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The number of chemical species is crucial in analyzing pulsed field gradient nuclear magnetic resonance
spectral data. Any method to determine the number must handle the obstacles of collinearity and noise.
Collinearity in pulsed field gradient NMR data poses a serious challenge to and fails many existing
methods. A novel method is proposed by taking advantage of the two obstacles instead of eliminating
them. In the proposed method, the determination is based on discriminating decay-profile-dominant
eigenvectors from noise-dominant ones, and the discrimination is implemented with a novel low- and
high-frequency energy ratio (LHFER). Its performance is validated with both simulated and experimental
data. The method is mathematically rigorous, computationally efficient, and readily automated. It also
has the potential to be applied to other types of data in which collinearity is fairly severe.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

Diffusion-ordered spectroscopy (DOSY) is a widely recognized
tool to identify chemical species from complex nuclear magnetic
resonance (NMR) spectra [1e5]. DOSY reveals useful information
with plots of molecular self-diffusion coefficients versus
chemical shifts. Self-diffusion coefficients are acquired from
pulsed field gradient NMR spectra, so it is the acquisition that
controls the quality of DOSY. One necessary condition for the
acquisition is to determine accurately the number of components
in raw NMR data [6].

The determination of the number of components is fairly com-
mon in data analysis of complex chemical systems; it is also an
essential step for many multivariate analysis methods, such as
factor analysis, multivariate curve resolution, multivariate regres-
sion, etc [7,8]. Several chemometric methods were developed for

mailto:lshao@ustc.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aca.2018.04.050&domain=pdf
www.sciencedirect.com/science/journal/00032670
www.elsevier.com/locate/aca
https://doi.org/10.1016/j.aca.2018.04.050
https://doi.org/10.1016/j.aca.2018.04.050
https://doi.org/10.1016/j.aca.2018.04.050


W. Wang et al. / Analytica Chimica Acta 1022 (2018) 20e27 21
this purpose, including factor indicator function (IND) [9], subspace
comparisons [10], RESO [11], Faber-Kowalski F-test [12], Vogt-
Mizaikoff F-test [13], and eigenvector comparison [14]. A review
article classifies the methods into three categories: (1) empirical,
(2) mathematically rigorous, and (3) statistical [15]. From the
perspective of application, many methods were developed for
chromatographic data, such as LC-NMR [16], LC-DAD [17], GC-MS
[18]; a few were for other types of data, such as X-ray absorption
spectroscopy [19] and NMR [20]. Most methods are not data-
specific, but their performances vary when applied to different
types of data. The coexistence of these methods indicates the dif-
ficulty of such determination.

Although the aforementioned methods are effective in some
cases (and not in others, particularly in experimental data), the
common problems they encounter are noise and collinearity. The
problem of collinearity is more severe in pulsed field gradient
NMR spectral data due to the fact that decay behaviors of mol-
ecules are fairly similar. As a result, many methods fail such type
of data.

In this paper, a novel method is proposed to determine the
number of chemical species in pulsed field gradient NMR spectral
data. The proposed method takes advantage of collinearity and
noise. Severe collinearity makes linear combinations of decay
profiles have similar frequency, which is not the case if significant
noise is present in the combinations. Therefore, frequency is a
feasible approach to discriminate decay-profile-dominant combi-
nations from noise-dominant ones. For effective discrimination
low- and high-frequency energy ratio (LHFER) was designed. After
principal component analysis of a pulsed field gradient NMR
spectral data matrix, LHFER is calculated for each eigenvector. By
counting the number of LHFER values larger than a threshold, one
can readily determine the number of decay-profile-dominant ei-
genvectors, which equals the number of chemical species.

The proposed method was tested with simulated and experi-
mental data, and the results show high accuracy, even in cases of
high-level noise or severe collinearity. The proposed method is
mathematically rigorous, computationally efficient, and readily
automated. With these advantages, the proposed method provides
accurate number of chemical species, and improves the reliability
of DOSY.
2. Theory

Throughout this paper, bold lower- and upper-case letters
denote vectors and matrices, respectively. All vectors are column
vectors, the transpose of which are row vectors, indicated with
superscript T. The subscript is the matrix size.

