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A theoretical investigation into the mechanism of informa-
tion extraction by target factor analysis (TFA) is presented
from experimental data in the form of a matrix, and the
results were validated using composite spectra obtained
by open-path Fourier transform-infrared (FT-IR) spec-
trometry. The composite spectra were generated by adding
the spectral information of a target molecule with known
path-integrated concentrations to the raw open-path FT-
IR spectra obtained in a pristine atmosphere. Target
molecules are deemed to be detected when the weighted
correlation coefficient between the calculated spectrum
of the analyte and its reference spectrum exceeds 0.90.
The effective detection by TFA is shown to depend on the
variation of their concentrations over the period of the
measurement and not necessarily on the magnitude of
concentration. When TFA fails to detect an analyte at high,
but relatively constant, concentration that varies so little
as to have low variance, blank spectra, i.e., spectra in
which the analyte is known to be absent, are included in
the data matrix. This procedure effectively increases the
variance of the concentrations in the whole data set, and
TFA detects the analyte.

Target factor analysis (TFA)1 is a self-modeling technique that
rotates purely mathematical results obtained by principal compo-
nent analysis (PCA) into vectors of physical significance, such as
spectra or concentration profiles of pure components. Applications
of TFA in chemistry are found widely in chromatography,2-4

reaction mechanics and kinetics,5-7 and spectroscopic analysis.8,9

Besides in those conventional fields, TFA is also applied in medical

and pharmaceutical research.10,11 Results of those applications
demonstrate the efficiency and effectiveness of TFA to handle
large and complex data sets.

In a previous report,12 we demonstrated that TFA could be
used to identify the presence of trace compounds in air from open-
path Fourier transform-infrared (OP/FT-IR) spectra measured in
a continuous monitoring session. The results indicated that TFA
could extract the spectrum of a given target compound even when
its spectral features are obscured in the raw spectrum either
because of its low concentration or because of serious spectral
interferences. TFA shows the potential to decrease the limit of
detection (LOD) of OP/FT-IR spectrometry and to allow a warning
to be given when the target molecule is present at a concentration
above its LOD. In this article, we examine some of the quantitative
aspects of TFA, especially the conditions needed to detect the
presence of molecules at very low concentration.

THEORY
Throughout this article, boldface lower- and upper-case letters

denote vectors and matrices, respectively. All vectors are column
vectors, the transpose of which are row vectors, indicated with
superscript t. The subscript is the matrix size.

In analytical chemistry, the acquisition of data in a series of
measurements during a temporal process such as chromatography
or continuous process monitoring is fairly common. In such cases,
a bilinear matrix may be constructed by arranging these data in
a row-wise manner. Let us consider the case of a series of spectral
measurements where the spectra are converted to absorbance
(in a format such that the ordinate scale varies approximately
linearly with the concentration of each component.) Suppose Dm × n

is such a matrix that comprises m spectra; with each spectrum
having n data points. The mathematical bilinear model for D
is

Dm×n ) Cm×p(Sn×p)
t ) ∑

i)1

p

ci(si)
t (1)
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where p is the number of compounds and C and S are the
concentration and spectral matrices of all compounds, respectively.
Vectors ci and si represent the concentration array and the
spectrum of the ith compound, respectively; matrix ci(si)t is
the contribution of this compound to the entire data matrix,
and is referred to as the concentration-spectral data. Addition-
ally, ci and si are the ith column vectors of matrices C and S,
respectively. The first step of TFA is principal component
analysis (PCA), which is well-known in analyzing matrix data.
Therefore, we tried to find the connection between the purely
mathematical results of PCA on Dm × n and some physical
properties of the experimental data.

PCA on Bilinear Matrix of Experimental Data. Let us
assume that the covariance between any two concentration vectors
or any two spectral vectors is relatively low and is negligible
compared to the variance of either of the two vectors. This
assumption is reasonable for real experimental data because in
practice it is rare that two different compounds have such similar
spectra or concentration profiles that a high covariance occurs.

