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A technique for spectral searching with noisy data is described that

improves the performance over contemporary approaches. Instead of

simply calculating the correlation coefficient between the spectrum of an

unknown and a series of reference spectra, greater weight is given to the

more intense features in the reference spectra. The weight array, w, is

given by jrj/f1 þ dg, where the vector r represents the reference spectrum

and the difference vector, d, contains the difference between the sample

and reference data points, equal to js � krj, where k is a scaling factor that

eliminates the effect of signal strength. By this approach, a large weight is

only given to those points that have relatively high absorbance and are

close to their counterparts in the reference spectrum. This technique was

shown to give significantly improved performance when applied to noisy

spectra of trace atmospheric components obtained by target factor

analysis.

Index Headings: Weighted correlation coefficient; Spectral searching;

Target factor analysis; TFA.

INTRODUCTION

Comparing the spectrum of an unknown sample to a large
database of reference spectra is a common task for the
identification of chemicals and materials. While visual
examination by a trained spectroscopist often yields reliable
results, time constraints and the lack of expertise of many
chemists in the interpretation of spectra may well mean that
this approach is quite limited and reliable automated methods
are called for. Several similarity metrics have been used to
measure the similarity of infrared spectra;1 these include such
approaches as the calculation of Euclidean distance, the sum of
the absolute differences, and the correlation coefficient.

The correlation coefficient has been applied to quantify
spectral similarity for many years2 and good performance was
often found.1,3,4 It has been shown that the correlation
coefficient is closely related to the dot product and the cosine
of the angle between vectors; the latter two are other common
measures of spectral similarity.5,6 Even though the correlation
coefficient is one of the more popular metrics for spectral
similarity, in our previous investigation that involved the
identification of unknowns during target factor analysis
(TFA),7 we found that a high value of the correlation
coefficient did not always indicate the correct match. This
deficiency has also been noticed by other researchers.8,9

There are several reasons for this problem, including the
presence of interferences in the sample spectrum. These
interferences are either neglected when spectra are inspected
manually or taken care of by using reverse searching
approaches in automated searching approaches. However, the
presence of spectral interferences always decreases the value of

the correlation coefficient and results in inconsistent behavior
in practice.

In the case of visual inspection of the similarity, most
spectroscopists initially focus on the more intense bands in the
spectrum, trying to confirm whether some key group
frequencies are present or absent.10 Thus, they obtain a general
idea of the chemical class of the compound before delving
deeper and studying weaker spectral features. Indeed they often
neglect other parts that are less likely to contain useful spectral
features until they obtain a good idea of the general chemical
class of the unknown. Only then do they investigate the finer
details of the spectrum.

Obviously the approach to visual comparison by observing
the stronger bands in the spectrum is a local means of
classification, whereas calculation of the correlation coefficient
is a global one that takes into consideration all points, whether
rich in spectral features or not. Incorporating the localization
approach to visual comparison into the correlation coefficient
provides a possible way to improve its performance in
measuring similarity of spectra. The way that we propose to
accomplish this end is to weight the correlation coefficient
based on the intensity of the reference spectral data. With this
approach, the weighted correlation coefficient should represent
the visual inspection more effectively than the conventional
unweighted correlation coefficient.

The concept of weighting the correlation coefficient was
introduced by Bland and Altman in processing clinical data11

and was found to be better than the conventional approach. The
problem with respect to spectroscopic interpretation is how to
design a functional, yet less arbitrary, weighting scheme.
Several weighting schemes have been proposed, each of which
is effective in certain cases.9,11–13 In this paper, we use a
weighting scheme that simulates the first step in visual
inspection, and we apply it to measure the similarity between
experimental infrared spectra and reference spectra in a
database. The results show the effectiveness of this weighted
correlation coefficient when interferences, such as noise and
spectral information from other species, are present.

THEORY

Throughout this paper, a spectrum is represented with a
boldface lower-case letter; the same letter without boldface and
with subscript i, denotes the ith data point of the spectrum, i.e.,
the ith element of the vector. All vectors are column vectors,
the transpose of which are row vectors, indicated with
superscript t.

Let three vectors, s¼ [si], r¼ [ri] and w¼ [wi] (i 2 [1, n]), be
the sample spectrum, the reference spectrum, and the weight
array with n data points. According to Bland and Altman,11 the
weighted correlation coefficient, wcc (based on Pearson’s
correlation coefficient), between s and r is
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where all summations are from i ¼ 1 to n. If we use Fisher’s
definition of the correlation coefficient, the corresponding wcc
is as follows:

wcc ¼
X

wi � si � s̄ð Þ � ri � r̄ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

wi � ðsi � s̄Þ2
h i X

wi � ðri � r̄Þ2
h ir ð2Þ

where s̄ ¼ (R wi�si)/R wi and r̄ ¼ (R wi�ri)/R wi are weighted
means of the sample spectrum and the reference. The
relationship between Eqs. 1 and 2 is analogous to the
relationship between Pearson’s and Fisher’s definition of the
correlation coefficient.14 When the weight array, w, has unit
elements, Eqs. 1 and 2 change into the ordinary Pearson’s and
Fisher’s correlation coefficient, respectively. The key to the use
of the weighted correlation coefficient is obtaining an
appropriate weight array, w; for this work, we attempted to
construct the weight array by simulating visual inspection.