Consider that n NMR spectra were measured at different pulsed
field gradients, and that each spectrum has m points. By arranging
those spectra in a column-wise manner, we obtain an m-by-n
matrix, Dm�n. For Dm�n, there exists a bi-linear model,

Dm�n ¼ Sm�pCTn�p (1)

where p is the number of chemical species; Sm�p and Cn�p are the
NMR spectral and the decay profile matrices, respectively. Each
column vector of Sm�p or Cn�p is the NMR spectrum or the decay
profile of a certain chemical species.

Performing principal component analysis (PCA) on Dm�n yields

Dm�n ¼ Um�qVT
n�q þ Rm�n (2)

where q is the number of principal components, and theoretically
equals p in eq. (1). In eq. (2), Um�q and Vn�q are the principal
component and eigenvector matrices, respectively, which are also
known as scores and loadings. Matrix Rm�n is the residual, which
contains information on less significant components such as mea-
surement error, and/or noise. If Rm�n is negligible, the following
equation can be derived from eqs. (1) and (2)

Sm�pCTn�p ¼ Um�qVT
n�q (3)

Equation (3) shows that the column vectors in Cn�p (i.e. the
decay profiles of pure chemical species) span the same linear space
as the column vectors in Vn�q (i.e. the eigenvectors) do. Therefore,
an eigenvector, say vn�1, can be expressed as a unique linear com-
bination of the decay profiles of pure chemical species by multi-
plying Cn�p with a rotation vector, rp�1

vn�1 ¼ Cn�prp�1 (4)

Equation (4) shows that decay profiles of pure chemical species
linearly constitute an eigenvector, and thus characterize its fre-
quency. These decay profiles appear alike, which results in severe
collinearity on the one hand, on the other hand makes them have
similar frequencies. Therefore, when the decay profiles are com-
bined linearly to be eigenvectors, the frequencies of eigenvectors
are more or less the same regardless of the linear form. However,
the frequency of an eigenvector increases substantially when sig-
nificant amount of noise is involved. In other words, decay-profile-
dominant eigenvectors have low frequency, whereas noise-
dominant ones have high frequency.

The above conclusion implies that frequency could be a means
to discriminate decay-profile-dominant eigenvectors from noise-
dominant ones. The discrimination can ultimately be used to
determine the number of chemical species in a NMR spectral data
matrix, because the number of chemical species equals that of
decay-profile-dominant eigenvectors.

To implement the frequency-based discrimination, a low- and
high-frequency energy ratio (LHFER) was designed. LHFER is
defined as the following,

LHFER ¼ ELF
EHF

¼

Z ft

0
jAðf Þjdf

Z fc

ft
jAðf Þjdf

(5)

where ELF and EHF denote the low- and the high-frequency energy
of an eigenvector, respectively; A denotes the Fourier transform of
the eigenvector; fc is the Nyquist frequency, and ft is the cut-off
frequency. The cut-off frequency usually takes a value of one
third of the Nyquist frequency. Eigenvectors with higher LHFER
than 1 are considered to be decay-profile dominant, and those with
lower LHFER than 1 are noise dominant. Therefore, simply by
counting how many LHFER are greater than 1, one can determine
the number of chemical species. In practice, a plot of LHFER values
helps to clarify and confirm the result. A MATLAB program has been
developed to do the sophisticated calculation of LHFER, which is
available upon request.
3. Experimental

3.1. Simulated data

Pulsed field gradient NMR spectral data matrices were simu-
lated with eq. (1). NMR spectra required in eq. (1) were generated
with Lorentzian peaks,



Table 1
The critical signal-to-noise ratios that ensured 95% accuracy of the proposedmethod
after 100 runs.

Set of simulated NMR spectra Set of simulated decay profiles

c1 c2

s1 324 1468
s2 2592 12076
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s ¼ h
w2

4ðx� pÞ2 þw2
(6)

where h, w, and p are height, width, and position of the Lorentizian
peak, respectively. By adjusting values of p, the overlapping degrees
of NMR spectra were simulated.

The required decay profiles were generated with an exponential
function,

c ¼ e�0:01dx (7)

where d is the diffusion coefficient; x is the gradient step, ranging
from 1 to 32. By adjusting values of d, the similarity degrees of
decay profiles were simulated.

Gaussian noise was added to data matrices. Noise was created
with various standard deviations to simulate different noise levels.

