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We report the application of target factor analysis (TFA)
to the identification of trace analytes in open-path Fourier
transform infrared (OP/FT-IR) spectra. Results showed
that for components such as methane and ammonia, for
which the path-integrated concentration was greater than
∼100 ppm‚m, TFA yielded results that closely match
corresponding reference spectra. Furthermore, it was
shown that the rotation of certain eigenvectors allowed the
presence of trace analytes to be recognized when the SNR
of these molecules in individual spectra was below 1.0,
even though no prior knowledge that a particular molecule
was present in the atmosphere being monitored was
available. The presence of the analyte was confirmed by
conventional TFA. The presence of ethanol and ozone was
observed in OP/FT-IR spectra measured at certain loca-
tions near dairy and hog farms in this way. No band that
could be assigned to either analyte could be observed in
any of the spectra in the data set. The application of TFA
to OP/FT-IR spectra had the advantage that no prepro-
cessing, e.g., compensation of water line absorption or
baseline correction, is needed.

Open-path Fourier transform infrared (OP/FT-IR) spectrom-
etry is a fast, sensitive, noninvasive, and rugged technique for
continuous atmospheric analysis.1-3 However, OP/FT-IR spectra
are inevitably degraded by vibration-rotation lines from atmo-
spheric water vapor and carbon dioxide and by slow baseline
variations. The sharp vibration-rotation water lines and slow
baseline variations often dominate the spectrum and present a
serious inference to the identification and quantification of trace
components, no matter whether the analyte spectra are composed
of broad or narrow bands.

Most qualitative methods in OP/FT-IR spectroscopy are based
on visual inspection or, more rarely, spectral library searching.4-8

In either case, the performance is largely determined by either
the operator’s knowledge of spectroscopy or the algorithm being
able to recognize the features of a target compound in the
measured spectrum with high confidence. In the presence of the
interferences mentioned above, it is not surprising that ambiguous,
or even false, results are found. In one of the more successful
investigations of the automated identification of molecules in OP/
FT-IR spectra, Yang and Griffiths9,10 applied several types of
artificial neural networks to the qualitative analysis of OP/FT-IR
spectra. They showed that each of five alcohols with similar
spectra could be successfully identified in noisy spectra without
baseline correction. However, for a given molecule to be recog-
nized, its bands had to be present in the spectrum with a signal-
to-noise ratio (SNR) of at least 5 (where noise is measured as the
peak-to-peak value in a spectral region where no atmospheric
components absorb). For trace components, especially when the
SNR is <5, confidence in the identification is low. It is probably
true to say that the serious spectral interferences impair the
potential of OP/FT-IR spectroscopy and that is one reason why
the popularity of this technique is relatively low.

In this paper, we show that the presence of a given compound
in a series of spectra may be recognized with high confidence
through the application of a technique known as target factor
analysis (TFA) or target transform factor analysis (TTFA). TFA
is a self-modeling technique that rotates abstract eigenvectors
obtained by principal component analysis (PCA) into physically
significant vectors, such as spectra or concentration profiles.11-14

TFA can be operated in an iterative mode, resulting in the iterative
target transformation factor analysis (ITTFA). Applications of
multicomponent analysis by TFA and ITTFA have been reported
in such fields as kinetic processes and high-performance liquid
chromatography (HPLC) with diode array detection (DAD). For
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example, McCue and Malinowski15 successfully identified indi-
vidual components from poorly resolved HPLC-DAD data. Gem-
perline16 applied constraints of non-negativity and unimodality to
the implementation of TFA of HPLC-DAD data and obtained
elution profiles of overlapped components. van Zomeren et al.17

found by augmenting data from high-performance liquid chroma-
tography and micellar electrokinetic chromatography coupled with
diode array detection, ITTFA yielded significantly better estimates
of the chromatographic and electrophoretic profiles and spectra
than those without augmentation. Tam and Chau18 used PCA and
TFA to study the reaction mechanisms and found PCA and TFA
were very useful for investigating first-order consecutive reactions
even when the spectra were quite noisy. Carvalho et al.19 combined
ITTFA with kinetic models to investigate the course of a reaction.
They showed that problems with ITTFA associated with conver-
gence could be overcome, leading the algorithm to converge in
the right direction.

