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The decay of donor luminescence in a rigid solution when modified by electronic energy transfer by the
exchange mechanism is treated theoretically. The rate constant for the elementary process of energy transfer
is taken to be of the Dexter form, const exp(—2R/L), where R is the donor-acceptor distance and L is a
positive constant. Calculations are made of the yield and decay time of the donor luminescence as functions
of the acceptor concentration. The resulting relationship among the above quantities enables one to analyze
experimental data in a quantitative manner, and thereby to obtain information about an intermolecular
exchange interaction. As an example of such an analysis, Ermolaev’s data on triplet-triplet transfer between
some aromatic molecules are compared with our results, and very good agreement is found with a choice

of the single parameter L.

I. INTRODUCTION

ESONANCE transfer of electronic excitation en-

ergy from one molecule (a “sensitizer,” or “energy
donor”) to another (an “activator,” or “energy ac-
ceptor”) has been a subject of numerous investiga-
tions.'™* Theories have been developed which give
formulas for the rate of energy transfer by electric-
dipole—dipole interaction,®® electric-dipole-quadrupole
interaction,® and the exchange interaction.® While the
former two of the interactions are electrostatic in origin,
the last arises from requirement of the antisymmetry
of the electronic wavefunction for the system consist-
ing of a donor molecule and an acceptor molecule.
These transfer mechanisms differ from one another in
the dependence of the transfer rate on donor-acceptor
distance, but common to all is the condition that an
overlap between the donor emission spectrum and the
acceptor absorption spectrum is essential for the trans-
fer to occur. This is so even though we are concerned
with virtual, not real, photon emission and reabsorption
in the transfer process.

Experimental studies of resonance transfer in a con-
densed system have most frequently been made through
luminescence measurements: donor molecules are ex-
cited in the presence of acceptor molecules, and the
luminescence yield of donor and/or acceptor and the
decay time of donor luminescence are measured as
functions of the acceptor concentration. When one
attempts to interpret an observed result, for instance,
that of donor luminescence yield, it becomes necessary
to have a theoretical relationship between the yield
and the acceptor concentration. For dipole-dipole
transfer, where the transfer rate is proportional to

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

t Present address: Department of Chemistry, University of
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the inverse sixth power of the donor-acceptor distance,
Forster derived the following formula for the donor
luminescence yield »:

n/m=1—Vrxexp(a?) [1—erf(x) ],
x=1Vrc/co, (1)

where 7o is the luminescence yield in the absence of
acceptors, ¢ the acceptor concentration, ¢, a parameter
called the “critical transfer concentration” which is
related to the transfer rate, and erf(x) the error func-
tion.17"8 The efficiency of energy transfer is simply
1—5/n0. Equation (1) has been found to explain a
number of observations on sensitized fluorescence in
condensed systems.

The phenomenon of sensitized phosphorescence, or en-
ergy transfer between triplet states, was discovered by
Terenin and Ermolaev,? who interpreted it as arising
from the exchange mechanism.

We can briefly summarize their findings in a long
series of investigations*#® by indicating those features
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which are distinct from dipole—dipole transfer. (1) The
donor luminescence yield does not obey Eq. (1), but
varies roughly as exp(—ac), where ¢ is the acceptor
concentration and ¢ is a positive constant. (2) The
decay time of the donor luminescence decreases much
more slowly with increase in the acceptor concentra-
tion than it does for dipole-dipole transfer. To be
more precise, if the acceptor with concentration ¢
causes a decrease 67 in the decay time 7 and decrease
87 in the luminescence yield %, the quantity

is much smaller (about 0.1) than the corresponding
value (theoretically 0.58) for dipole-dipole transfer.
(3) The efficiency of transfer is independent of the
oscillator strength of the acceptor. Items (1) and (2)
indicate that the transfer rate depends strongly on the
donor-acceptor distance R and is of much shorter
range than R—® (see Appendix I). Item (3) rules out
an electromagnetic mechanism of transfer. All these
facts are exactly in accord with Dexter’s theoretical
predictions® on transfer by the exchange mechanism.?

Independent studies of energy transfer between tri-
plet states under different experimental conditions®
and by means of the ESR method?~% support the view
of Terenin and Ermolaev.

The present work consists in calculation of the yield
and the decay time of donor luminescence as functions
of the acceptor concentration, for energy transfer by
the exchange mechanism. It is hoped that the result
will provide a sound, quantitative basis for analyzing
experimental data for this kind of energy transfer,
just as Forster’s formula (1) has long been doing for
dipole-dipole transfer. Our results indicate, in particu-
lar, that careful measurement of the decay time is of
vital importance to attainment of a full knowledge of
energy transfer by the exchange mechanism.