3.2. Experimental data

Two mixtures were prepared. Mixture 1 is a solution of meth-
anol (3 ml), ethanol (4 ml), 1-butanol (8 ml), sorbitol (15.59mg),
lysine (14.99mg) and sucrose (21.13mg) in D2O (460 ml). Mixture 2
is a solution of glucose (10.65mg), sucrose (12.82mg) and
Fig. 1. Two sets of simulated NMR spectra (s1 and s2) and two sets of decay profiles (c1 a
maltotriose (17.13mg) in D2O (460 ml).
The pulsed field gradient experiments were performed at 25 �C

on a Bruker Avance 600MHz spectrometer. A Bruker pulse
sequence was used with diffusion delay 0.18 s and a net diffusion-
encoding pulse width (d) of 2ms. Water signal was suppressed by
pre-saturation. A spectral width of 16 ppm was used, and 16 k
complex data points were acquired with 8 scans for each gradient
strength and 4 dummy scans, acquisition time of 1.36 s, and
relaxation delay of 1.00 s 32 k complex data points were Fourier
transformed using an exponential window with a line broadening
value of 0.3 Hz. For mixture 1, 32 gradient strengths ranging from
1.445 to 47.187 G/cm were chosen to give linear space in nominal
gradient; for mixture 2, 16 gradient strengths ranging from 1.465 to
47.865 G/cm were chosen.
nd c2) for 3 components, in thin solid, thick solid, and thin dashed lines, respectively.
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3.3. Data processing

Experimental spectra were phased and baseline-corrected with
Topspin 3.2 (Bruker Biospin, Rheinstetten, Germany). To reduce
peak shifts, spectra were linearly interpolated by 5 times and
aligned with reference to the single analyte peak at 3.0 ppm of the
first spectrum. Columns of data matrices were mean-centered in
PCA, and eigenvectors were obtained with singular value decom-
position (SVD). Manipulations of spectra and data processing were
done with self-developed programs in MATLAB 8.5.0/R2015a (The
MathWorks Inc., Natick MA) on a Windows 7 platform.

4. Results and discussion

4.1. Simulated data

Two sets of 3-component NMR spectra were simulated with eq.
(6); spectra in one set are visibly separated, and those in the other
are severely overlapped, shown as s1 and s2 in Fig. 1, respectively.
Two sets of 3-component decay profiles were simulated with eq.
(7); profiles in one set are relatively different, and those in the other
are highly collinear, shown as c1 and c2 in Fig. 1, respectively.

From the two sets of simulated NMR spectra and the two sets of
Fig. 2. 3D plots of two matrices with SNR being (a) 324 and (b) 12076, respectively. Plots (c
(For interpretation of the references to colour in this figure legend, the reader is referred t
decay profiles, 4 pulsed field gradient NMR spectral matrices were
generated with eq. (1). Of the 4 matrices, the one from s1 and c1 is
the easiest to determine the number of components, and the one
from s2 and c2 is the hardest. In order to test noise tolerance of the
proposed method, Gaussian noise was added to each matrix, and
the noise level was gradually increased until the accuracy of
determination is below 95% after 100 runs. The critical signal-to-
noise ratios are listed in Table 1. In this investigation, signal-to-
noise ratio is defined as the ratio of maximum of data matrix to
standard deviation of noise.

Decay profiles were simulated with 32 data points. Therefore, in
calculating LHFER, the Nyquist frequency is equivalent to 16 data
points, and the cut-off frequency, one third of the Nyquist fre-
quency, is equivalent to 5 data points.

In Table 1, the lowest SNR is with the aforementioned “easiest”
data matrix. When the overlap among NMR spectra or the collin-
earity among decay profiles becomes severe, SNR increases to
ensure the 95% accuracy of determination. For the “hardest” data
matrix, the SNR is the highest.

Fig. 2 shows 3D plots of the aforementioned “easiest”
(SNR¼ 324) and “hardest” (SNR¼ 12076) matrices and corre-
sponding plots of LHFER values. For the former, features of the 3
components are all distinctive, and even visual inspection of the
) and (d) are respective results of the method, and the red line indicates the threshold.
o the Web version of this article.)