From a mathematical perspective, the goal of PCA on matrix
D is to find a way to combine all column vectors so that the
combination has maximum variance. The combination is called
the first principal component score vector, and the vector to give
the combination is called the first principal component loading
vector. Therefore, to perform PCA is to obtain a vector, a, that
maximizes the variance of the product, Da, subject to the
constraint ata ) 1. Let V denote the variance of Da, i.e., the
first principal component score vector, then we have

V ) var(Da) (2)

where “var” denotes the calculation of variance.
Inserting eq 1 into eq 2 yields

V ) var(∑
i)1

p

ci(si)
ta) (3)

(si)ta is a scalar, so eq 3 can be rewritten as

V ) var(∑
i)1

p

((si)
ta)ci) (4)

If the covariance of any two of the concentration arrays can be
neglected, the variance V approximately equals

V ) ∑
i)1

p

((si)
ta)2var(ci) ) ∑

i)1

p

((si)
ta)2vi

c (5)

where vi
c is the variance of concentration array ci. With the use

of the Lagrange multiplier method to maximize V, a new
objective function, L, is found

L ) V - λ(ata - 1) ) ∑
i)1

p

((si)
ta)2vi

c - λ(ata - 1) (6)

where λ is the Lagrange multiplier. Differentiating L with respect
to a and setting the derivative equal to zero, we have

∂L
∂a

) 2 ∑
i)1

p

(si)
tavi

csi - 2λa ) 0 (7)

Rearranging eq 7 gives

∑
i)1

p

(si)
tavi

csi ) λa (8)

In eq 8, (si)ta is actually the dot product of vectors si and a.
The dot product can be written as |si| · |a|cosθi, where |si| and
|a| are the lengths of si and a, and equal ((si)tsi)1/2 and 1,
respectively; θi is the angle between the two vectors. Thus eq
8 can be rewritten as

∑
i)1

p

√(si)
tsivi

c cosθisi ) λa (9)

Equation 9 indicates that the first principal component loading
vector in the PCA of the bilinear matrix of experimental data, a,
is a weighted sum of the spectra of all compounds, si, or can be
regarded as the weighted average of those spectra. The weight
for the jth compound is determined by two parts, ((sj)tsj)1/2vj

c and
the angle between vectors sj and a. The higher is ((sj)tsj)1/2vj

c,
the more is spectrum sj included in a, the closer to zero is angle
θj, and the larger is the weight. For the jth compound, the
variance of the concentration-spectral data, i.e., the matrix
cj(sj)t, is ((sj)tsj)vj

c. Therefore, the variances of the concentra-
tion-spectral data of the compounds are closely related to the
constitution of the first principal component loading vector. If
the variance of the concentration-spectral data of the jth
compound is higher than those of the remaining compounds,
the first principal component loading vector is composed mainly
of the spectrum of this compound, i.e., sj.

Next we investigate the constitution of the first principal
component score vector. Let u denote the first principal compo-
nent score vector of D; it is obtained by

u ) Da (10)

where a is the first principal component loading vector discussed
above. Inserting eq 1 into eq 10 gives

u ) ∑
i)1

p

ci(si)
ta (11)

(si)ta is a scalar, so eq 11 can be rewritten as

u ) ∑
i)1

p

((si)
ta)ci (12)

Equation 12 shows that the first principal component score vector,
u, is the weighted sum of the concentration profiles of all
compounds. The weight for the jth compound is determined by
the dot product of sj and a. As discussed above, if the variance
of the concentration-spectral data of the jth compound is higher
than those of the remaining compounds, a is composed mainly
of spectrum sj, and the weight for cj, (sj)ta, is higher than the
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other weights. As a result, the first principal component score
vector, u, is composed mainly of the concentration profile of
the jth compound, cj. The above investigation can be general-
ized to the case of more than one principal component score
and loading vector, since the principal component score vectors
are mutually orthogonal and so are the loading vectors.