Section II starts with a discussion of a general rela-
tionship between the transfer rate and the luminescence
decay, and then treats the specific case of energy trans-
fer by the exchange mechanism. Section IIT presents
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to make this mechanism significant, at least for the most cases
studied by Terenin and Ermolaev.
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some numerical results, and Sec. IV describes a pro-
cedure for analyzing experimental data on the basis
of the present calculation. Appendix I gives a unified
treatment of some simple cases including transfer by
dipole—dipole, dipole-quadrupole, and quadrupole-
quadrupole interaction. An extensive tabulation of
numerical results will be presented elsewhere.?

II. FORMULATION
Generalities

Consider a system in which two different kinds of
molecule, energy donors, and energy acceptors, are
randomly distributed in an inert medium. Both the
donor and the acceptor molecules are assumed to have
only one excited electronic state in the pertinent energy
region. Throughout the following discussion, three basic
assumptions are made: (a) Brownian translational
motion of all the molecules is slow enough so that
each individual energy-transfer process may be con-
sidered to occur at a definite donor-acceptor distance.
(b) The rate constant for energy transfer is taken as
independent of the molecular orientation, This assump-
tion is permissible when the rate constant averaged
over the molecular orientation may be used, for ex-
ample, when molecular rotation is fast enough com-
pared with the energy-transfer process. (c) Energy
transfer occurs only from a donor to an acceptor (i.e.,
donor—donor transfer is negligible).

Suppose that a donor is excited at time {=0. When
no acceptors are present, the probability p(f) of finding
the donor in the excited state at time ¢ declines expo-
nentially, namely, p(f) =exp(—1/7,), where 7, is the
reciprocal of the rate constant for spontaneous deactiva-
tion (by light emission and internal quenching) of the
donor. When acceptors are present, the probability
decreases more rapidly because of the additional com-
peting process of energy transfer. Let n(R)) be the
rate constant for energy transfer from a donor D to
an acceptor A;, at a distance Ry;. Then we have

— N
p<t>=exp(;;’)gexp[—tn<kk>1, )

where NV is the total number of acceptors in a finite
volume around the donor. The mode of decay described
by p(f) depends on the environment of the particular
donor considered. Macroscopically significant is the
statistical average ¢(¢) of p(¢) over an infinitely large
number of donors. If w(R) is the probability distribu-
tion of the donor-acceptor distance R in the volume
V, we can write

E

7o

lim

N-»0, V>

{ fV exp[—tn(R)]w(R)dV}N.
3)

# M. Inokuti and F. Hirayama, “Tables for Analyzing Lumi-
nescence Data in Energy Transfer Studies,” ANL-6996 (to be
published).
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Here the volume V over which integration is carried
out should be chosen large enough to contain a macro-
scopic number of acceptors, and thus the limit N—«,
V— e should be taken so that N/V, the acceptor
concentration, is finite. Assuming a random spatial
distribution of acceptors around a donor, we put
w(R)dV=4rR%dR/V and take the volume V as a
sphere with radius Ry (V=4xRy*/3) to obtain

o) =exp( =)

To

lim

N-»w®, V-0

{‘;—” [0 RVexp[—tn(R) ]R2dR}N.

(4)

The function ¢(¢) is proportional to the intensity of
the donor luminescence and therefore shall be called
hereafter the decay function of donor luminescence. It
is not, in general, an exponential function for the follow-
ing reason: As the decay proceeds, excited donors having
unexcited acceptors in their close neighborhood tend to
become exhausted, since the rate constant #(R) usually
decreases with increasing distance R. Equation (4)
enables one to calculate the decay function as soon
as a dependence of the rate constant on the distance
is specified. Our formalism so far is a straightforward
generalization of Férster’s treatment” of dipole-dipole
transfer. A further generalized version including the
dependence of the rate constant on the molecular orien-
tation can be developed, as was done by Maksimov
and Rozman.%

It is customary and convenient for practical pur-
poses to introduce a “‘decay time” which characterizes
the behavior of the decay function. Since the above
¢(¢) is not in general an exponential function, there
is no unique way of defining a decay time. We can
consider at least the following two kinds of decay times.
One is the “mean duration’® 7, of donor luminescence,
defined by?