A few applications to infrared spectroscopic analysis have also
been reported. Liang et al.20 employed ITTFA to analyze the IR
spectra collected during the formation of polyurethane foam and
successfully obtained component spectra and concentration pro-
files despite a very large data set, seriously overlapping bands,
and lack of a priori knowledge of the intermediates and products.
Kuzmanovski et al.21 used TFA to analyze IR spectra of human
urinary calculi and found the ambiguity and uncertainty in
interpretation was considerably reduced in comparison to manual
operation.

In this paper, we report the application of TFA to qualitative
OP/FT-IR analysis. Results showed that, for major components,
TFA yielded results that closely match corresponding reference
spectra. For minor components with low signal intensity, the
strong interferences make their spectral features imperceptible.
Nevertheless, the spectral information that is concealed in
individual spectra could be uncovered by TFA and allowed
confident qualification. In this investigation, we also observed
information in eigenvectors when the SNR of these components
in individual spectra was below 1.0, even though we had no prior
knowledge that a particular molecule was present at the particular
area being monitored. The application of TFA to OP/FT-IR spectra
had the benefit that no preprocessing, e.g., compensation of water
line absorption or baseline correction, was needed.

THEORY
Throughout this paper, boldface lower- and upper-case letters

denote vectors and matrices, respectively. All vectors are column
vectors, the transpose of which are row vectors, indicated with
superscript t. The subscript is the matrix size.

Consider that m absorbance spectra were generated from a
continuous OP/FT-IR monitoring session and that each spectrum
has n points. By arranging those spectra in a row-wise manner,

we obtain an m-by-n matrix, D. When Beer’s law is obeyed (at
least approximately), there exists a bilinear model,

where p is the number of compounds and C and S are the
concentration and spectral matrices, respectively. Each column
vector of C or S contains the concentrations over the measurement
time, or the complete spectrum of a certain compound.

Performing PCA on D yields

where q is the number of principal components and in theory
equals p in eq 1. In this equation, U and V are the score and
loading matrices (or principal component and eigenvector matri-
ces), respectively. Matrix R is the residual and contains informa-
tion on less significant components such as measurement error
or noise. If R in eq 2 is negligible, the following equation can be
derived

Equation 3 shows that results from PCA, U and V, are
correlated with the concentration and spectral information that is
in matrices C and S, respectively. In practice, V contains all the
real spectral information in S, but in a different form, which is
why eigenvectors (column vectors in V) are also called abstract
spectra. Eigenvectors are mutually orthogonal, whereas vectors
in S are linearly independent because they are real spectra of
different compounds. These facts manifest that eigenvectors span
the same space as the real spectra. Therefore, any spectral vector
in S, say sn×1, can be expressed as a unique linear combination
of eigenvectors by multiplying V with a rotation vector, r

The rotation vector r can be obtained through the least-squares
operation,

Equation 5 is the core of target factor analysis.11 In TFA, the first
step is to select a target, starget, then calculate the rotation vector
with eq 5, and finally predict the target, spredicted, with eq 4. The
presence of the target in the spectrum is confirmed or rejected
by whether or not spredicted equals starget within the error allowance
limit.

The above theory and procedure also hold for the concentra-
tion matrix C and score matrix U, which means that the real
concentration profile of the target compound can be obtained. In
this case, TFA is a quantitative method, but only when some
knowledge of the profile is available (to construct the target).12

It can be found that, in TFA, acquiring the rotation vector plays
a key role, which is not a problem if the target is available.
However, when that is not the case, an artificial target should be
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constructed, and parts of this work show our approach to tackling
this problem.