Thus the result of performing PCA on a bilinear matrix of
experimental data is to redistribute the concentration and the
spectral information of all compounds into a series of principal
component score and loading vectors, respectively. These principal
component score vectors are sorted in descending order of
eigenvalues, as are the loading vectors. The important (or
principal) information tends to be largely dispersed into the first
few principal component score and loading vectors, while the
unimportant (or nonprincipal) information is largely retained in
the later principal component score and loading vectors and could
be lost when they are neglected as residual. In other words,
whether or not certain information is principal in PCA is
determined by the variance of corresponding concentration-
spectral data, not necessarily by the magnitude of concentration
or spectral value. By performing PCA on a bilinear matrix, we
were able to explore the mechanism of information extraction
through TFA.

Mechanism of Information Extraction through TFA from
the Data Matrix. As introduced above, the first step of TFA is
PCA. The result of PCA on the bilinear matrix D in eq 1 can be
expressed as follows

Dm×n ) Um×q(Vn×q)
t + Rm×n ) Dm×n

# + Rm×n (13)

where q is the number of principal component score (or loading)
vectors and equals p in eq 1 if Beer’s Law is obeyed exactly. U
and V are the principal component score and loading matrices
that are correlated with the concentration and spectral information
in matrices C and S, respectively. D# is referred to as the
principal matrix that contains the principal information in raw
data matrix D; R is the residual matrix and contains the
nonprincipal information that is neglected.

Malinowski1 showed that TFA is performed on the loading
matrix V rather than the raw data matrix D. Thus for the target
compound, only when the original spectral information measured
in D is sufficiently retained in V after PCA can this information
be extracted through TFA. As shown in eq 13, PCA redistributes
the raw information in D into D# and R; the redistribution is
based on the variance of the concentration-spectral data. For
example, for the jth compound, the concentration-spectral data
are represented by matrix cj(sj)t, where cj is the concentration
array and sj is the spectrum of the compound of unit concentra-
tion. The variance of matrix cj(sj)t, Vj, is given by

Vj ) ((sj)
tsj)vj

c (14)

where vj
c is the variance of cj. In our previous report, the

concentrations of the analyte, ammonia, in air was usually low
during the monitoring period. However, it fluctuated signifi-
cantly due to meteorological reasons, which resulted in a
reasonably large concentration variance, i.e., vj

c in eq 14. As a
result, the spectral information was retained in the principal matrix
and retrieved by TFA.

From the above discussion, we conclude that the capability of
extracting analytical information through TFA is primarily deter-
mined by the variance; thus TFA can detect analytes at low
concentration as long as the variance of the concentration-spectral
data is large enough or, as we show later, can be increased
artificially. Although detection by TFA is not directly related to
the magnitude of the concentration of the target compound, in
many practical cases the results of TFA can still be arbitrarily
correlated with the magnitude of its concentration provided that
its concentration varies.

Using TFA to Obtain the Upper Limit of Standard Devia-
tion of the Concentrations. Suppose the measured spectral
information of the target compound was redistributed by PCA into
the first n principal component loading vectors in order to ensure
an effective TFA result. However, when the number of loading
vectors in TFA is intentionally decreased from n to m, the
aforementioned spectral information might be excluded if the
target compound is a trace one, and TFA fails to extract the target
spectrum. In this case, the measured spectral information of the
trace compound is in the residual matrix, R in eq 13, and
discarded, which means that the variance of the concentration-
spectral data of the trace compound is smaller than the variance
of R. In other words, the variance of R in this case is the upper
limit of the variance of the concentration-spectral data of the target
compound, i.e., Vj in eq 14; then we can calculate the upper limit
of the variance of the concentrations of the target compound, i.e.,
vj

c in this equation and eventually obtain the upper limit of the
standard deviation.

