.9507 0.9950 0.9973 0.9471 
0.070 0.9317 0.9930 0.9963 0.9260 
0.10U 0.9039 0.9900 0.9947 0.8947 
0.150 0.8594 0.9850 0.9920 0.8430 
0.200 0.8172 0.9800 0.9893 0.7.919 
0.250 0.7770 0.9750 0.9866 0.7416 
0.300 0.73.89 0.9700 0.9840 0.6920 
0.400 0.6682 0.9600 0.9786 0.5954 
0.500 0.6043 0.9501 0.9733 0.5027 
0.700 0.4946 0.9303 0.9627 0.3323 
1.000 0.3667 0.9008 0.9467 0.1324 
1.500 0.2234 0.8521 0.9203 0.0108 
2.000 0.1367 0.8041 0.8939 0.0011 
2.500 0.0840 0.7567 0.8677 0.0002 
3.000 0.0519 0.7102 0.8417 0.0001 
4.000 0.0201 0.6198 0.7901 O~OOOO 
5.000 0.0080 0.5336 0.7391 0~0000 
7.000 0.0014 0.3767 0.6393 0.0000 

10.000 0.0001 0.1922 0.4965 0.0000 
15.000 O~OOOO g:g6~~ 0.2853 0.0000 
2 O. OUO O~OOOO 0.1272 0.0000 
25.000 0.0000 0.0013 0.0403 0.0000 
30.000 0.0000 0.0004 0.0095 0.0000 
40.000 0.0000 0.0001 0.0006 0.0000 
50.000 0.0000 0.0001 0.0001 0.0000 
70.000 0.0000 0.0001 0.0001 0.0000 

-y=50 

0.010 0.9900 0.9994 0.9997 0.9896 
0.015 0.9850 0.9991 0.9995 0.9845 
0.020 0.9801 0.9988 0.9994 0.9793 
0.025 0.9752 0.9985 0.9992 0.9741 
0.030 0.9703 0.9982 0.9991 0.9689 
0.040 0.9606 0.9976 0.9988 0.9586 
0.050 0.9510 0.9970 0.9984 0.9483 
0.070 0.9321 0.9958 0.9978 0.9277 
0.100 0.9045 0.9940 0.9969 0.8970 
0.150 0.8602 0.9910 0.9953 0.8460 
0.200 0.8182 0.9880 0.9938 0.7954 
0.250 0.7782 0.9850 0.99~2 0.7452 
0.300 0.7401 0.9820 0.99 6 0.6955 
0.400 0.6695 0.9760 0.9875 0.5977 
0.500 0.6057 0.9700 0.9844 0.5023 
0.700 0.4959 0.9581 0.9782 0.3217 
1.000 0.3675 0.9402 0.9688 0.0988 
1.500 0.2232 0.9106 0.9533 0.0010 
2.000 {).1358 0.8810 0~9377 0.0000 
2.500 0.0828 0.8516 0.9222 0.0000 
3.000 0.0505 0.8224 0.9061 O~OOOO 
4.000 0.0189 0.7644 0.8159 0.0000 
5.000 0.0071 0.7072 0.8451 0.0000 
7.000 0.0010 0.5957 0.7840 0.0000 

10.000 O~OOOL 0.4384 0.6935 0.0000 
15.000 0.0000 0.2199 0.5463 0.0000 
20.000 0.0000 0.0817 0.4059 0.0000 
25.000 0.0000 0.0238 0.2161 0.0000 
30.000 0.0000 0.0054 0.1643 0.0000 
40.000 0.0000 0.0005 0.0310 0.0000 
50.000 0.0000 0.0002 0.0027 0.0000 
70.000 0.0000 0.0001 0.0001 0.0000 

nism in terms of our theoretical results. It should be 
understood, first of all, that the system under study 
is supposed to comply with the basic assumptions (a), 
(b), and (c) of Sec. II. The objective of the analysis 
is to decide whether the theory is capable of reproduc­
ing a set of experimental data with satisfactory agree­
ment, and, if this is the case, further to determine an 
optimum set of parameters 'Y and co. These parameters 
can be readily converted into L by (15) and (25) and 
information is thereby obtained concerning the asymp-

