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It is an essential step in analyzing hyphenated chromatographic data of complex chemical systems to determine
the number of principal factors of the bi-linear matrix. The determination is difficult due to the co-existence of
non-chemical factors, such as background, noise, etc. A new method was proposed for the determination based
on comparing eigenvectors of the original data matrix and the one reconstructed from key spectral variables
that are selected with orthogonal projection approach (OPA). The proposed method is mathematically rigorous
and the determination is clear. In comparison with other four indices, i.e., NPFPCA (noise perturbation in func-
tional principal component analysis), RESO (the ratio of eigenvalues calculated by smoothed principal compo-
nent analysis and those calculated by ordinary principal component analysis), DRAUG (determination of rank
by augmentation) and DRMAD (determination of rank by median absolute deviation), this proposed method
was proven to have good performance in both simulated GC-IR and experimental HPLC-DAD data.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Measurements from hyphenated techniques, such as GC-MS, are
usually in the form of matrix. Such data matrices are bi-linear, which
means columns and rows are linear combinations of pure elution pro-
files and spectra, respectively. Bi-linear matrix features rich chemical
information and significant interferences and redundancy, and it is im-
portant to extract as much chemical information as possible for subse-
quent analysis.

Variables that mostly contain chemical information are referred to
as principal factors. In a mathematical perspective, principal factors
are linearly independent variables that span the same space as the orig-
inal variables do [1]. There is a similar concept in regression, which is
latent variable. Latent variables are those that build a model of regres-
sionwith the best fit to calibration data [1,2]. Principal factors and latent
variables are similar, and yet intrinsically different.

Principal factors play an important role in data analysis of bi-linear
matrices, so it is an essential step inmanymultivariate analysismethods
to determine the number of principal factors, also known as “chemical
rank” of the bi-linearmatrix [3]. In the ideal situationwhere each chem-
ical component makes independent and noise-free contribution to the
data matrix, the number of principal components equals the number
of chemical components. However, the practical determination is
difficult due to the co-existence of instrumental factors and experimen-
tal noise [4,5], such as unresolved background, different types of noise,
overlapping signals, etc. Since the number of principal factors is impor-
tant information in many multivariate analysis methods, an incorrect
estimation would lead to erroneous qualitative and quantitative results
[3].

Several methods have been proposed to determine the number of
principal factors, and they could be classified into three categories:
(1) empirical, (2) mathematically rigorous and (3) statistical [6].
In this paper, a novel method, which is in the second category, was
proposed to determine the number of principal factors in hyphenated
chromatographic data. First, the orthogonal projection approach
(OPA) [7–10] is used to select key variables, which are a set of either
rows (spectra) or columns (elution profiles) of the datamatrix; the con-
tribution of each is fromonedominant chemical component [4]. Second,
the method of least squares (LS) [11] is applied to obtain pure elution
and spectral estimates, and subsequently these estimates are used to re-
construct a purified data matrix. Finally, by comparing eigenvectors ob-
tained from both the original and the reconstructed matrices, the
number of principal factors is determined.

The proposed method, referred to as OPALS, employs singular value
decomposition (SVD) to obtain eigenvectors from both the original and
the reconstructed matrices, respectively [1,12]. According to the theory
proposed by Lu et al. [6], OPALS follows the second pattern in mathe-
matically rigorous category.

Both simulated GC-IR and experimental HPLC-DAD data were used
to evaluate OPALS. In evaluations with simulated data, the results were
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compared to the number of chemical components in the simulation. In
the case of experimental data, the results may account not only for
chemical information but also for instrumental aberrations [2], such as
baseline drifts, pulsations, nonlinearity, etc., if their influence is higher
than the expected signal-to-noise ratio. Therefore, principal factors
usually outnumber chemical components for experimental data, which
requires additional measures to evaluate the obtained number of princi-
pal factors. In this paper, window factor analysis (WFA) was employed
for the evaluation because only with correct number of principal factors
could WFA yield meaningful results [13].

