
CHINESE JOURNAL OF CHEMICAL PHYSICS VOLUME 31, NUMBER 6 DECEMBER 27, 2018

ARTICLE

Using Self-referencing Interlaced Submatrices to Determine the Number
of Chemical Species in a Mixture

Miao Wang, Wan-ping Wang, Li-min Shao∗

Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

(Dated: Received on May 25, 2018; Accepted on June 3, 2018)

Determining the number of chemical species is the first step in analyses of a chemical or bio-
logical system. A novel method is proposed to address this issue by taking advantage of fre-
quency differences between chemical information and noise. Two interlaced submatrices were
obtained by downsampling an original data spectra matrix in an interlacing manner. The
two interlaced submatrices contained similar chemical information but different noise levels.
The number of relevant chemical species was determined through pairwise comparisons of
principal components obtained by principal component analysis of the two interlaced sub-
matrices. The proposed method, referred to as SRISM, uses two self-referencing interlaced
submatrices to make the determination. SRISM was able to selectively distinguish relevant
chemical species from various types of interference factors such as signal overlapping, minor
components and noise in simulated datasets. Its performance was further validated using ex-
perimental datasets that contained high-levels of instrument aberrations, signal overlapping
and collinearity. SRISM was also applied to infrared spectral data obtained from atmospheric
monitoring. It has great potential for overcoming various types of interference factor. This
method is mathematically rigorous, computationally efficient, and readily automated.

Key words: Number of chemical species, Bilinear two-way data matrix, Interlaced subma-
trix, Principal component analysis

I. INTRODUCTION

In mainstream analytical chemistry, experimental
data formats have gradually changed from one-way vec-
tors to two-way matrices. This change is due to, for the
most part, advances in analytical instrumentation [1–
5]. Two-way data matrices contain a large amount of
chemical information and, as such, pose a challenge to
qualitative and quantitative analyses. Analyzing two-
way experimental data matrices initially involves de-
termining the number of chemical species in a chem-
ical or biological system [6, 7]. Knowing the number
of chemical species, one can then examine the interme-
diate species involved in chemical kinetics or identify
impurities [8, 9]. For example, determining the num-
ber of chemical species permitted a more complete un-
derstanding of lithium battery dynamic following struc-
tural modification [10]. In addition, knowing the cor-
rect number of chemical species enables self-modeling
curve resolution to extract pure components from two-
way data matrices without a prior knowledge of the
mixture. For example, knowing the number of chemi-
cal species is necessary to determine the distribution of
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non-target chemical species in plant tissues [11]. De-
termination of chemical species number makes possible
the identification of interfacial phases of unknown poly-
meric materials [12]. By comparison, complete resolu-
tions using other analytical methods may largely de-
pend on exhaustive iterations and expert interaction
[13–16].

A variety of methods have been developed for de-
termining the number of chemical species, and many
of them are based on PCA [17]. These methods can
be classified into three categories: mathematical, em-
pirical, and statistical [18]. The first category includes
such methods as orthogonal projection approach and
least squares (OPALS) [19], ratio of eigenvalues calcu-
lated by smoothed principal component analysis and
those calculated by ordinary principal component anal-
ysis (RESO) [20], and noise perturbation in functional
principal component analysis (NPFPCA) [21]. The sec-
ond category includes such methods as factor indicator
function (IND) [22], frequency analysis of eigenvectors
(REFAE) [23], and morphological score (MS) [24]. The
third category includes such methods as Fisher variance
ratio tests (F-test) [25, 26], median absolute deviation
(DRMAD) [27], and augmentation (DRAUG) [28].

These methods are effective in some cases, but are
rarely satisfactory for all data types. The application of
multiple methods will likely yield a consensus of results.
Many methods are more or less data-typespecific, which
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means satisfactory results are limited to a few types of
data. Some methods include crucial parameters which
require significant user intervention. As a result, such
methods often yield ambiguous results. Mathematical
methods are more robust when dealing with complex
data matrices. Empirical indices assume an unsubstan-
tiated noise distribution and statistical techniques are
often limited by matrix size or normal noise distribution
[29]. For REFAE and MS methods, frequency analysis
is employed to differentiate chemical information from
noise. Frequency analysis reveals that chemical infor-
mation is relatively low-frequency while noise frequency
is high [24]. With the attention to low-frequency chemi-
cal signals, RESO and NPFPCA can overcome, to some
extent, the unwieldy problems of identifying minor com-
ponents and heteroscedastic noise.