Tm=-/;mz¢(t)dt//:¢(t)dt- (3)

The other is the “1/e-decay time” 7., or the time inter-
val after which the donor luminescence has decreased
by a factor of e from its value at ¢=0. Thus 7. is defined

% M. Z. Maksimov and I. M. Rozman, Opt. i Spektroskopiya
12, 606 (1962) [English transl.: Opt. Spectry. 12, 337 (1962)%.

31 A phase fluorometer using sinusoidally modulated exciting
light measures rm as long as it is operated at a low modulation
frequency w such that wr,<<1. (See, e.g., Refs. 32-36).
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# S, F. Kilin, G. P. Prosin, and I. M. Rozman, Pribory i Tekhn.
Eksperim. No. 2, 57 (1959) [English transl.: Instr. Exptl. Tech.
USSR 1959, 2347,

% A. Yu. Borisov and L. A. Tumerman, Izv. Akad. Nauk SSSR
Ser. Fiz. 23, 97 (1959) 5English transl.: Bull. Acad. Sci. USSR
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as the root of the equation
o(r)=eL. (6)

If the decay function happens to be purely exponential,
then 7,, and 7, coincide. Otherwise, they are in general
different.

So far we have dealt with luminescence decay after
flash excitation. Under certain experimental circum-
stances, it is convenient to observe the luminescence
decay after turning off a continuous exciting light, by
which the system has been brought to a steady state
with respect to the concentration of excited molecules.
If the system has been excited with a constant inten-
sity for a time interval much longer than 7, and the
exciting light is then turned off at time ¢{=0, the
intensity of luminescence at a later time ¢ is propor-
tional to®

/ “s(t)dt,
¢

where ¢(¢) is the decay function for flash excitation.
For convenience we may consider

s.0=["s(t)ar / fo st (7

which is normalized in such a way that ¢,(0)=1. If
the decay function ¢(f) for flash excitation is purely
exponential, then ¢,(¢) =¢ (). Otherwise, ¢,(¢) gener-
ally differs from ¢{#).

We can define the “mean duration’ 7., of the donor
luminescence after turning off a steady-state excita-

tion by
Trme= /; tés(£)dt / /0 os(1)dt, (8)

in analogy with 7. for flash excitation. It is easily seen
that 7., can be evaluated directly from ¢(¢) by

Tm:% /0 “re(i)di / /0 “p()dt. ©)

37 The intensity 7(f) of luminescence, in appropriate units,
resulting from exciting light whose intensity J(#) varies with
time £ in an arbitrary way can be expressed by a Duhamel integral

I()= / J (= (t)dv, (a)
0

where ¢ (f) is the decay function for flash excitation. This is gen-
erally valid under the condition that the number of excited mole-
cules is small enough compared with the total number of molecules
in the system and that the system does not undergo a permanent
change such as a photochemical reaction. For a particular case of
steady-state excitation turned off at =0, we put J(¢#)=1 for
t<0 and J(#) =0 for >0 in the above equation (a) to obtain

I() ==] o (tar.

Reference 38 gives an explicit verification of the above result for
a particular case of dipole-dipole transfer.
# K. B. Eisenthal and S. Siegel, J. Chem. Phys. 41, 652 (1964).
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The relative yield 5/4 of donor luminescence, de-
fined as the ratio of the luminescence yield in the pres-
ence of acceptor to that in its absence, is expressed by®

e 0L (10)
[1]

The efficiency of energy transfer is given by 1—9/4.

Energy Transfer by the Exchange Mechanism

Dexter® has derived the following expression for the
rate constant for energy transfer by the exchange mech-
anism:

2w

"R =22 (B FNE)E (1)

with
Z*=K?exp(—2R/L), (12)
where K is a constant with the dimension of energy,
L a constant called the “effective average Bohr radius,”
fo(E) the donor emission spectrum, and Fa(E) the
acceptor absorption spectrum.® The spectra should be
normalized on the photon energy scale so that
/fD(E)dE=fFA(E)dE= 1. (13)
Integration in Egs. (11) and (13) extends over the
relevant spectral band, which is assumed to be well
separated from other bands. In Eq. (12), Z is an
asymptotic form of an exchange integral for the donor-
acceptor pair, and the exponential dependence, which
is valid for large values of R, arises from the fact that
electronic wavefunction of a molecule generally declines
exponentially. (See Sec. V of Ref. 6 for details.) For

# Integration of Eq. (a) of Footnote 37 with respect to ¢ gives

/I(t)dt=f ¢(t)dtf J(#®ds.
- L] —

This means the total luminescence energy emitted in a sufficiently
long time interval is proportional to the total energy of the ex-
citing light in the same interval, and the proportionality constant

/ o(N)di
o

corresponds, apart from a trival factor, to the luminescence
yield, which is obviously independent of the mode of excitation.
This has been explicitly verified for a particular case of dipole~
dipole transfer in Ref. 38.