-y=40 

0.9900 0.9992 0.9996 0.9895 
0.9850 0.9989 0.9994 0.9843 
0.9801 0.9985 0.9992 0.9791 
0.9752 0.9981 0.9990 0.9739 
0.9703 0.9971 0.9988 0.9687 
0.9606 0.9970 0.9984 0.9582 
0.9509 0.9962 0.9980 0.9479 
0.9320 0.9947 0.9972 0.9271 
0.9043 0.9925 0.9961 0.8961 
0.e600 0.9887 0.9941 0.8449 
0.8178 0.9850 0.9921 0.7941 
0.7778 0.9813 0.9901 0.7439 
0.7397 0.9715 0.9882 0.6943 
0.6691 o.noo 0.9842 0.5969 
0.6053 0.9626 0.9803 0.5026 
0.4955 0.9471 0.9724 ·0.3260 
0.3672 0.9254 0.9606 0.ll27 
0.2233 0.8885 0.9410 0.0033 
0.1361 0.8518 0.9215 0.0001 
0.0832 0.8155 0.9020 0.0000 
0.0510 0.7794 C.8al5 0.0000 
0.0193 0.7084 0.8439 0.0000 
0.0074 0.6390 0.8054 0.0000 
0.0011 0.5064 0.7293 0.0000 
0.0001 0.3290 0.6176 0.0000 
0.0000 0.1187 0.4402 0.0000 
0.0000 0.0298 0.2800 0.0000 
0.0000 0.0057 0.1487 0.0000 
0.0000 0.0013 0.0607 0.0000 
0.0000 0~0002 0.0046 0.0000 
0.0000 0.0001 0.0004 0.0000 
0.0000 0~00{)1 0.0001 0.0000 

,},=70 

0.9900 0.9996 0.9998 0.9897 
0.9851 0.9994 0.9997 0.9846 
0.9802 0.9991 0.9996 0.9795 
0.9753 0.9989 0.9995 0.9744 
0.9704 0.9987 0.9993 0.9693 
0.9607 0.9983 0.9991 0.9590 
0.9511 0.9979 0.9989 0.9488 
0.9323 0.9970 0.9985 0.9284 
0.9047 0.9957 0.9978 0.8979 
0.8605 0.9936 0.9967 0.8472 
0.8184 0.9914 0.9956 0.7968 
0.7785 0.9893 0.9945 0.7467 
0.7405 0.9872 0.9934 0.6969 
0.6699 0.9829 0.9912 0.5985 
0.6061 0.9786 0.9890 0.5019 
0.4962 0.9701 0.9846 0.3164 
0.3677 0.9573 0.9780 0.0801 
0.2232 0.9360 0.9670 0.0001 
0.1356 0.9147 0.9560 0.0000 
0.0824 0.8935 0.9450 0.0000 
0.0502 0.8724 0.9340 0.0000 
0.0186 0.8303 0.9121 0.0000 
0.0069 0.7884 0.8902 0.0000 
0.0010 0.7057 0.8465 0.0000 
0.0001 0.5846 0.1814 0.0000 
0.0000 0.3955 0.6740 0.0000 
0.0000 0.2345 0.5684 0.0000 
O.COOO 0.1l55 0.4651 0.0000 
0.0000 0.0480 0.3654 0.0000 
0.0000 0.0053 0.1850 0.0000 
0.0000 0.0008 0.0590 0.0000 
O.COOO 0.0001 0.0013 0.0000 

totic behavior of the exchange integral for the donor­
acceptor pair in question, and also concerning the tail 
of the molecular wavefunctions. If the spectral overlap 
between the donor emission and the acceptor absorp­
tion is known, an absolute value of the exchange inte­
gral is determined. 