2. Theory

Consider a two-way datamatrixXm × n of amulti-component chem-
ical system, where m is the number of samples and n is the number of
variables. If Beer's law is strictly obeyed, there exists a bi-linear model,

X ¼ CST ð1Þ

where C and S are the elution and spectralmatrices of pure components,
respectively.

Performing singular value decomposition (SVD) on X yields

X ¼ USVT ð2Þ

where U and V are orthonormal matrices, and S is a diagonal matrix
whose diagonal elements are equal to the square roots of corresponding
eigenvalues. Columns of matrices US and V represent score vectors and
eigenvectors, respectively.

2.1. Selecting key spectral variables

Key spectral variables were selected from row vectors of matrix X
with orthogonal projection approach (OPA). OPA is a stepwise approach
to search the most dissimilar rows of the matrix. Key spectral variables,
which are the least correlated rows of the data matrix and have a large
mean absorbance [9], form a matrix Xs in the following manner,

Xs ¼ xT
1 x

T
2 x

T
3… xT

p

h i
ð3Þ

where xi is the ith key spectral variable of data matrix X. The number of
key spectral variables, p, should not be greater than the number of rows
or columns of X. The size of Xs is n × p.

2.2. Reconstructing the new data matrix

Let S⁎ denote an approximation of the pure spectramatrix in Eq. (1),
and then compute an approximate matrix of elution profiles with the
following equation. The initialization of S⁎ is Xs.

C� ¼ XS� S�TS�
� �−1

ð4Þ

where C⁎ denotes the elution profiles.
Then constraints of non-negativity and unimodality were applied to

C⁎ [8,14] before obtaining a new approximate matrix of spectra profile
S⁎ by least squares.

S� ¼ XTC� C�TC�
� �−1

ð5Þ

Finally, a new data matrix is reconstructed from C⁎ and S⁎.

X� ¼ C�S�T ð6Þ
2.3. Determining the number of principal factors

The original data matrix X and the reconstructed one X⁎ are similar
in terms of chemical information and different when non-chemical
information is considered. This is also true for eigenvectors obtained
with SVD, which means principal eigenvectors from X and X⁎ are
similar, but non-principal ones are different. Therefore, in a series of
stepwise comparisons between eigenvectors, a significant difference in-
dicates a non-principal eigenvector, and all previous ones are principal,
so the number of principal factors are determined.

Let v and v⁎ denote eigenvectors from X and X⁎, respectively. For
principal factors, v and v⁎ are very similar; for non-principal factors, v
and v⁎ are significantly different [15]. This fact is the foundation of
OPALS to determine the number of principal factors. The consistency be-
tween two eigenvectors can be measured by congruence coefficients
[16],

ck ¼ vTkv
�
k ð7Þ

where ck is the congruence coefficient for the kth eigenvectors, vk and
vk⁎. If ck is close to 1, and ck + 1 is much smaller than 1 or ck + 1 decreases
abruptly from ck, then the number of principal factors is estimated as k.

Major steps of OPALS were summarized as follows:

1. Select key spectral variables with OPA and compose a matrix Xs, as
shown in Eq. (3).

2. Let Xs be an initial estimate of pure spectra matrix, S⁎, then compute
an approximate matrix of elution profiles, C⁎, and an approximation
of spectramatrix, S⁎, bymeans of least square regression, as shown in
Eqs. (4) and (5).

3. Reconstruct a new data matrix, X⁎ = C⁎S⁎T.
4. Perform SVD toX and X⁎ respectively to obtain two sets of eigenvec-

tors, and compute congruence coefficients with Eq. (7).
5. Determine the number of principal factors from congruence

coefficients.

3. Experimental

The proposedmethodwas testedwith both simulated GC-IR and ex-
perimental HPLC-DAD data. All programs were written in MATLAB
2010a (The MathWorks, Inc., Natick, MA).