We have implemented this operation by gradually increasing
the number of loading vectors in TFA and calculating the variance
of the residual matrix at the same time. During this process, we
inspect the extracted spectrum and use the weighted correlation
coefficient13 as an auxiliary criterion to determine when the main
features of the target spectrum are about to appear in the extracted
spectrum. The weighted correlation coefficient is similar to the
conventional correlation coefficient except that larger weights are
assigned to those wavelengths that have relatively high absor-
bance in the reference spectrum. It should be noted that if the
target compound is such a major component that its spectral
information already appears in the first loading vector, the upper
limit of standard deviation through TFA is no longer available.

EXPERIMENTAL SECTION
A total of 92 OP/FT-IR spectra were measured at a resolution

of 1 cm-1 in pristine air where the only infrared-active
compounds present above the detection limit were H2O, CO2,
CH4, and N2O. Of these molecules, only water vapor has
significant absorption in the spectral region used in this study
(1250-880 cm-1.) The experimental conditions are the same
as those in our previous paper.12 Background spectra were
acquired over a path-length of 372 m at intervals of ap-
proximately 1 min. The spectral and concentration data of the
target compound, which is known not to be present in the
background spectra, are added to the raw measurements in
the following way

D ) D* + cst (15)

(13) Griffiths, P. R.; Shao, L. Appl. Spectrosc. 2009, 63, 916–919.
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where D is the composite matrix; D* is the raw data matrix; c is
the concentration vector, and s is the spectrum of unit concentra-
tion. By using composite data matrices, we were able to control
the magnitude and the profile of the concentrations of the target
compound.

The target compounds we selected were diethyl ether and
ammonia. At 1 cm-1 spectral resolution, diethyl ether shows a
single relatively broad absorption band in the region from 1250
to 880 cm-1, while ammonia shows a number of sharp, well-
resolved lines in its vibration-rotation spectrum. The two
spectra have such different features that we could objectively
investigate the information extraction through TFA over a wide
scope. We recognize that by adding scaled reference spectra
to measured background spectra, we are ignoring the fact that
vapor-phase spectra vary slightly with temperature and pres-
sure. However, these effects are very small for molecules for
which the rotational fine structure is not resolvable, i.e., the
spacing between the lines in the rotation-vibration spectrum
is less than the width of these lines. For condensed-phase
samples for which the effect of intermolecular interactions on
the spectrum may be relatively large, TFA becomes difficult,
although not insurmountably so because the effect of intermo-
lecular interactions can often be taken care of by adding more
eigenvectors.

The concentration profiles were chosen to be Gaussian
curves with various peak heights, peak positions, and full widths
at half height (fwhh). Since the fwhh is equal to 2(2 ln 2)1/2σ,
where σ is the standard deviation of the Gaussian function,
widths are given subsequently in terms of σ rather than
fwhh. Other profiles, such as rectangular and triangular,
were also investigated and led to similar results. All data
matrices in this investigation were mean centered as a
preprocessing procedure.

RESULTS AND DISCUSSION
Validating the Theory. Initially, we performed TFA on matrix

D* (see eq 15); the results confirmed that no spectral information
due to diethyl ether or ammonia was present in the raw data.
Therefore, the results of TFA on the composite matrix D are
exclusively related to the concentration-spectral data that we
added. Several composite data matrices were constructed to
validate the theory that the detection of TFA is primarily related
to variance in the concentration of the target compound. Since

the spectrum in eq 15 is of unit concentration, the peak height of
the profile is the maximum concentration of diethyl ether or
ammonia in the corresponding data set.

The first concentration profile has a peak height of 5 ppm-m
and σ ) 5 (fwhh ) 11.8), see Figure 1a. The maximum absorbance
of the strongest ether band, corresponding to a maximum path-
integrated concentration of 5 ppm-m, was 0.007 au. The noise level
of the measured spectra is about 0.0008 au estimated by the
standard deviation of absorbance within 1008 and 988 cm-1.14 The
spectrum that was extracted by TFA is shown in Figure 1b. As
mentioned previously, the weighted correlation coefficient, wcc,
was used for the unequivocal identification of target compound.
When the value of the wcc exceeds 0.90, we showed that there is
a high probability that the target compound is present. In the case
of the data shown in Figure 1, the weighted correlation coefficient
between the extracted spectrum and the reference spectrum is
0.9988. Thus both visual inspection and the high value of wcc
indicate that diethyl ether was identified unequivocally. The
variance of the added concentration-spectral data of diethyl ether
was calculated to be 3.54 × 10-4. When the peak position of the
concentration profile was shifted without changing the peak
height or fwhh, the values of the wcc and variance of the
concentration-spectral data were essentially unchanged.