EXPERIMENTAL SECTION

OP/FT-IR measurements were carried out in June and July
2004 and January, March, and June 2005, on and around a dairy
and a hog farm in southern Idaho in a cooperative project for
monitoring gaseous emissions with the Northwest Irrigation and
Soil Research Laboratory (NWISL) of the United States Depart-
ment of Agriculture (USDA). The OP/FT-IR spectrometer was
manufactured by MDA Corp. (Atlanta, GA), and incorporated a
Bomem Michelson 100 interferometer, a 31.5-cm telescope, a
cube-corner array retroreflector, and a Sterling engine-cooled
mercury cadmium telluride detector. Instrument control and data
acquisition were performed with GRAMS 7.00 (Thermo Galactic,
Salem, NH). The distance between the telescope and retroreflector
was usually between 100 and 200 m, for a total path length of
200-400 m; however, occasionally longer path lengths were
necessary. Every OP/FT-IR interferogram was measured by
coadding 16 interferograms at a nominal resolution of 1 cm-1. All
spectra for the analysis were computed with a zero-filling factor
of 2 (two data points per resolution element) and Norton-Beer
“medium” apodization.

In this investigation, absorbance spectra were obtained by
calculating the ratio of the long-path (200-400 m) single-beam
spectrum to a short-path (∼2 m) single-beam background spec-
trum. The instrument response profile is removed by this
procedure, but absorption by the analyte and atmospheric H2O
and CO2 is not. Since strong interference by H2O and CO2 is
always seen in the spectra, the analysis can only be performed in
regions of the spectrum where these species absorb weakly (the
so-called atmospheric windows.) In our work, two spectral
windows, from 1250 to 750 cm-1 and from 3200 to 2850 cm-1,
were used. Spectra in a given continuous monitoring session were
measured at intervals of ∼70 s. Successive absorbance spectra in
a particular set were assembled in the order in which they were
measured as rows of the matrix for TFA.

Reference spectra of ethanol and ozone are from a commercial
library published by Infrared Analysis Inc. Reference spectra of
NH3 and CH4 were provided by courtesy of Pamela M. Chu at
the National Institute of Standards and Technology (NIST).

Quantitative analysis was carried out by using partial least-
squares (PLS) regression in this investigation. Details are given

in ref 22. All manipulation of spectra and data processing was done
using MATLAB 7.0.1 (The MathWorks Inc., Natick MA) on a
Windows 2000 platform.

RESULTS AND DISCUSSION
Seven data sets were prepared from OP/FT-IR measurements

that had been carried out at several locations with various path
lengths and under various conditions of temperature and relative
humidity. These data sets reflect a range of atmospheric composi-
tions; for example, the air over the dairy pen is rich in ammonia
and methane, whereas lagoon or compost air could be quite
complex because of aerobic or anaerobic fermentation. Other
information on these data sets is given in Table 1. Both visual
inspection and calculation of the correlation coefficient, R2, were
employed to confirm the presence or absence of a component. A
value of R2 ) 0.85 was adopted as the threshold value of the
correlation coefficient.

TFA for Specific Molecules. On and around animal farms,
the concentration of ammonia and methane is usually higher than
the global average and the SNR of strong lines in the spectrum is
usually greater than 10. The reference spectra of NH3 and CH4

were used as the targets in our first attempt to perform TFA on
the OP/FT-IR data sets. The eigenvectors for data set 1 calculated
by the procedure described above are shown in Figure 1. It can
be seen that the first eigenvector (EV1) contains largely informa-
tion due to a baseline offset, while the features in EV2 and EV3
are readily assigned to NH3 and H2O, respectively. Spectral
features assignable to both NH3 and H2O can be seen in EV4,
while EV5 appears to show the effect of a nonlinear baseline drift.