Fig. 3. 3 NMR data matrices constructed with NMR spectra in different regions of chemical shift. The numbers of compounds that contribute NMR information to the 3 matrices are
(a) 1, (b) 2, and (c) 3, respectively. Plots (c), (d), and (e) are respective results of the method, and the red line indicates the threshold. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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raw datawould yield the correct number of components. For such a
data matrix of mild collinearity and overlap, the proposed method
demonstrates high tolerance of noise that is fairly apparent in the
3D plot. For the latter matrix, features of individual components are
completely indistinguishable due to severe overlap and collinearity.
Visual inspection of the 3D plot could determine just one compo-
nent. In this extreme case, the proposed method still yielded an
accurate determination.
4.2. Experimental data of mixture 1

Experimental NMR data contain such interferences as noise and
nonlinearity that make the bi-linear model a biased one, and bring
much more difficulty for the determination of the number of
components. In order to test the proposed method extensively,
three data matrices were prepared with NMR spectral segments
within 1.9e1.7 ppm, 3.85e3.7 ppm, and 2e1 ppm, respectively. In



Fig. 4. The first four (a) eigenvectors and (b) parts of principal components of the experimental data matrix composed of NMR spectral segments within 2e1 ppm. In this region of
chemical shift, butanol, ethanol, and lysine are the contributors to the NMR spectral information. For clarity, EV1, EV2, and EV3 are displaced by 3, 2, and 1, respectively; each part of
PC is normalized to unit length, and PC1, PC2, and PC3 are further displaced by 4.5, 3, and 1, respectively.

Fig. 5. Simulated (a) NMR spectra and (c) decay profiles for 3 components, in thin solid, thick solid, and thin dashed lines, respectively. Plot (b) is the corresponding data matrix
with the SNR being 1187.1. Plot (d) is the result of the proposed method, and red line indicates the threshold. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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the first region of chemical shift, lysine is the only contributor to
NMR information; contributors in the second region are sucrose
and sorbitol lysine; contributors in the third region are butanol,
ethanol, and lysine.

Experimental decay profiles have 32 data points, so the Nyquist
and the cut-off frequencies used in calculating LHFER are equiva-
lent to 16 and 5 data points, respectively.

The 3D figures of the three matrices are shown as plots (a), (b),
and (c) of Fig. 3, and plots (d), (e), and (f) are the corresponding
results of the proposed method. In the 3 plots, the numbers of
LHFER values above the threshold are 1, 2, and 3, which is consis-
tent with the numbers of compounds in respective regions.
Therefore, the proposed method is validated in all three cases.

From plot (f) of Fig. 3, one could find that the first, the second,
and the fourth LHFER values are above the threshold, which means
the corresponding eigenvectors are decay-profile dominant, but the
third one is not. It is more evident in the plot of the eigenvectors, as
shown in Fig. 4(a). In Fig. 4(a), the first and the second eigenvectors
are definite combinations of decay profiles, whereas the third
eigenvector primarily contains noise; as for the fourth eigenvector,
decay-profile feature is clear despite some noise. Fig. 4(a) effec-
tively explains that the first, the second, and the fourth eigenvec-
tors have large LHFER, but the third one has a rather small LHFER in
Fig. 3(f). However, this is not a common phenomenon because
decay-profile-dominant eigenvectors are generally in consecutive
order, e.g. the first 3 eigenvectors of the simulated 3-component
data matrix, as shown in Fig. 2. The uncommon phenomenon
could be explained by PCA. Fig. 4 shows the first 4 principal com-
ponents (PC) of the third experimental data matrix; for clarity, only
parts within 1.12e1.06 ppm are shown. By comparing the 4 PCs in
Fig. 4(b), one can find that PC1, PC2, and PC4 are linear combina-
tions with dominating contributions from the underlying NMR
spectra of the species present, but PC3 is characteristic of the first
derivative of peak, which reveals NMR peak drifts. Peak drifts make
the third PC a significant component, but they are not NMR infor-
mation, so the corresponding eigenvector is not decay-profile
dominant, as found in Fig. 4(a), and its LHFER value is low. Peak
drifts in this data matrix are somehow so significant that PCA
redistributed them into the third PC due to its variance-
maximization nature, ahead of the fourth one that contains NMR
information.