When the width was increased so that σ ) 150, as shown in
Figure 2a, all the concentrations were close to the maximum of 5
ppm-m, only varying slightly during the measurement period.
Figure 2b shows the spectrum extracted by TFA. The wcc
between the extracted spectrum and the reference spectrum is
0.7410; thus TFA did not detect diethyl ether for this profile. The
variance of the concentration-spectral data is only 4.87 × 10-6, i.e.,
about 70 times less than the case for the profile shown in Figure
1. Shifting the peak position of the concentration profile made a
negligible change to the values of wcc and the variance. It is clear,
therefore, that the information extracted through TFA is not
related to the magnitude of concentration of the target compound
but rather to the variance of the concentration.

For the second concentration profile, the peak height was 1
ppm-m and σ ) 0.375, i.e., the analyte effectively only appeared
at one point, see Figure 3a. Therefore, the peak height and width
of this profile were reduced significantly from the cases shown
in Figures 1 and 2. The extracted spectrum is shown in Figure

Figure 1. (a) The Gaussian concentration profile and (b) the reference spectrum of diethyl ether (above) and the spectrum extracted by TFA
(below).
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3b. For this example, the wcc between the extracted spectrum
and the reference spectrum was 0.8728, which is still not high
enough for the presence of diethyl ether in the infrared beam to
be confirmed. The variance of the concentration-spectral data was
1.96 × 10-6 (i.e., almost 200 times less than for the data shown
in Figure 1). When the peak position of the concentration profile
was changed and TFA was performed on the corresponding
composite data matrix, all the extracted spectra were quite similar
and the wcc values were always around 0.87. Thus for this data
set, the ineffective detection was caused by low concentration
leading to a low variance.

To investigate the effect of variance on TFA further, we
constructed a more complex concentration profile by replicating

the small Gaussian peak shown in Figure 3a 18 times at different
positions; the resulting profile is shown in Figure 4a. In this case,
the maximum concentration is still the same as the second profile
for which TFA is ineffective, but the variance is increased from
1.96 × 10-6 to 2.79 × 10-5. The extracted spectrum is shown in
Figure 4b; since the wcc is 0.9926, the presence of diethyl ether
in the beam is confirmed.

The results obtained using ammonia as the target were very
similar, despite the difference between the width of the spectral
features. The results obtained with 1 and 18 narrow peaks in the
concentration profile (analogous to the results shown in Figures
3 and 4) are shown in Figure 5. We also studied the effect of
rectangular and triangular concentration profiles and found that

Figure 2. (a) The Gaussian concentration profile after increasing the fwhh and (b) the reference spectrum of diethyl ether (above) and the
spectrum extracted by TFA (below).

Figure 3. (a) The Gaussian concentration profile and (b) the reference spectrum of diethyl ether (above) and the spectrum extracted by TFA
(below).

Figure 4. (a) The concentration profile of 18 equally spaced replicates of the Gaussian peak in Figure 3a and (b) the reference spectrum of
diethyl ether (above) and the spectrum extracted by TFA (below).
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detection by TFA was hardly affected by the distribution of
concentration values. Thus the theory that information extraction
through TFA is primarily related to the variance of the concentra-
tion-spectral data has been validated computationally.

Increasing the Variance of a Data Array by Adding Zero
Elements. In an attempt to increase the effectiveness of TFA
when the analyte is present at high concentration but with a low
variance, we investigated the feasibility of increasing the variance
by adding spectra in which the analyte was known to be absent
to the data matrix, which is equivalent to adding zero values to
the concentration array. Let C denote the original concentration
array with n elements, i.e., C ) [c1, c2, . . ., cn]. For sake of
convenience, we use S and SS to denote the sum and the sum
of the squares of the elements in C, respectively.