© The function F, (E) is difficult, if not entirely impossible, to
determine directly from expenment because the absorption
associated with the forbidden transition is obviously weak. How-
ever, the emission band, which is more easily observed, serves as a
basis for inferring an approxnna.tlon to the function. Furthermore,
the function Fa(E) appearing in the expression (11) for the
transfer rate may be equated with the shape of the absorption
spectrum only under certain conditions, because the mechanism
of transfer (exchange interaction) is different from that of light
absorption (dipole interaction resulting from singlet-triplet
mixing). (See Footnote 21.)
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small distances, the exchange integral depends on de-
tails of the molecular wavefunction and behaves in too
complicated a way to permit a general statement. It
may also depend on molecular orientation. However,
in evaluating ¢(£) by (4), it is important to know only
the behavior of the rate constant for large distances.
Contributions from small distances, where the rate
constant #(R) is in general high, are not significant,
because, in Eq. (4), #(R) appears in the exponent,
and besides there is a volume element factor R2

It is convenient for our analysis to rewrite the above
rate constant in the form

n(R)=(1/70) exp{y[1— (R/Ro) ]},

where R, and ¥ are constants related to Dexter’s
quantities by

(14)

y=2Ro/L, (15)

ﬂ_ Zx / fo(E) Fa(B)dE. (16)

We may, following Forster’s terminology, call R, “a
critical transfer distance” in the sense that, for an
isolated donor-acceptor pair separated by R, the en-
ergy transfer occurs with the same rate as the sponta-
neous deactivation in the donor.

In order to calculate the decay function ¢(f), we
insert (14) into (4) and obtain, after changing inte-
gration variables,

-l 2) i [or()
T0 / N+ Ry RV

lim

x| exp(—2y) (1ny>2rldy]ﬂ, (17)

where
2= C'Yl/To,

yyr=exp[—v(Rv/Ro)].

The integral in (17) can be evaluated for small yy
values in the following manner:

(18)
(19)

[ exp(—a) () y-hdy=—3 exp(— sy (lmym)?

vy

+%z[ j; exp(—azy) (Iny)3dy— j: 7 exp(—2y) (Iny) “dy]

= —3(Inyy)*—3g(2) +OLyr(Inyy)*].  (20)
Here we have defined a function g(z) by
1
g(z)=—3 f exp(—2y) (Iny)*dy. (21)
)
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Thus, by use of (17) through (21), we can write ¢(2)

in the form
¢ () =exp(—t/70) [1—7(Ro/Rv)%(2) I.

(22)

lim
N->wo,Ry-+o

The result, after taking the limit, is conveniently ex-
pressed as

¢(8) =exp[—t/ro—vc/cog(e"t/r0) ], (23)
where ¢ is the acceptor concentration
c=3N/(4rRv?), (24)

and ¢ is a parameter, which is called the critical transfer
concentration, defined by

c=3/(4rRe). (25)

Note that the above ¢ and ¢y are in units of centi-
meters—3. If concentration in units of moles per liter
is used, then we have

Ro=17.346¢,~1% (angstrom). (26)

We now give properties of the function g(3) relevant
to numerical evaluation. First, it is easy to see that
g(z) is positive and monotonically increasing for any
2>0. Second, expansion of the exponential in the inte-
grand in (21) followed by term-by-term integration
gives a Taylor series

ORI Yy ett an

which is absolutely convergent for any z. Finally, for
sufficiently large values of >0, g(z) can be expressed by

£(2) = (Inz) -+ h (Inz) 2+ ke (Inz) 4+ A3+ O[e~*(Inz) 52,
(28)

where the coeflicients %, b, and %; are related to deriva-
tives of the gamma function of argument unity:

= —31"(1) =1.73164699,
hy= 30" (1) =5.93433597,

hiy=— " (1) = 5.44487446. (29)

The derivation of (28) is given in Appendix II.

Thus numerical evaluation of g(z) is simple. For
small values of 3, the Taylor series (27) converges
rapidly, while, for large values of z, the leading terms
in (28) give g(z) with excellent accuracy. An absolute
accuracy of 1078 is achieved by use of (27) for 2510,
and (28) for z>10.

Substitution of (23) into (5), (6), (9), and (10)
gIVES Tm/To, Te/To, Tms/To, and n/n0 as functions of ¢/co.
This stage of the calculation must be done numerically.