Measurements of both T//T/o and of Tm/TO and/or Tm./ro 
over a fairly large range of the acceptor concentration 
c is essential for the analysis. The quantity T./TO is 
helpful but less important, because it is relatively in-
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FIG. 4. The decay of donor luminescence under the influence of 
energy transfer by the exchange mechanism. The figures 4(a), 
4(b), and 4(c) refer to 1'= 10, 25, and 50, respectively. The 
abscissa represents tlTo, i.e., the time after excitation measured in 
units of the decay time TO of spontaneous deactivation in the donor. 
The solid curve represents the decay function <I> (t) after flash 
excitation, and the broken curve the decay function <1>. (t) after 
steady-state excitation. The numeral on a curve denotes the value 
of cleo. 

sensitive to 1'. We need not comment about the meas­
urement of 'f]/'f]0 except to mention that care must be 
taken to check the possible occurrence of singlet-singlet 
transfer in the energy range of observation. 

A procedure for the analysis may be as follows: 

(1) Determine Tm and/or Tm. from a decay curve by 
numerical or graphical integration. Otherwise, use a 
phase fluorometer to obtain Tm directly.3!--36 

(2) Make an 'f]-T plot like Fig. 2 and estimate an 
approximate value of l' by comparison with the theoret­
ical curves in Fig. 2 or Fig. 3. 

(3) Plot 'f]/'fJo, Tm/TO, and/or Tm./TO vs logloc. The 
acceptor concentration C must have been corrected for 
the shrinkage of the solution upon freezing. (The 
shrinkage in volume amounts to about 20% for the 
case of EPA solutions.41

) 

(4) Compare the experimental points plotted as 
above with the theoretical curve for a value of l' in 
the neighborhood of the approximate estimate at Step 
(2). Determine a value of Co by shifting the experimen­
tal plot horizontally on the abscissa until the best fit 
is obtained. Repeat this for a series of values of l' and 
determine the optimum value of 1'. The value of Co 

should turn out to be reasonably stable with respect 
to a small change in 1', if the theory agrees with experi­
ment. An equivalent process can be carried out on a 
computer with a least-squares fit criterion. 

Once the parameters Co and l' are determined, com­
parison of the theoretical decay functions, <p(t) and/or 
<P.(t), at a definite acceptor concentration is feasible. 
A satisfactory agreement here establishes consistency 
of the analysis. 

As an illustration, we have analyzed two sets of data 
published by Ermolaev and Terenin. They dispersed 
the donor, benzophenone, and the acceptor, either 
naphthalene or 1-bromonaphthalene, in an alcohol­
ether solution and studied the phosphorescence of the 
donor at -195°C. We have read experimental points 
from Fig. 1 of Ref. 15 and computed the relative yield 
'f]/'f]0 and the decay time T/TO of the donor phosphores­
cence. Although Ermolaev and Terenin do not make 
a clear statement of a definition of their decay time T, 

except that they measured it by an oscillographic 
phosphoroscope, we presume here that their T corre­
sponds to our Tm defined by (5). We also assume that 
the shrinkage of the solution upon freezing has been 
taken into account in their original data. 

At Step (2) of our procedure, we have found that 
theoretical curves for I'~20 give a reasonable fit with 
the experimental TJ-T plot. Then, at Step (4), we have 
concluded that the best fit is obtained with the values 
of l' and Co in the first two lines of Table II when all 
the experimental points are treated with equal weight. 

41 D. S. McClure, J. Chern. Phys. 19, 670 (1951). 
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Figure 5 illustrates both the experimental values (points, 
referring to the abscissa above) and the theoretical 
curves (solid curves, referring to the abscissa below) 
for 'Y= 19.5. The agreement of theory with experiment 
is satisfactory, and particularly good for the case of 
I-bromonaph thalene. The theoretical curves for 'Y = 18.0 
which fit best with the data for naphthalene are only 
slightly displaced from the solid curves in Fig. 5 and 
are not shown there. From the set of values of 'Y and 
Co, we can reasily calculate Ro and L by (15) and (25), 
the result being included in Table II. The value of L, 
about 1.3-1.4 A, is the order of magnitude which one 
would expect from the size of the electronic cloud of a 
benzene ring. 