S ) ∑
i)1

n

ci (16)

SS ) ∑
i)1

n

ci
2 (17)

The variance of C, V, can be calculated in the following form (here
we used population variance)

V ) n · SS - S2

n2 (18)

Now we construct another data array, C̃, by padding the
original array C with m zero elements, so the new array is

Let Ṽ denote the variance of C̃; thus, we can calculate Ṽ by
the definition of population variance,

Ṽ )
∑
i)1

n+m

(c̃i - C̃¯ )2

n + m
(19)

where C̄̃ is the average of C̃ and can be obtained by

C̃¯ )
∑
i)1

n+m

c̃i

n + m
)

∑
i)1

n

ci

n + m
(20)

With eqs 16, 17, and 20, eq 19 can be simplified into

Ṽ ) (n + m) · SS - S2

(n + m)2 (21)

In order to understand how m (the number of zero elements
added) affects the variance, we calculate the first derivative of Ṽ
with respect to m.

Figure 5. (a) The Gaussian concentration profile and (b) the spectrum extracted by TFA (below). (c) The concentration profile of 18 equally
spaced replicates of the Gaussian peak in Figure 5a and (d) the spectrum extracted by TFA (below). The reference spectrum of ammonia is
shown as the upper trace in parts b and d, respectively.
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dṼ
dm

) 2S2 - (n + m) · SS
(n + m)3 (22)

If the variance could be increased by adding the m zero elements
to the data array, the first derivative is positive. Therefore,

2S2 > (n + m) · SS (23)

The inequality can be rewritten as

m < 2S2

SS
- n (24)

In order to get a valid value of m as an integer, it requires

2S2

SS
- n > 1 (25)

By inserting eq 18 into the above equation, we obtain the following
result,

V < n - 1
n + 1(S

n)2
) n - 1

n + 1
C̄2 (26)

where C̄ is the average of data array C.
Inequality 26 is the condition that the variance of a data array

can be increased by adding some zero values. If the condition is
not satisfied, adding zero values will decrease the variance. For
large n, (n - 1) ≈ (n + 1), so the inequality can be simplified as

V < C̄2 (27)

Therefore, adding spectra without the analyte, so that the
corresponding concentrations are zero, is an effective way to
increase the variance in the case that elements of the data array
are all high; i.e., C̄ is large but only varies slightly, so that V is
small.

The inclusion of too many spectra with zero analyte concentra-
tion will eventually decrease the variance because, as shown in
eq 22, a large value of m will result in a negative first derivative.
When applying TFA to identify certain compounds from experi-
mental data, therefore, it is useful to include some “blank”
measurements into the data matrix to increase the concentration

variance. However, the addition of too many “blank” measure-
ments will ultimately decrease this variance. The addition of too
many spectra to the data matrix also means that increased
computation resources will be required.

Thus TFA should work more effectively in a “moving fixed
window” mode, so that a fixed number of measurements are
arranged into the matrix for TFA. In this way, the number of
“blank” measurements, i.e., m in eq 22 is restricted. The “moving
window” mode not only reduces the computation time for TFA
but increases the time resolution of the result, compared to the
analysis of the entire data matrix. This is probably one reason for
the so-called “window target-testing factor analysis” that has been
found to be effective in qualitative analysis of complex mixtures
by other researchers.15

To test this theory, i.e., to increase the variance in the
concentration profile, we added together in a row-wise manner
the raw data matrix (i.e., where no diethyl ether is present in the
beam) and the composite used for Figure 2, where the spectrum
of ether has been added with a high path-integrated concentration;
thus, the large matrix is

[D*
D ]