INOKUTI AND F. HIRAYAMA
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F16. 1. The relative yield and the decay time as functions of
the acceptor concentration. Figures 1(a), 1(b), and 1(c) refer to
v=10, 25, and 50, respectively. The abscissa represents ¢/co on a
logarithmic scale, and the ordinate 5/9s, Tm/70, Tms/To, and 7¢/7o.
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III. NUMERICAL RESULTS AND DISCUSSION

The relative yield 5/n and the decay times 7./,
Tws/To, and 1¢/7o as functions of ¢/¢o for a number of
values of ¥ were calculated on a computer. For evalu-
ation of the integrals necessary in computing 7/70,
Tm/To, and 7ms/T0, we used a subroutine which allows
the programmer to prescribe a limit of error in numeri-
cal integration. The quantity 7./7o was obtained by
solving the transcendental equation (6) through a
standard regula falsi method.

Table I shows some of our numerical results. The
entries have been rounded off at the fifth decimal
place so that the error is at most 5X 1073, Figures 1(a),
1(b), and 1(c) are plots of 7/90, Tm/T0, Tms/T0, and 7./
as functions of ¢/c, for y=10, 25, 50, respectively. One
readily observes that the curves for /7o and 7ms/7o
are sensitive to the parameter ¥ and gradually shift
towards high ¢/co values with an increase in . The
curves for n/no and 7./, are less sensitive to v. All of
them differ considerably from the corresponding curves
for dipole—dipole transfer, the difference becoming more
and more pronounced with an increase in . (For a
detailed comparison, the reader is referred to Ref. 29.)
Figures 2 and 3 give another kind of representation,
showing a plot of /5 VS 7s/70 and 7./1y, and of /70 vs
Tms/To, respectively, which we call n—r plots. This
representation is quite convenient for comparison with
experiment, because one does not need to know a value
of ¢op. As v increases, the dependence of the rate con-
stant on the distance becomes stronger, and as ex-

FrG. 2. The relative yield vs the decay time for flash excitation.
The abscissa represents 7,./rq Or 7./7, and the ordinate /. The
numeral on a curve denotes the value of v. The Stern—Volmer
model, for which n/go=17n/r0=7./70, gives the diagonal straight
line. The Perrin model gives relations y/mo=exp(r./rc—1) and
Tm/To=1 (for any n/90). The former is represented by the broken
curve and the latter by the vertical straight line at the right
side of the figure.
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Tms
To

F1c. 3. The relative yield vs the decay time for steady-state
excitation. The abscissa represents rms/7o and the ordinate n/xo.
The numeral on a curve denotes the value of v.

pected, the n— 7 plot departs farther from that for the
Stern-Volmer model and approaches that for the Perrin
model. [See Egs. (A3)—(A6) and (A10) in Appendix I.]

In order to understand the behavior of n/y for a
given v as a function of ¢/¢y, it is helpful to introduce
quantities @ and 3 such that

n/no=exp(—ac/co), (30)
7/m0= (1+8c/co) . (31)

The right-hand sides of the above equations are of
the forms derived from the Perrin model and the Stern-
Volmer model, respectively, but modified with the fac-
tors @ and B in front of ¢/c,. (See Appendix I.) We can
put our calculated value of n/5 in the left-hand sides
and solve for @ and 8. The resulting « and 8 are func-
tions of ¢/c;. We have found that « indeed decreases
with ¢/co but that the change in o is not very significant
for moderate ¢/co values. For example, in the region
0.01<¢/cy<3, « decreases from 1.1 to 0.9 for y=10,
from 1.02 to 0.98 for y=25, and from 1.005 to 0.996
for v="50. Thus we see that the relative yield /5 for
moderate ¢/c, values behaves approximately like the
Perrin model with an accuracy increasing with v. On
the other hand, 8 increases rather steeply with ¢/cq.
For example, even in the smaller region 0.01<¢/c <1,
8 increases from 1.11 to 1.81 for y=10, from 1.02 to
1.73 for y=25, and from 1.01 to 1.72 for y=>50. In
view of this large variation of 3, approximation by the
Stern-Volmer equation (31) with a constant 8 is less
meaningful.

In conclusion, we may point out that our calculated
results are in accord with the features (1) and (2) of
Sec. I which summarize the observation of triplet—
triplet energy transfer by Terenin and Ermolaev.



INOKUTI AND F. HIRAYAMA

M.