V. SUMMARY 

The decay of donor luminescence under the influence 
of energy transfer by the exchange mechanism has 
been shown to be amenable to quantitive analysis. 
From a set of observed data on the yield and decay 
time, one can determine the rate constant for energy 
transfer and hence deduce information about the inter­
molecular exchange interaction, which is not otherwise 
readily accessible. It should be emphasized that careful 
measurement of a well-defined decay time andlor decay 
curve is very important for the proposed method of 
analysis. 
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FIG. 5. Comparison of Ermolaev's data with theory. Ermolaev's 
data for triplet-triplet energy transfer from benzophenone to 
naphthalene or to 1-bromonaphthalene are represented by the 
symbols explained in the inserted table in reference to the abscissa 
above, which gives the acceptor concentration c in units of 
mole/liter. The calculated values of TJ/TJo and Tm/TO for "}'= 19.5 
are represented by the solid curves in reference to the abscissa 
below, which gives c/co, The optimum value of co=0.182 mole/liter 
has been found for best fit of the experimental data for the case of 
1-bromonaphthalene. 

TABLE II. Result of analysis of Ermolaev's data. 

I-Bromo 
Naphthalene naphthalene 

"}' 18.0 19.5 

Co (mole/liter) 0.186 0.182 

Ro (1) 12.9 13.0 

L (1) 1.43 1.33 
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APPENDIX 1. SOME SIMPLE MODELS 

We apply the general equation for the decay function 
(4) to some simple models for the purpose of illustra­
tion and comparison with energy transfer by the ex­
change mechanism. 

1. Perrin Model 

If we consider an "active sphere" with radius Ro as 
proposed by Perrin,42 the rate constant nCR) IS 

! 
~, 

nCR) = 
0, 

R<Ro, 
(Al) 

Ro<R. 

Substitution of this into (4) gives 

! 
1, 

cp (t) = 
exp( -t/To-clco) , 

t=O, 
(A2) 

t>O. 

where use has been made of (24) and (25). The relative 
yield and the decay times are given as follows: 

111110= exp( -clco), 

TmITO= 1, 

TmsITO= 1, 

Te/TO= l-clco, (l;~~clco) . 

2. Stem-Volmer Model 

(A3) 

(A4) 

(AS) 

(A6) 

If the rate constant is independent of the distance, i.e., 

nCR) =n=const., (A7) 

42 F. Perrin, Compt. Rend. 178, 1978 (1924). 

Downloaded 13 Aug 2012 to 140.116.178.185. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



1988 M. INOKUTI AND F. HIRAYAMA 

1.0 ,--....,----,--.-----y---r----,----,--,-----r--.. 

.8 

.6 

.4 

• 2 

.2 .4 .6 

we obtain from (4) 

cf>(t)=exp(-t/ro) limexp(-Nnt). (A8) 
N_oo 

The factor N n in the exponent is proportional to the 
acceptor concentration c. On taking the limit N-Hf:) , 
we must let n become vanishingly small so that Nn is 
finite; otherwise, the resulting decay function vanishes. 
We put the result in the form 

( ) [ 
(l+C/co)tJ cf> t =exp - , 

7'0 
(A9) 

using an arbitrary reference concentration co. Notice 
that the concept of a "critical transfer concentration" 
is not at all applicable to this model. The yield and 
the decay times all have the so-called Stern-Volmer 
concen tra tion dependence43 : 

7] Tm 7'ms 7'. (l+C )-1 -=-=-=-= -
7]0 7'0 7'0 7'0 Co 

(AlO) 