3.1. Simulated data

Three-component GC-IR data were simulated with IR spectra of
diethyl ether, ammonia and beta propiolactone within the region from
750 cm−1 to 1250 cm−1, as shown in Fig. 1a; elution profiles were gen-
eratedwith a Gaussian function where thewidth of each Gaussian peak
is 2, 2 and 0.8 respectively, as shown in Fig. 1b. By altering relative
heights and positions of the Gaussian peaks, the degree of minor com-
ponent and overlapping level of elution profiles were simulated. Homo-
scedastic noise with standard deviation being 1% of the maximum
absorbance was added. The size of the simulated matrix is 50 by 2075.

Bi-linear matrices were simulated with the following equation.

X ¼ CST ð8Þ

where C and S are the elution and spectralmatrices of pure components,
respectively.

3.2. Experimental data

HPLC-DAD data of mixed rare-earth oxides in hydrochloric acid sol-
vent were collected using FL 2000 HPLC Workstation (Spectra-Physics,
USA) and multiple wavelengths of UV-Vis detector (Spectra-Physics,
USA) within region 580 to 720 nm at 5 nm interval. The sampling



Fig. 1. (a) The spectra and (b) the elution profiles of three chemical components in simulated GC-IR data. The components are (1) diethyl ether, (2) ammonia and (3) beta propiolactone,
respectively.
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duration is 15 min at 0.344 s interval. Six samples were prepared and
analyzed within the chromatographic system. Two two-component
(Yb and Tm) data sets were recorded between 4.5 and 8.6 min and
labeled as HPLC-DAD1 (high concentration) and HPLC-DAD2 (low
concentration); two three-component (Yb, Tm and Er) data sets were
Fig. 2. Congruence coefficient of eigenvectors versus number of factors from three-component s
(a) 10, (b) 20, (c) 30 and (d) 40, respectively.
recorded between 4.5 and 9.9 min and labeled as HPLC-DAD3 (high
concentration) and HPLC-DAD4 (low concentration); and two six-
component (Lu, Yb, Tm, Er, Ho and Tb) data setswere recorded between
3.9 and 12 min and labeled as HPLC-DAD5 (high concentration) and
HPLC-DAD6 (low concentration).
imulatedGC-IR datamatrix (50 × 2075). The number of selected key spectral variableswas

Image of Fig. 2
Image of Fig. 1


Fig. 3. A 3D plot of experimen

Table 3
Numbers of principal factorsa determined by five indices for simulated three-component
data with various levels of homoscedastic noiseb.

Noise level OPALS NPFPCA RESO DRAUG DRMAD

10 20 30 40

0.01 3 3 3 3 3 3 3 3
0.05 3 3 3 3 3 3 3 2
0.08 3 3 3 3 3 2 2 1
0.10 2 3 3 3 3 2 2 1

a Incorrect results were highlighted in bold.
b Concentration peak heights of diethyl ether, ammonia and beta propiolactone are all

1, and peak positions are 3, 4.283 and 7, respectively.

Table 2
Numbers of principal factorsa determined by five indices for simulated three-component
data with various degrees of minor componentb.

Height OPALS NPFPCA RESO DRAUG DRMAD

10 20 30 40

0.50 3 3 3 3 3 3 3 3
0.10 3 3 3 3 3 2 3 3
0.05 3 3 3 3 3 2 3 2
0.01 2 2 2 2 2 2 2 2

a Incorrect results were highlighted in bold.
b The concentration peak height of ammonia varied, while the heights of diethyl ether

and beta propiolactone both remained at 1. Noise level is 0.01. Concentration peak posi-
tions are 3, 4.283 and 7, respectively.

Table 1
Numbers of principal factorsa determined by five indices for simulated three-component
data with various degrees of elution profile overlappingb.