1984

Tasre L. The relative yield and decay time of donor luminescence as functions of the acceptor concentration.
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state excitation, is calculated by putting (23) into

The decay of the donor luminescence after flash
excitation is described by ¢(¢) of Eq. (23). The solid
curves in Figs. 4(a), 4(b), and 4(c) show a plot of

(7). The dashed curves in Figs. 4(a), 4(b), and 4(c)
show the functions ¢,(¢). One readily sees that ¢.(¢)
decays more slowly and thus exhibits less distinctive
nonexponentiality than ¢(f), in agreement with an

logyo¢ (#) against ¢/, for several ¢/cq values, correspond-

IV. ANALYSIS OF EXPERIMENTAL DATA
Here we show a procedure for analyzing experimen-
tal data on energy transfer by the exchange mecha-

observed result.!?

10, 25, and 50, respectively. The nonexpo-

nentiality is obviously more pronounced for larger ¢/co
values. As v increases, the curves tend to show an

increasingly rapid initial drop followed by a nearly

ing to v

exponential decay. The function ¢,(£), which repre-
sents the decay of the donor luminescence after steady-
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totic behavior of the exchange integral for the donor-

nism in terms of our theoretical results. It should be
understood, first of all, that the system under study
is supposed to comply with the basic assumptions (a),

acceptor pair in question, and also concerning the tail
of the molecular wavefunctions. If the spectral overlap
between the donor emission and the acceptor absorp-
tion is known, an absolute value of the exchange inte-

gral is determined.

(b), and (c) of Sec. II. The objective of the analysis
is to decide whether the theory is capable of reproduc-
ing a set of experimental data with satisfactory agree-
ment, and, if this is the case, further to determine an
optimum set of parameters ¥ and ¢o. These parameters
can be readily converted into L by (15) and (25) and
information is thereby obtained concerning the asymp-

Measurements of both /99 and of 7./7y and/or 7.ue/70
over a fairly large range of the acceptor concentration

¢ is essential for the analysis. The quantity 7./7 is
helpful but less important, because it is relatively in-
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F16. 4. The decay of donor luminescence under the influence of
energy transfer by the exchange mechanism. The figures 4(a),
4(b), and 4(c) refer to y=10, 25, and 350, respectively. The
abscissa represents ¢/7q, i.e., the time after excitation measured in
units of the decay time 7, of spontaneous deactivation in the donor.
The solid curve represents the decay function ¢{#) after flash
excitation, and the broken curve the decay function ¢,(#) after
stea/dy—state excitation. The numeral on a curve denotes the value
of ¢/co.

INOKUTI AND F. HIRAYAMA

sensitive to v. We need not comment about the meas-
urement of 7/7, except to mention that care must be
taken to check the possible occurrence of singlet-singlet
transfer in the energy range of observation.

A procedure for the analysis may be as follows:

(1) Determine 7, and/or 7., from a decay curve by
numerical or graphical integration. Otherwise, use a
phase fluorometer to obtain 7, directly.3—%

(2) Make an p—7 plot like Fig. 2 and estimate an
approximate value of v by comparison with the theoret-
ical curves in Fig. 2 or Fig. 3.

(3) Plot n/n0, Tm/70, and/or Tms/7s vs logipc. The
acceptor concentration ¢ must have been corrected for
the shrinkage of the solution upon freezing. (The
shrinkage in volume amounts to about 209, for the
case of EPA solutions.#)

(4) Compare the experimental points plotted as
above with the theoretical curve for a value of v in
the neighborhood of the approximate estimate at Step
(2). Determine a value of ¢o by shifting the experimen-
tal plot horizontally on the abscissa until the best fit
is obtained. Repeat this for a series of values of ¥ and
determine the optimum value of y. The value of ¢
should turn out to be reasonably stable with respect
to a small change in v, if the theory agrees with experi-
ment. An equivalent process can be carried out on a
computer with a least-squares fit criterion.

Once the parameters ¢, and vy are determined, com-
parison of the theoretical decay functions, ¢(¢) and/or
¢:(£), at a definite acceptor concentration is feasible.
A satisfactory agreement here establishes consistency
of the analysis.

As an illustration, we have analyzed two sets of data
published by Ermolaev and Terenin. They dispersed
the donor, benzophenone, and the acceptor, either
naphthalene or 1-bromonaphthalene, in an alcohol-
ether solution and studied the phosphorescence of the
donor at —195°C. We have read experimental points
from Fig. 1 of Ref. 15 and computed the relative yield
n/mo and the decay time 7/, of the donor phosphores-
cence. Although Ermolaev and Terenin do not make
a clear statement of a definition of their decay time 7,
except that they measured it by an oscillographic
phosphoroscope, we presume here that their 7 corre-
sponds to our 7, defined by (5). We also assume that
the shrinkage of the solution upon freezing has been
taken into account in their original data.