3. Inverse-Power Rate Model 

Consider the case where the rate constant is propor­
tional to an inverse power of the distance. Then nCR) 
may be written as 

nCR) = (Ro/R)' , (All) 
7'0 

43 O. Stern and M. Volmer, Physik. Z. 20, 183 (1919). 

.8 1.0 

FIG. 6. The relative field "/"0 vs the 
decay times Tm/TO, Tm./TO, and 1'./1'0 for 
the inverse-power rate model. The 
abscissa represents 1'",/1'0, Tm./TO, or 
1'./1'0, and the ordinate "/f/o, The upper 
three solid curves (concave upwards) 
correspond to 1'./1'0, the lower three solid 
curves to Tm/TO, and the broken curves to 
Tm./TO. The numeral on a curve denotes 
the value of s, the power in the expression 
for the transfer rate. Thus s=6, 8, and 10 
correspond to dipole-dipole, dipole­
quadrupole, and quadrupole-quadrupole 
in teraction, respectively . 

where s is a positive number and Ro is a critical trans­
fer distance. This model covers several important cases. 
It corresponds to electric-dipole-dipole interaction for 
s= 6, dipole-quadrupole interaction for s= 8, and quad­
rupole-quadrupole interaction for s= 10. 

Putting (A11) into (4) and changing integration 
variables, we have 

(A12) 
where 

Zv= (t/7'o) (Ro/ Rv)s. (A13) 

As long as we restrict ourselves to cases s>3, the 
integral in (A12) converges for any positive Zv. Since 
Zy---tO for R~oo, we use an expansion 

i:e-ZZ-1-3/dZ=G)[ Zv-3/· exp( -Zv) -r(l-D 

in evaluating the right-hand side of (A12). The result 
is conveniently expressed in terms of the acceptor con­
centration c and the critical transfer concentration Co 
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defined by (25) as 

[-t ( 3)C (t )318J 1J(t)=exp--rl---- . 
TO S Co TO 

(AlS) 

Substitution of (Als) into (5), (6), (9), and (10) 
gives 7]/7]0, Tm/To, Tms/To, and Te/To as functions of c/co. 
Actual evaluation requires numerical work. For a par­
ticular case s= 6,7]/7]0 and Tm/To can be written in terms 
of the error function, as has been found by Forster7 

and Galanin.8 

We summarize our numerical results in Fig. 6, again 
reserving an extensive tabulation for another report. 29 

A parenthetical remark may be made concerning 
dipole-dipole transfer. The theory of Forster and Dexter, 
which leads to a rate constant proportional to R-6, has 
certain limitations as to its applicability, as has been 
pointed out, for example, by Robinson and Frosch.44 

Thus, a "phenomenological" rate constant including 
effects neglected in the theory may very well have a 
different dependence on R under certain circumstances. 
It is worth attempting to analyze a set of carefully 
controlled experimental data for a supposedly dipole­
dipole case in terms of our theoretical results29 for the 
inverse power-rate model and to determine an optimum 
value of the power s by a procedure similar to that 
described in Sec. IV. The resulting value of s may be 
larger or smaller than 6 depending on whether the 
phenomenological rate constant is effectively of shorter 
or longer range. 

44 G. W. Robinson and R. P. Frosch, J. Chern. Phys. 38, 1187 
(1963). 

APPENDIX II. DERIVATION OF EQ. (28) 

Changing the integration variable in (21) by u=zy, 
we have 

g(z) = ~Ze-u(ln~ydu 

= (Inz)3Ho(z) + (Inz) 2HI (z) +lnzH2(z) +H3(z), 

(A16) 
where 

k=O, 1,2,3. 

(A17) 

The integrals in (A17) are expressed as 

[e-U(lnu)kdu= r(k)(l) -j"'e-u(lnu)kdu, (AI8) 
o Z 

where r(k) (I) is the kth derivative of the gamma func­
tion of argument unity. The order of magnitude of the 
second term in (AI8), which is small as long as z is 
sufficiently large, can be determined by repeated partial 
integration. Putting the result into (A16), we find 
that the contributions from the second term in (A18) 
are only of the order of CO (lnz) 3Z--2. The terms of lower 
order all cancel out in (A16). 

Numerical values of the coefficients hI, h2, and h3 in 
(29) have been computed from the polygamma func­
tions tabulated by Davis.45 

~ H. T. Davis, Tables of the Higher Mathematical Functions 
(Principia Press, Inc., Bloomington, Indiana, 1935), Vol. 2. 
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