Figure 2 shows the results from the TFA of data sets 1 (Figure
2a) and 2 (Figure 2b) with NH3 being the target. For data set 1,
the concentration of NH3 was quite high while for data set 2 it
was much lower. The particular spectrum shown as the lowest
trace in Figure 1a was chosen from data set 1 because the path-
integrated concentration of NH3 was the average value for this
data set, ∼217 ppm‚m. The predicted spectrum exhibits high
similarity to the reference spectrum, which is not surprising in
light of the high path-integrated concentration of NH3 in every
spectrum in this set. Such direct evidence is not available for data
set 2, since the average path-integrated concentration of NH3 was
∼1 ppm‚m. Even for the spectrum in this data set that exhibits

(22) Shao, L.; Pollard, M. J.; Griffiths, P. R.; Westermann, D. T.; Bjorneberg,
D. L. Rejection Criteria for Open-Path Fourier Transform Infrared Spec-
trometry during Continuous Atmospheric Monitoring. Vibrational Spectrosc.
2007, 43, 78-85.

Table 1. Data Sets from Continuous OP/FT-IR Monitoring Sessions

data
set location date

duration
(min)

optical path
length (m)

no. of
spectra

1 dairy pen March 16, 2005 798 486 700
2 open landa January 26, 2005 1069 372 950
3 hog lagoon February 2, 2005 380 138 332
4 hog lagoon June 14, 2004 742 142 600
5 dairy lagoon January 28, 2005 1357 306 1177
6 dairy compost January 29, 2005 931 542 811
7 dairy lagoon March 19, 2005 1374 258 1184

a The beam path was 230 m to the west of the pen of a dairy farm, with a westerly wind.
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the highest path-integrated concentration of NH3 (16 ppm‚m,
which translates to an average concentration along the path of 40
ppbv), which is the spectrum shown in Figure 1b, spectral features
of NH3 are barely recognizable. Nevertheless, TFA yielded
satisfactory results for both data sets. The measured spectra in
Figure 1 exhibit significant baseline drifts and relatively high
absorption of water vapor between 1250 and 1150 cm-1. However,
TFA minimizes these interferences. The correlation coefficients
were calculated to be 0.98 and 0.98 for data sets 1 and 2,
respectively, both of which are higher than the empirical thresh-
old. Therefore, the presence of NH3 in both data sets was further
confirmed.

Figure 3 shows the results from TFA of data sets 1 and 2 with
CH4 as the target. From PLS regression, the average path-
integrated concentrations of CH4 of the two data sets were 1680
(data set 1) and 650 ppm‚m (data set 2). The two OP/FT-IR
spectra in Figure 3 (shown as bottom traces) are representative
of the two data sets with the same path-integrated concentrations
as the average for the particular set. As shown in the figure, the
result obtained by TFA was almost of the quality of the refrence
spectrum, whether the spectral features of CH4 was obvious
(Figure 3a) or less so (Figure 3b), although the relative intensity
of the predicted lines in the R branch of CH4 is less than the lines
in the P or R branches. Many of the atmospheric water lines in
the region between 3200 and 3000 cm-1 are quite intense and do
not follow Beer’s law under the conditions of the measurements,
which possibly explains the low relative intensity of the R branch
lines in the calculated spectrum of CH4. Nevertheless, the
correlation coefficients also provided confirmation, with the values
of R2 for data sets 1 and 2 being 0.91 and 0.95, respectively.

TFA without a Target. In the previous section, TFA was
shown to perform well when the spectrum of the target molecule
was available. However, in many cases, the identity of every
molecule present in the air at a concentration of greater than 1
ppbv is unknown. In this case, the researcher does not have a
target and, hence, cannot perform conventional TFA. Similarly,

exhaustive library search, such as attempts to select the spectrum
of every molecule that could possibly be present as a target, is
also impractical, since qualification using TFA is not completely
automatic. Data set 3 represents a case for which an unexpected
molecule contributed to the spectrum.

PCA was first carried out for this data set. The first 6
eigenvectors from PCA of this data set are shown in Figure 4.
For the first 5 eigenvectors, spectral features of water vapor can
be seen in the region from 1250 to 1100 cm-1. Spectral features
of NH3 are seen weakly in the third eigenvector and strongly in
the fifth and sixth eigenvectors; indeed, with NH3 as the target,
TFA yielded as convincing a result on this data set as those of
data sets 1 and 2. Careful inspection of the fourth eigenvector
revealed that the segment from 1100 to 1000 cm-1 appeared to
contain a relatively broad unexplained spectral feature that could
not be assigned to a small molecule such as H2O, NH3, CH4, N2O,
or CO2 that would commonly be found in the atmosphere around
a hog farm as these molecules would have resolvable rotational
fine structure.