At Step (2) of our procedure, we have found that
theoretical curves for y&/20 give a reasonable fit with
the experimental n—r plot. Then, at Step (4), we have
concluded that the best fit is obtained with the values
of v and ¢ in the first two lines of Table IT when all
the experimental points are treated with equal weight.

4 D. S. McClure, J. Chem. Phys. 19, 670 (1951).
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Figure 5 illustrates both the experimental values (points,
referring to the abscissa above) and the theoretical
curves (solid curves, referring to the abscissa below)
for y=19.5. The agreement of theory with experiment
is satisfactory, and particularly good for the case of
1-bromonaphthalene. The theoretical curves for y=18.0
which fit best with the data for naphthalene are only
slightly displaced from the solid curves in Fig. 5 and
are not shown there. From the set of values of v and
co, we can reasily calculate Ry and L by (15) and (25),
the result being included in Table II. The value of L,
about 1.3-1.4 A, is the order of magnitude which one
would expect from the size of the electronic cloud of a
benzene ring.

V. SUMMARY

The decay of donor luminescence under the influence
of energy transfer by the exchange mechanism has
been shown to be amenable to quantitive analysis.
From a set of observed data on the yield and decay
time, one can determine the rate constant for energy
transfer and hence deduce information about the inter-
molecular exchange interaction, which is not otherwise
readily accessible. It should be emphasized that careful
measurement of a well-defined decay time and/or decay
curve is very important for the proposed method of
analysis.

TTT TT 7
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ERMOLAEV'S DATA

Al n T ~
ACCEPTOR | =L —
Mo To
NAPHTHALENE | o ®
oL |1-BROMO- i
NAPHTHALENE | * 2

L (DONOR: BENZOPHENONE)

PE T S 1

00! o.1 i
ACCEPTOR CONCENTRATION c, mole/liter
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L o gl Lot gl 11 vyl [
0.01 Ot | 10
c/cq (cg = 0.182 mole/liter)

F16. 5. Comparison of Ermolaev’s data with theory. Ermolaev’s
data for triplet-triplet energy transfer from benzophenone to
naphthalene or to 1-bromonaphthalene are represented by the
symbols explained in the inserted table in reference to the abscissa
above, which gives the acceptor concentration ¢ in units of
mole/liter. The calculated values of n/90 and 7m/7o for y=19.5
are represented by the solid curves in reference to the abscissa
below, which gives ¢/cq. The optimum value of co=0.182 mole/liter
has been found for best fit of the experimental data for the case of
1-bromonaphthalene.
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TasLE I1. Result of analysis of Ermolaev’s data.

1-Bromo
Naphthalene  naphthalene
¥ 18.0 19.5
¢o (mole/liter) 0.186 0.182
Ry (A) 12.9 13.0
L () 1.43 1.33
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APPENDIX 1. SOME SIMPLE MODELS

We apply the general equation for the decay function
(4) to some simple models for the purpose of illustra-
tion and comparison with energy transfer by the ex-
change mechanism.

1. Perrin Model

If we consider an “active sphere” with radius R, as
proposed by Perrin,? the rate constant #(R) is

®©, R< Ro,
n(R) = (A1)
0, Ri<R.
Substitution of this into (4) gives
1, t=0,
o(t)= (A2)

exp(—¢/ro—c/co), 1>0.

where use has been made of (24) and (25). The relative
yield and the decay times are given as follows:

n/m=exp(—c/co), (A3)
Tm/To=1, (A4)
Tms/To=1, (A5)
/To=1—c/co,  (12c/co). (A6)

2. Stern-Volmer Model
If the rate constant is independent of the distance, i.e.,
(AT)

n(R) =n=const.,

4 F, Perrin, Compt. Rend. 178, 1978 (1924).
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F16. 6. The relative field 5/n¢ vs the
decay times 7m/7o, Tms/70, and 7,/ry for
the inverse-power rate model. The
abscissa represents 7m/ro, Tms/To, OF
7o/70, and the ordinate 5/5. The upper
three solid curves (concave upwards)
correspond to 7./ro, the lower three solid
curves to 7m/7o, and the broken curves to
7ma/7o. The numeral on a curve denotes
the value of s, the power in the expression
for the transfer rate. Thus s=6, 8, and 10
correspond to dipole-dipole, dipole-
quadrupole, and quadrupole-quadrupole
interaction, respectively.

we obtain from (4)