Besides NMR peak drifts, relative strong noise and weak signal
might also alter the consecutive order of the decay-profile-
dominant eigenvectors. In order to investigate such situation, we
simulated a 3-component data matrix, and deliberately decreased
Fig. 6. 3D plot (a) shows the NMR data matrix of mixture 2 (glucose, sucrose and maltot
interpretation of the references to colour in this figure legend, the reader is referred to the
NMR signal intensities; the simulated NMR spectra and decay
profiles are shown in Fig. 5. In the investigation, the decay-profile-
dominant eigenvectors were found to be in consecutive order when
noise level was low. When the noise level was increased to be
0.0008 (SNR¼ 1187.1), the consecutiveness was broken, as shown
by plot (d) in Fig. 5. It is the relatively strong noise and weak signal
that rendered the third eigenvector to be noise-dominant, and the
fourth one to be decay-profile-dominant.

The above results disclosed cases inwhich the proposedmethod
yielded correct results but the decay-profile-dominant eigenvec-
tors were not in consecutive order. In such cases, non-NMR infor-
mation in the raw data matrix is somehow significant in terms of
variance, be it high noise, severe peak drift, or poor pretreatment of
data. So plots of LHFER values are useful not only to confirm results,
but also to expose defects of raw data.

4.3. Experimental data of mixture 2

Mixture 2 contains three components, which are glucose, su-
crose and maltotriose. The 3D figure of corresponding NMR matrix
is shown in Fig. 6; to the right of the 3D figure is the plot of LHFER
values. Three LHFER values above the threshold indicate 3 com-
ponents, which is consistent with the real situation.

The correct result also validates the choice of the cut-off fre-
quency in calculating LHFER, which is one third of the Nyquist
frequency. A decay profile inmixture 1 has 32 points, and the one in
mixture 2 has 16 points, so the cut-off frequencies used in calcu-
lating LHFER for mixtures 1 and 2 are equivalent to 5 points and 2
points, respectively. Although the cut-off frequencies are different
for the two independent mixtures, the results were all correct.

The threshold of LHFER is validated too with this data matrix. In
other words, value one of LHFER is sufficient to discriminate the
decay-profile-dominant eigenvectors from the noise-dominant
ones. For data other than NMR, the cut-off frequency and the
threshold of LHFER might be different, but can be readily deter-
mined with some experimental data.

4.4. Comparison with other methods

The proposed method yielded correct results for the four
aforementioned experimental NMR data matrices, in which the
numbers of chemical species are 1, 2, 3, and 3, respectively. For
comparison, the four data matrices were also processed with seven
other methods, namely, determination of rank by augmentation
(DRAUG) [8], factor indicator function (IND) [9], ratio of eigenvalues
riose). Plot (b) is the result of the method, and red line indicates the threshold. (For
Web version of this article.)



Table 2
Numbers of chemical species of the four experimental data matrices determined by
other methods.

Experimetal Method

Data Matrix DRAUG IND RESO F-test OPALS NPFPCA MS

#1 9 8 1 7 9 1 1
#2 10 15 2 8 5 2 2
#3 10 12 2 10 4 2 2
#4 5 7 1 6 7 3 1
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calculated by smoothed principal component analysis and those
calculated by ordinary principal component analysis (RESO) [11], F-
test [12], orthogonal projection approach and least squares (OPALS)
[14], noise perturbation in functional principal component analysis
(NPFPCA) [21], and morphological score (MS) [22].

Results of these methods are listed in Table 2. Among the
methods, NPFPCA performed the best, yielded 3 correct results; MS
and RESO are the second best with 50% correction rate. Methods
DRAUG and F-test tend to over-determine numbers of species,
which is not uncommon for methods based on statistical principals.
The performance of IND and OPALS may be related to collinearity
and noise in the experimental data. It should be pointed out that
the methods in Table 2 perform satisfactorily for certain types of
data, e.g. 2-D chromatographic data matrices, and their perfor-
mances in this investigation are highly affected by severe collin-
earity and noise.

5. Conclusion

It is difficult to determine correctly the number of chemical
species in a complex system in the presence of collinearity and
noise. The difficulty is more acute for pulsed field gradient NMR
spectral data because of severe collinearity. The method proposed
in this paper takes advantage of the fact that the decay profiles are
collinear with a low frequency while noise is random and high-
frequent, and implements frequency-based discriminations with
a novel low- and high-frequency energy ratio (LHFER). Its perfor-
mance is validated with both simulated and experimental data. The
method features mathematical rigor, computational efficiency, and
easy automation. It also has the potential to be applied to other
types of data in which collinearity is fairly severe.
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