Confirmation of the identity of this molecule was impossible
by conventional TFA because there was no target. In this situation,
instead of finding a putative rotation vector that would predict the
spectrum of the unidentified molecule, we tried to obtain another
type of rotation vector that could retain the spectral features of
the unidentified molecule between 1100 and 1000 cm-1, but would
eliminate most interfering spectral lines of water vapor and
ammonia. This approach is illustrated in the bottom part of Figure
5, while the top part of this figure represents a conventional TFA
procedure, which is inapplicable in this case.

In Figure 5, V represents the eigenvector matrix, t is the
spectrum of the unidentified molecule, and r is the corresponding
rotation vector. Matrix V̂ comprises two parts from V, namely,
the data from 1250 to 1100 cm-1 (where the strongest spectral
features are due to atmospheric water vapor) and from 970 to
920 cm-1 (which mainly contains ammonia lines.) Since we wished
to eliminate the spectral information due to water and ammonia,
a zero target, t0, was constructed (values are 1 × 10-6 in practice),
i.e., the t̂ data, result of TFA, in the regions from 1250 to 1100
and 970 to 920 cm-1 are made as close as possible to zero in a

Figure 1. Five eigenvectors calculated for data set 1. Eigenvectors
were displaced for clarity with the double-headed arrow indicating
the scale. All eigenvectors in this figure (as well as Figures 4 and 8)
are plotted on the same scale (full scale for each panel, 0.4). The
eigenvectors are unitary, i.e., square root of the sum of squares is 1.
This method of normalization makes it possible to plot all eigenvectors
on the same scale for comparison.

Figure 2. Target factor analyses of two data sets, with ammonia
being the target. (a) Data set 1, for which the concentration of NH3 is
high; (b) data set 2, for which the concentration of NH3 is low; 4 and
5 factors were used for (a) and (b), respectively. In each panel, the
top spectrum is the reference spectrum of NH3 at 1-cm-1 resolution,
the middle spectrum is the result of TFA of the appropriate data set,
and the lowest spectrum is a typical measured OP/FT-IR spectrum
from each data set. The reference and predicted spectra were
displaced for clarity. EV2 in Figure 1 appears to be more noisy than
the middle spectrum in (a) because, when NH3 is the target, the result
of TFA is the combination of EV1 through EV4 for data set 1; thus
other information, including water lines and noise, is well compensated
and can hardly be seen in the predicted spectrum of NH3.
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least-squares manner, so that the absorption lines due to H2O and
NH3 are eliminated to the greatest possible extent. During this
process, the number of elements in t0 is set equal to number of
row vectors in V. In a way similar to eq 5, the corresponding
rotation vector, r̂, was obtained as

By replacing r in the conventional TFA process in Figure 5 with
r̂, a predicted spectrum, t̂, of the unidentified compound is
obtained.

After applying the approach to data set 3, a predicted spectrum
was obtained, shown as the lower trace in Figure 6. Even though
the spectrum is noisy, the previously unknown molecule was
readily identified as ethanol, the reference spectrum of which is
shown as the upper trace in Figure 6. With this information, a
conventional TFA was performed with the reference spectrum of
ethanol being the target using 6 factors, and the existence of
ethanol was very convincing, as shown in Figure 7. The spacing
of the rotational lines in the spectrum of ethanol is less than 1
cm-1, so that the lines are not resolved when the spectrum is
measured at a resolution of 1 cm-1. Without this confirmatory
procedure, the contour of this weak, broad band could be easily
misassigned to a variation in the baseline of the spectrum and
the presence of ethanol missed. It may also be noted that the
relatively strong water vapor line at ∼1066 cm-1 absorbs at
approximately the same wavenumber as the Q branch of ethanol,
again making it very difficult to identify ethanol at trace levels
directly from the set of OP/FT-IR spectra. In fact, for data set 3,
no visual evidence of ethanol was found directly from any of the
332 spectra.