In general, visual inspection comprises two steps, first,
finding some features from the reference spectrum that appear
to be similar to the spectrum of the unknown, and then
determining whether these features fit the sample spectrum at
the same locations. In this discussion, the term features implies
large values in the reference spectrum; if one is attempting to fit
an eigenvector, both positive and negative values should be
considered. The term fit means that the differences between the
sample spectrum and the reference are sufficiently small.
Incorporating this strategy into the weighting scheme design,
we define the weight array, w, as

w ¼ jrj
1þ d

ð3Þ

where the numerator is the absolute values of the reference
spectrum and d contains the differences between the sample
and reference spectral data points. The differences are
calculated by

d ¼ js� krj ð4Þ

where k is a scaling factor that eliminates the effect of signal
strength difference. The scaling factor k is obtained by using
the following equation in a least-squares manner:

k ¼ ðrtsÞ=ðrtrÞ ð5Þ

It can be seen from Eq. 3 that large weights only occur for
those points that have relatively high absolute values in the
reference spectrum and are fairly close to the counterparts in
the sample spectrum. This is consistent with the type of visual
comparison used by many spectroscopists who are attempting
to gauge whether the major spectral features of a particular
reference spectrum fit the sample spectrum. In spectral regions
where the values of the reference spectrum are low, or where
there are large differences between the sample and the
reference spectrum, the corresponding weights are small. This
is also consistent with visual comparison, which simply means
that less attention is paid to these non-feature points or the fit is
poor.

RESULTS AND DISCUSSION

First we investigated the use of simulated spectra to evaluate
the performance of the proposed weighted correlation coeffi-
cient. A narrow and a broad Lorentzian peak were employed as
reference spectra 1 and 2, shown as the lower traces in Figs. 1a
and 1b, respectively. The sample spectrum was prepared by
adding a cosine signal as the nonzero baseline to reference
spectrum 1, shown as the upper trace in Figs. 1a and 1b.

By visual inspection of Fig. 1, one would conclude that the

FIG. 1. Simulated sample spectrum with a nonzero baseline, shown as the upper trace in both (a) and (b). The two lower traces in (a) and (b) are the two simulated
reference spectra.
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sample spectrum matched reference spectrum 1 better than
reference spectrum 2, despite the nonzero baseline. However,
the conventional correlation coefficients between the sample
spectrum and references 1 and 2 were calculated to be 0.12 and
0.44, which indicates a poorer match between the sample and
reference spectrum 1 than that between the sample and
reference spectrum 2. The obvious reason for the apparently
incorrect result found with the conventional correlation
coefficient is the interference of the nonzero baseline. We
calculated the weighted correlation coefficients of the two
cases, and the values were 0.80 and 0.37, which is consistent
with visual inspection.

We then studied the use of the weighted correlation
coefficient on data obtained in our previous investigation into
the application of target factor analysis for open-path Fourier
transform infrared (FT-IR) spectrometry.7 Several data sets
were obtained in this project, of which we selected two. In the
first, the presence of trace amounts of ethanol in the beam
caused a weak band centered near 1050 cm�1, while in the
second a low concentration of ozone gave rise to a similar band
in the same region but with a different shape. As shown in
Table 2 of that paper, visual inspection indicated the absence of
ozone in data set 5, and its presence in data set 7 (see Fig. 2).

The conventional correlation coefficients when the spectrum
of ozone was used as the reference for data sets 5 and 7 are
0.83 and 0.79, respectively, which not only did not imply a
good fit in either case, but indicated that the spectrum shown in
Fig. 2a was a slightly better match to the reference spectrum of
ozone than the spectrum in Fig. 2b. Apparently, the strong
interferences in the spectrum shown in the upper trace of Fig.
2b caused the conventional correlation coefficient to yield a
low value for the correlation coefficient. When the weighted
correlation coefficient was applied to the two cases, the values
of wcc were calculated to be 0.87 and 0.94, respectively,
correctly indicating that the result of TFA in Fig. 2b was more
likely to show the presence of ozone.

We calculated the weighted correlation coefficients for all
data sets in our previous paper7 and have listed them in Table I.

One can see that all the values of weighted correlation
coefficient conform to the results of visual inspections. In
practice, we found that when wcc . 0.90, the analyte could be
detected reliably.

CONCLUSION

A weighted correlation coefficient has been shown to be a
more reliable measure of the similarity between experimental
and reference infrared spectra than the standard unweighted
correlation coefficient. The application of a weighted correla-
tion coefficient simulated the process of visual inspection by
assigning large weights to the data points with obvious spectral
features. The effectiveness of this approach was demonstrated
and shown to be useful, especially when the sample spectrum is
degraded with some interferences. This weighted correlation
coefficient can also be used for spectral library searching. The
hit list thereby generated is more reliable and led to the correct
conclusion. We will examine the results of this study in a
subsequent paper. This weighted correlation coefficient should
be applied to the case in which a benchmark, such as a
reference spectrum, is available, so that the rational weighting
array can be constructed.

FIG. 2. Results of target factor analysis of data sets (a) 5 and (b) 7 in our previous investigation. The upper traces are the results of target factor analysis, and the
middle and the lower traces are the reference FT-IR spectra of ozone and ethanol, respectively.

TABLE I. Qualitative confirmation of the presence of ethanol and ozone
using conventional and weighted (a/b) correlation coefficient and visual
inspection (þ/�).

Data set Ethanola Ozonea

3 0.95/0.99 (þ) 0.71/0.78 (�)
4 0.87/0.95 (þ) 0.66/0.73 (�)
5 0.95/0.94 (þ) 0.83/0.87 (�)
6 0.84/0.84 (�) 0.91/0.97 (þ)
7 0.81/0.89 (�) 0.79/0.94 (þ)

a A plus or minus symbol in parentheses indicates confirmation of the presence
or absence, respectively, of detection by visual inspection of the appropriately
rotated eigenvectors.
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