Position OPALS NPFPCA RESO DRAUG DRMAD

10 20 30 40

3.14 3 3 3 3 3 3 3 3
3.10 3 3 3 3 3 3 3 2
3.06 3 3 3 3 3 3 3 2
3.04 2 3 3 3 3 2 2 2

a Incorrect results were highlighted in bold.
b The concentration peakpositionof ammonia varied,while the positionsof diethyl ether

and beta propiolactone remained at 3 and 7. Noise level is 0.01. Concentration peak heights
are all 1.
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4. Results and discussion

4.1. Three-component simulated GC-IR data

From the simulated data matrix, 10 key spectral variables were
selected by OPA. Following the procedure outlined in Section 2.3, a se-
ries of congruence coefficients were obtained, and plotted versus num-
bers of factors, as shown in Fig. 2(a). The figure shows a sharp decline of
congruence coefficients when the number of factors changes from 3 to
4. Therefore, the number of principal factors was determined to be 3,
which is consistent with the number of components in the simulated
data.

4.1.1. Effect of the number of key spectral variables
In order to investigate possible effects of the number of key spectral

variables on OPALS, 20, 30 and 40 key spectral variables were used in
determining the number of principal factors. The results were shown
in Fig. 2b to d. The congruence coefficient profile in Fig. 2b is sufficiently
clear to indicate 3 principal factors despite an increase at c4. When the
number of key spectral variables increases to 30 or 40, there is a gradual
decline from c3 to c6, causing the turning point for distinguishing the
principal factors from the secondary factors less prominent. This is
due to noise accumulation in the reconstructed matrix when more key
spectral variables were used. Nonetheless, the congruence coefficients
in Fig. 2c and d are all close to 1 for the first 3 factors,making them read-
ily distinguished from others, and the correct number of principal fac-
tors could still be obtained.

4.1.2. Effect of three interfering factors
Effects of three interfering factors, i.e., elution profile overlap-

ping, minor component and homoscedastic noise, on OPALS were in-
vestigated and results are listed in Tables 1–3. For comparison, other
four indices were used to process the same data sets, which are
NPFPCA (noise perturbation in functional principal component anal-
ysis) [16], RESO (the ratio of eigenvalues calculated by smooth prin-
cipal component analysis and those calculated by ordinary principal
component analysis) [3], DRAUG (determination of rank by augmen-
tation) [2] and DRMAD (determination of rank by median absolute
deviation) [17]. The tables show that the three interfering factors
tal HPLC-DAD data set 4.

Image of Fig. 3


Table 4
Numbers of principal factorsa determined with various number of selected key spectral
variables for six HPLC-DAD data sets.

Data Size Number of key spectral variables

10 15 20 25

HPLC-DAD1 717 × 29 7 7 7 7
HPLC-DAD2 717 × 29 5 5 5 5
HPLC-DAD3 932 × 29 8 9 9 9
HPLC-DAD4 932 × 29 5 5 5 5
HPLC-DAD5 1600 × 25 6 6 6 6
HPLC-DAD6 1600 × 25 6 6 6 6

a Inconsistent results are highlighted in bold.
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have similar effect on these methods except DRMAD, which per-
formed relatively poor in those cases. OPALS performs similarly to
NPFPCA and better than others.

In some extreme cases when the degree of elution profile overlap-
ping is serious, minor component is very weak, or the noise level is
quite high, OPALS of using10 key spectral variables yielded 2 principal
factors, one fewer than the true value. It is probably ascribable to the in-
sufficiency of 10 key spectral variables, which resulted in some loss of
chemical information in the reconstructed matrix. Nonetheless, correct
results were obtained once more key spectral variables were used.
Therefore, it is desirable to compare the results of using different num-
ber of key spectral variables in order to reduce effects of various inter-
ferences in original data matrix.
Fig. 4. Congruence coefficient of eigenvector (ck) versus number of factors for data HPLC-DA
respectively.
4.2. Experimental data

Experimental data contain both chemical and non-chemical infor-
mation that includes noise, instrumental fluctuations [18]. Non-
chemical information, e.g., the oscillations in baseline in Fig. 3, which
are from pulses of the pump, is not necessarily separable from chemical
information and principal factors ought to account for it [2]. As a result,
the number of principal factors of experimental data is usually larger
than the number of chemical components. The numbers of principal fac-
tors for experimental data sets of HPLC-DAD1, HPLC-DAD2, HPLC-DAD3
and HPLC-DAD4were confirmed to be 7, 5, 9 and 5 with window factor
analysis (WFA), and these values are references to results of OPALS. For
more complicated data sets HPLC-DAD5 and HPLC-DAD6,WFA failed to
yield the referential numbers of principal factors, so we used the num-
ber of chemical components instead.