Since the raw data matrix does not contain spectral information
due to diethyl ether, the concentration profile of diethyl ether for
the large matrix is the combination of the same number zero
concentration values as the profile of Figure 2a and the profile
itself, as shown in Figure 6a. The variance of the concentration-
spectral data is thus greatly increased, from 4.87 × 10-6 to 1.07 ×
10-3. We performed TFA on the large matrix and found a
perfect match between the extracted spectrum and the refer-
ence, as shown in Figure 6b. Clearly the effectiveness of TFA
this time is due to the increase in variance that was achieved by
adding spectra where the analyte concentration was zero. Similar
results were found for ammonia, as shown in Figure 7. From
the concentration profile given in Figure 6a, we can see that the
concentration difference from zero is roughly 10 times the
variation in concentrations of the analyte. According to analysis
of variance considerations, the difference from zero contributes
significantly more to the variance than the variance of concentra-
tions does, so this result should not be surprising.

Obtaining the Limit of Standard Deviation of Concentra-
tions. In this section, we investigate the limit of the standard
deviation for the concentrations of the target compound. With the

Figure 6. (a) The concentration profile obtained by combining the raw data with no ether present with the data set used for Figure 2. (b) The
reference spectrum of diethyl ether (above) and the spectrum extracted from this data set by TFA (below).
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use of diethyl ether as the target, a total of eight different Gaussian
concentration profiles were generated with different peak heights,
Cmax, keeping the width (σ ) 5 min) and peak position (20)
constant. The values of Cmax are shown in the first column of
Table 1; because the spectrum is of unit concentration (i.e., the
path integrated concentration was 1 ppm-m), these numbers are
equal to the maximum concentrations of diethyl ether in corre-
sponding composite data matrices. The number of loading vectors

used in the TFA, n, was gradually increased to a maximum value
of 20 (It should be noted that using an excessive number of
loading vectors could lead to a false result). Each time that n was
increased, we tried to determine a certain value of n, ncrit, when
the main spectral features of diethyl ether just appeared in the
extracted spectrum, and corresponding wcc exceeds 0.90; we
then calculated the limit of standard deviation according to our
theoretical analysis. The results are summarized in Table 1.
As can be seen in this table, all standard deviations are smaller
than corresponding limits obtained through TFA, which is
consistent with our theoretical analysis. When we decreased the
maximum of the concentration profile to 0.5 ppm m, TFA could
not extract the spectrum of diethyl ether even with 20 loading
vectors and the wcc value was below 0.90.

An example of how ncrit is determined is shown in Figure 8,
for which Cmax ) 0.8 ppm-m. Traces a and b are the spectra
extracted by TFA using 5 and 4 loading vectors; the reference
spectrum of diethyl ether is c. The weighted correlation
coefficients between a and c was 0.94, which is greater than
0.90 and is therefore deemed to be a good match. The value
of wcc for spectrum b was 0.79, which is too low for a good
match. Therefore the value of ncrit is 5. Both by visual inspection
of the spectra and from the values of wcc, we concluded that
there is insufficient spectral evidence of diethyl ether in
extracted spectrum b, while there is adequate evidence in a.
When only four loading vectors were used in TFA, most of
the spectral information from diethyl ether is contained in the
residual matrix. When the variance of the residual was

Figure 7. (a) The Gaussian concentration profile for ammonia with σ ) 150; (b) the reference spectrum of ammonia (above) and the spectrum
extracted by TFA (below); (c) the concentration profile obtained by combining the raw data with no ammonia present with a data set used for
part a. (d) The reference spectrum of ammonia (above) and the spectrum extracted by TFA from the data set shown in part c (below).