¢ (2) =exp(—1/70) lim exp(— Nnt).
Nowx

(A8)

The factor N# in the exponent is proportional to the
acceptor concentration ¢. On taking the limit N—eo,
we must let #» become vanishingly small so that N# is
finite; otherwise, the resulting decay function vanishes.
We put the result in the form

_ (1+c/e) t]}

7o

¢ (1) =eXP[ (A9)
using an arbitrary reference concentration c,. Notice
that the concept of a ‘“critical transfer concentration”
is not at all applicable to this model. The yield and
the decay times all have the so-called Stern-Volmer
concentration dependence®:

(A10)

3. Inverse-Power Rate Model

Consider the case where the rate constant is propor-
tional to an inverse power of the distance. Then #(R)
may be written as

_(Ry/R)e

7o

n(R) (A11)

40, Stern and M. Volmer, Physik. Z. 20, 183 (1919).

where s is a positive number and Ry is a critical trans-
fer distance. This model covers several important cases.
It corresponds to electric-dipole-dipole interaction for
s=6, dipole-quadrupole interaction for s=8, and quad-
rupole—quadrupole interaction for s= 10.

Putting (Al1) into (4) and changing integration
variables, we have

—1i 3 o N
¢>(t)=exr>(-—) lim [‘Zval’ / Z"H/‘e“de] ,
T0 /N>, Ry § Zyv
(A12)
where
Zy=(t/70) (Ro/ Ry)*. (A13)

As long as we restrict ourselves to cases s>3, the
integral in (A12) converges for any positive Zy. Since
Zy—0 for Ry—> 0, we use an expansion

/ “ezz-1ilz = (f)[Zv“"’/‘ exp(—Zy) — I‘(l - §)
Zy 3 S

+s/(s—3)ZV1"“‘/'+O(ZV2—3/‘)] (A14)

in evaluating the right-hand side of (A12). The result
is conveniently expressed in terms of the acceptor con-
centration ¢ and the critical transfer concentration ¢,



DONOR LUMINESCENCE

defined by (25) as

on-nf (-5

Substitution of (A15) into (5), (6), (9), and (10)
gives 1/m0, Tm/To, Tms/7T0, and 7./7¢ as functions of c/co.
Actual evaluation requires numerical work. For a par-
ticular case s=6, 5/ and 7./7 can be written in terms
of the error function, as has been found by Forster”
and Galanin.®

We summarize our numerical results in Fig. 6, again
reserving an extensive tabulation for another report.?

A parenthetical remark may be made concerning
dipole—dipole transfer. The theory of Férster and Dexter,
which leads to a rate constant proportional to R, has
certain limitations as to its applicability, as has been
pointed out, for example, by Robinson and Frosch.4
Thus, a ‘‘phenomenological” rate constant including
effects neglected in the theory may very well have a
different dependence on R under certain circumstances.
It is worth attempting to analyze a set of carefully
controlled experimental data for a supposedly dipole-
dipole case in terms of our theoretical results® for the
inverse power-rate model and to determine an optimum
value of the power s by a procedure similar to that
described in Sec. IV. The resulting value of s may be
larger or smaller than 6 depending on whether the
phenomenological rate constant is effectively of shorter
or longer range.

( “ G. W. Robinson and R. P. Frosch, J. Chem. Phys. 38, 1187
1963).

(A15)
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APPENDIX II. DERIVATION OF EQ. (28)

Changing the integration variable in (21) by u#=zy,
we have

glz)= -/(; ze‘“(lni)sdu

= (IHZ)SH()(Z) + (11'12) 2H1(Z) +1IIZH2(Z) +H3(Z) ,

(A16)
where
3 z
Hy(z)= (—1)"(}3)/ e (Inu)*du, k=0,1,2 3.
0
(A17)

The integrals in (A17) are expressed as
/ e*(Inu) *du=T¥ (1) —-/we—“(lnu)"du, (A18)
0 z

where I'® (1) is the kth derivative of the gamma func-
tion of argument unity. The order of magnitude of the
second term in (A18), which is small as long as z is
sufficiently large, can be determined by repeated partial
integration. Putting the result into (A16), we find
that the contributions from the second term in (A18)
are only of the order of ¢~*(Inz)3z~2 The terms of lower
order all cancel out in (A16).

Numerical values of the coefficients 4, %2, and %; in
(29) have been computed from the polygamma func-
tions tabulated by Davis.#

“H. T. Davis, Tables of the Higher Mathematical Functions
(Principia Press, Inc., Bloomington, Indiana, 1935), Vol. 2.