4.2.1. Results of using different numbers of key spectral variables
As found in Table 4, the number of key spectral variables did not af-

fect the results of data sets HPLC-DAD1, HPLC-DAD2, HPLC-DAD4,
HPLC-DAD5 and HPLC-DAD6, and the determined numbers of principal
factors are 7, 5, 5, 6 and 6, respectively. Those values are consistentwith
the references. For data set HPLC-DAD3, the result of using 10 key spec-
tral variables is 8, while the results of using more key spectral variables
are unanimously 9, as shown in Fig.4a–d. Therefore, the final result
should be 9, and it is also consistent with the reference.

For all six HPLC-DAD data sets, plots of congruence coefficient
versus number of factors are presented in Fig. 5a–f, and the numbers
D3. The number of selected key spectral variables was (a) 10, (b) 15, (c) 20 and (d) 25,

Image of Fig. 4


Table 5
Numbers of principal factorsa determined by five indices for six HPLC-DAD data sets.

Data OPALS NPFPCA RESO DRAUG DRMAD Referenceb

HPLC-DAD1 7 6 3 7 8 7 (2)
HPLC-DAD2 5 5 2 8 9 5 (2)
HPLC-DAD3 9 8 4 7 6 9 (3)
HPLC-DAD4 5 5 3 8 7 5 (3)
HPLC-DAD5 6 6 3 7 8 6 (6)
HPLC-DAD6 6 6 5 7 8 6 (6)

a Incorrect results are highlighted in bold.
b Parenthesized values are numbers of chemical components.

Fig. 5. Congruence coefficients of eigenvector (ck) versus number of factors for data sets from HPLC-DAD1 to HPLC-DAD6 (a–f).
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of principal factors were readily determined to be 7, 5, 9, 5, 6 and 6,
respectively. Congruence coefficients were obtained with 20 key spec-
tral variables.

4.2.2. Comparison with other methods
The experimental HPLC-DAD data were also processed with four

popular methods, and the determined numbers of principal factors
were listed in Table 5. It was found OPALS yielded similar results
to those of NPFPCA, DRAUG and DRMAD. Moreover, OPALS and
NPFPCA achieved highest accuracy. Results of RESO are generally small-
er than those of other methods and incorrect for data HPLC_DAD5 and

Image of Fig. 5
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HPLC_DAD6 since the number of principal factors should not be smaller
than the number of chemical components.
5. Conclusion

A new method called OPALS was proposed in this paper to deter-
mine the number of principal factors of data matrix. The core idea of
OPALS is to compare eigenvectors obtained from the original data
matrix and the one reconstructed from key spectral variables.
OPALS is mathematically rigorous, and the determination was
clear. OPALS yielded accurate results for both simulated and experi-
mental data, as compared with four popular methods NPFPCA, RESO,
DRAUG and DRMAD. The performance of OPALS is hardly affected by
the number of key spectral variables that are used to reconstruct a
new data matrix. However, for some complicated data, it is advisable
to run OPALS with different numbers of key spectral variables and
choose the stable result. It is also noteworthy that key spectral vari-
ables should not outnumber either the rows or the columns of the
data matrix.

There is not a universal solution to the problem of determining the
number of principal factors, otherwise there would not have been so
many methods, such as NPFPCA, RESO, DRAUG and DRMAD cited in
this paper. A practically effective strategy is to usemore than onemeth-
od on the same data, and compare their results in order to yield a con-
sensus. As a mathematically rigorous method, OPALS could provide
yet another reliable result to refer to for the consensus.
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