Table 1. Limits of Standard Deviation Obtained
through TFA and the Actual Standard Deviations of the
Concentration Distributions, and the Weighted
Correlation Coefficients Obtained for n ) (ncrit - 1) and
ncrit

a

Cmax ncrit - 1 LOSD SD wcc for ncrit - 1 wcc for ncrit

5 1 1.43 1.40 -0.83 1.00
4 1 1.30 1.12 -0.77 0.99
3 1 1.19 0.84 -0.67 0.98
2 2 0.94 0.56 -0.63 0.94
1 3 0.80 0.28 0.42 0.91
0.8 4 0.76 0.22 0.79 0.94
0.7 5 0.75 0.20 0.88 0.92
0.6 5 0.74 0.17 0.62 0.89

a Table headings are, from left to right, maximum concentration in
units of ppm m; maximum number of loading vectors used in the TFA
that gives no spectral features of the target compound; limit of standard
deviation obtained from TFA; standard deviation calculated from the
concentration profile; weighted correlation coefficient, wcc, between
the extracted and the reference spectrum of diethyl ether calculated
with the number of loading vectors shown in column 2; wcc calculated
with ncrit loading vectors.
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calculated, the limit of standard deviation was shown to be 0.76.
Thus, according to the theory given above, the standard
deviation of the concentrations of diethyl ether in this data
matrix should be smaller than 0.76. This conclusion is correct,
as shown by the data in Table 1.

To further investigate the reliability of the limit of standard
deviation obtained from TFA, we processed some real OP/FT-IR
data.12,16 OP/FT-IR spectra were acquired near a dairy pen in
southern Idaho. The instrument was mounted on an open field about
230 m to the west side of the dairy pen. Although the air over this
field should be pristine, wind could carry ammonia from the dairy
pen into the IR beam. We performed TFA on the data matrix with
ammonia as the target, and the results are shown in Figure 9. In
Figure 9, spectra b, c, and d were extracted using 8, 9, and 10 loading
vectors. The values of wcc between the extracted spectra and the
reference were 0.673, 0.849, and 0.971. Apparently, no spectral
features of ammonia can be found with high confidence in spectrum
b, which means most information of ammonia is retained in the
residual matrix. Therefore, we calculated the limit of standard
deviation according to the residual matrix when 8 loading vectors
were used, and the value was 0.0035 ppm. To validate this upper

limit, the concentrations of ammonia in all measurements were
calculated by partial least-squares (PLS) regression16 and the result
is shown in Figure 10. For all spectra, the maximum concentration
was calculated to be ∼0.0070 ppm and the average was 0.0059 ppm;
the standard deviation is 0.0007 ppm. Thus we could find the actual
standard deviation is below the limit we have obtained from TFA,
which again confirms our theoretical analysis. Additionally, spectrum
d in Figure 9 clearly demonstrates the presence of ammonia. This
evidence for the presence of ammonia is much more convincing than
any of the values of the concentration of ammonia given by PLS
regression because the strongest absorption line of ammonia in any
of the of the measured OP/FT-IR spectra is of the same order as
the noise level.

CONCLUSIONS
The results shown in this article have demonstrated that the

successful extraction of spectra from an experimental data matrix
by TFA is primarily determined by the variance of the concentra-
tion-spectral data of the target compound and not necessarily by
the magnitude of the concentrations; it is only slightly affected
by how the concentrations are distributed. This conclusion holds
for other PCA-related techniques. TFA can detect the presence
of trace compounds as long as the variance of their concentrations
is sufficiently high. TFA fails when the analyte is present at high
concentration with a small variance. In practice, however, it is
rare that the concentration of a target compound remains at a
high level and remains constant. If this is the case, the concentra-
tion variance may be increased by including some blank measure-
ments. Once a target compound has been identified, TFA can
possibly provide the limit of standard deviation of the concentra-
tions of the target compound. In summary, TFA is a powerful,
yet reliable, method to identify trace components in a complex
multicomponent system. A very low rate of false detections is
attainable, especially when visual inspections are also carried out.
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Figure 8. The spectra extracted through TFA with (a) 5 and (b) 4
loading vectors and (c) the reference spectrum of diethyl ether.

Figure 9. (a) Reference spectrum of ammonia and (below) the
spectra extracted by TFA using (b) 8, (c) 9, and (d) 10 loading vectors.

Figure 10. Variation of the concentration of ammonia obtained by
PLS regression on the measured OP/FT-IR spectra.
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