Using a similar procedure, ethanol was also found to be present
in the spectra of data sets 4 and 5, for which the measurements
were taken over a hog lagoon and a dairy lagoon. Ethanol was
not the only molecule present at trace levels that could be
identified by the procedure described above. Figure 8 shows the
first 10 eigenvectors from the PCA of data set 6. As before, the
spectral features of H2O and NH3 are seen in the first 4
eigenvectors, and the presence of ammonia is strongly indicated

Figure 3. Target factor analyses of data sets 1 and 2 with methane being the target. Traces in (a) and (b) from top to the bottom are reference
spectrum of methane, results obtained by TFA, and measured spectra for comparison. Both the reference and predicted spectra were displaced
for clarity.

Figure 4. First 6 eigenvectors from PCA of data set 3. Eigenvectors
were displaced for clarity with the double-headed arrow indicating
the scale.

Figure 5. Approach to find a rotation vector that retains the
information of the unidentified molecule and eliminates that of water
vapor and ammonia.

r̂ ) (V̂tV̂)-1V̂tt0 (6)

Figure 6. (a) Result (×500 000) of rotating the first 6 eigenvectors
in Figure 4 using a rotation vector obtained with eq 6. (b) The
reference spectrum of ethanol. Trace b was displaced for clarity.
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in EV4. However, EV10 appears to show the presence of a spectral
feature of an unidentified molecule. By employing the same
approach as in the case of data set 3, we obtained a spectrum for
the unidentified molecule, shown as Figure 10, allowing it to be
identified as ozone. A conventional TFA was then carried out with
reference spectrum of ozone as the target; the results of this
procedure are shown in Figure 10, which clearly confirms the
presence of ozone, despite the dominant H2O and NH3 lines shown
in Figure 10c.

The reference spectrum, Figure 10a, shows that, at a resolution
of 1 cm-1, the rotational lines in the spectrum of ozone are not
resolved. In OP/FT-IR spectra, this weak, broad band contour is
completely lost in the jungle of sharp absorption lines of water
and ammonia and the variations in the baseline, which are rarely
monotonic. Thus, as for the previous case of ethanol, no spectral
features of ozone can be directly seen in any of the spectra in
data sets 6 and 7.

The results from analyzing data sets 3-7 are summarized in
Table 2. It was found that setting the threshold value of the
correlation coefficient at 0.85 was as effective as visual inspection
for confirming the presence of a trace component, except in the
case of the detection of ozone from data set 7. By comparing the
predicted spectrum with the reference spectrum, the false negative
of data set 7 was found to be primarily caused by the effect of
noise, even though the spectral features of ozone are readily visible
in the predicted spectrum. A detection criterion that incorporated

Figure 7. (a) Reference spectrum of ethanol; (b) result of TFA; (c)
reference spectrum of water vapor;1 and (d) one of the spectra
measured during continuous monitoring. Traces b and c were
displaced for clarity. (The reference spectrum shown in (c) was
obtained by taking the reference spectrum of H2O from the collection
published by Infrared Analysis, Inc. The path-integrated concentration
of water vapor for this spectrum is 1000 ppm‚m. The region between
1250 and 750 cm-1 was multiplied by 1000 so that the strong lines
between 1800 and 1400 cm-1 are at the appropriate intensity. This
scale expansion accounts for the poor baseline in this spectrum.)

Figure 8. First 10 eigenvectors from PCA of the OP/FT-IR data
measured over a dairy farm compost heap. Eigenvectors were
displaced for clarity, with the double-headed arrow indicating the
scale.

Figure 9. (a) Result (×400 000) after rotating the first 10 eigen-
vectors in Figure 8 by using a rotation vector obtained as described
in eq 6. (b) Reference spectrum of ozone. Trace b was displaced for
clarity.

Figure 10. (a) Reference spectrum of ozone; (b) result of TFA; (c)
typical spectrum measuried during continuous monitoring; (d) Refer-
ence spectrum of water vapor. Traces b and d were displaced for
clarity.

Table 2. Results of TFA Using Correlation Coefficient
and Visual Inspection for the Qualitative
Determination*

data
set ethanola ozonea

factors
in TFA

3 0.95 (+) 0.71 (-) 6
4 0.87 (+) 0.66 (-) 6
5 0.95 (+) 0.83 (-) 8
6 0.84 (-) 0.91 (+) 10
7 0.81 (-) 0.79 (+) 9

a A plus or minus symbol in parentheses indicates confirmation of
the presence or absence, respectively, of detection by visual inspection
of the appropriately rotated eigenvectors.
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some spectral features might ultimately prove to be more effective.
Further work on this topic is in progress. In analyzing data sets
3-7, ethanol was exclusively determined in the measurements
over lagoons and is probably derived from the anaerobic fermen-
tation of animal products in the pond. The presence of ozone is
manifested in spectra measured respectively over a compost heap
when the average temperature was 2.9 °C (σ ) 3.1 °C) and the
lagoon of a dairy farm when the average temperature was less
than 6.2 °C (σ ) 3.7 °C).

One of the goals of this project was to investigate the feasibility
of detecting the nitrogen oxides, N2O, NO, and NO2. Nitrous oxide
is readily detectable in OP/FT-IR spectra, and nitric oxide is
usually present at concentrations below the limit of detection.
Nitrogen dioxide is very difficult to detect by OP/FT-IR spectros-
copy because all of its strong bands fall in spectral regions where
water vapor absorbs so strongly that corresponding absorbance
data are invalid. However, ozone is formed in the troposphere by
the photolysis of nitrogen dioxide.23

Thus, it is possible that the presence of NO2 can be detected
indirectly by OP/FT-IR through the presence of ozone.

CONCLUSION
TFA proved to be a useful tool to identify major and minor

components in OP/FT-IR spectroscopy. The presence of a target
is confirmed or rejected by comparing the output and the
reference of the target. TFA exhibits strong resistance to interfer-
ences. For OP/FT-IR spectra, water vapor lines are usually intense
and baseline drifts frequently occur, especially under bad weather
conditions. Nonetheless, neither problem prevented convincing
evidence for the presence of trace compounds being obtained
through the application of TFA. It should also be noted that, in
this investigation, except rejecting invalid measurements with the
procedure described in ref 22, no preprocessing, such as baseline

correction or noise reduction, was carried out prior to TFA. TFA
was used purely as a qualitative technique in this investigation,
and the intensity of the eigenvectors does not relate to the
concentration of the target. Thus, the scales of the traces in
Figures 6b and 9b are only for the sake of comparison and have
no relationship to the actual concentrations of ethanol of ozone.

TFA is a powerful technique for analyzing complex multicom-
ponent systems. Application of this technique allows the presence
of individual target components to be studied without requiring
any knowledge of the concentration of the other components.
Moreover, even when a priori knowledge of the presence of a
particular analyte is unavailable, useful information can still be
obtained, as was the case for ethanol and ozone in our investiga-
tion.

The results of this study indicated that TFA can yield results
at a high confidence level for major, minor, even trace components
despite significant difference in signal strengths. In fact, for the
analyses of ethanol and ozone described above, the spectral
features were completely obscured by absorption of atmospheric
water vapor and carbon dioxide, noise, the presence of major and
minor components, and baseline variations. By combining all the
spectral data in a matrix, rather than examining individual spectra,
TFA allows the limit of detection of OP/FT-IR spectroscopy (and,
by extension, other types of spectroscopy) to be reduced.

Finally, results in this investigation demonstrated that, when
a target exists, the predicted spectrum from TFA is largely free
of the interferences present in the raw spectra. Therefore, spectral
searching programs could allow the feasibility of the automatic
identification of trace components to be achieved by TFA.
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