In this work, we propose a novel method, referred
to as SRISM, in which two self-referencing interlaced
submatrices play a key role. In SRISM, two subma-
trices are constructed respectively with odd and even
column vectors chosen from the original data matrix in
an interlacing manner. These are downsampled ma-
trices that are obtained from the original one. The
odd and even interlaced submatrices are similar with
respect to low-frequency chemical information but are
different in terms of high-frequency noise. These two
interlaced submatrices are decomposed into two sets of
PCs using PCA. A pairwise comparison of the two sets
of PCs readily yields the number of chemical species.
SRISM was evaluated using both simulated and ex-
perimental datasets. The experimental data matrices
were produced with up to six chemical species. Com-
pared to other commonly used methods, SRISM was
more robust when dealing with such interferences as
signal overlapping, minor components, homoscedastic
and heteroscedastic noise, instrument aberrations and
collinearity. When applied to monitoring ammonia in
infrared atmospheric spectra, it was able to detect am-
monia in concentration of 0.1 ppm. Moreover, SRISM
was shown to be mathematically rigorous, computation-
ally efficient, and readily automated.

II. THEORY

Throughout this work, boldface lower- and upper-
case letters denote vectors and matrices, respectively.
All vectors are column vectors. The subscript is the
matrix size.

Dm×n denotes a bilinear two-way data matrix mea-
sured at fixed time intervals (m rows) and several differ-
ent wavenumbers (n columns). It contains chemical in-
formation and noise. According to sampling theory [28],
low-frequency chemical information can be completely
sampled when the Nyquist frequency is higher than
the highest frequency of chemical information. High-
frequency noise is undersampled within various avail-
able sampling frequencies even when using the most

advanced equipment. So Dm×n is downsampled by
choosing all the s odd column vectors to form an odd
interlaced submatrix Do

m×s, and the t remaining even
column vectors are contained in an even interlaced sub-
matrix De

m×t, as shown in FIG. 1. Based on a single ex-
periment, Do

m×s and De
m×t contain similar completely

sampled chemical information but different undersam-
pled noise.

PCA is broadly used to reduce the dimension of a
data matrix by linearly combining the original vari-
ables that best account for the variance of the data
matrix. When valid measurements are concerned, it
seems reasonable that true data signals will be stronger
than noise and thus contribute more to variance than
the noise does. So it is possible to divide the primary
from the secondary PCs. This is the premise of most
methods based on PCA including ours.

Do
m×s and De

m×t are decomposed by PCA into two
sets of PCs, referred to as PCo and PCe, respectively.
The first few PCs, known as the primary, contain chem-
ical information and embedded noise, while the remain-
ing PCs, known as the secondary, basically account for
extracted pure noise [17]. Since the chemical informa-
tion contained in both Do

m×s and De
m×t is completely

sampled, the primary PCs comprising dominant chem-
ical information from the two sets have a significant
similarity. While noise contained in the two matrices is
undersampled, the secondary PCs from the two sets are
different. Therefore, by comparing the paired PCs from
PCo and PCe, the number of primary PCs containing
domain chemical information is readily obtained. This
number is equal to the number of chemical species in
the original data matrix. Correlation coefficients are
calculated between paired PCs from the two sets. For
example, the ith pair are pci

o and pci
e. A correlation

coefficient, with a value of above 0.9, indicates that the
two PCs are similar in terms of chemical information.
The 0.9 threshold is an empirical setting.

The SRISM method comprises the following three
steps (see FIG. 1):

(i) DownsampleDm×n by choosing its column vectors
in an interlacing manner, then constructDo

m×s with the
odd column vectors and De

m×t with the even column
vectors.

(ii) Decompose Do
m×s and De

m×t by PCA into two
sets of PCs referred to as PCo and PCe, respectively.

(iii) Calculate the correlation coefficients between the
paired PCs from PCo and PCe, then determine the
number of chemical species with a 0.9 threshold.

It is noted that SRISM might yield overestimations if
the data matrix contains large amount of low-frequency
interferences, e.g. sloping baselines and strong fluores-
cent backgrounds in Raman spectra. In such cases, the
original data should be preprocessed with baseline re-
moval or background correction.
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FIG. 1 Steps using SRISM to determine the number of chemical species. d1, d2, d3, d4, d5, d6, · · · , dn−1, dn are the
column vectors of Dm×n. All the odd column vectors (d1, d3, d5, · · · , dn−1) form an odd interlaced submatrix Do

m×s, and
all the even column vectors (d2, d4, d6, · · · , dn) form an even interlaced submatrix De

m×t. pc1
o, pc2

o, · · · , pcpo are the
principal components of submatrix Do

m×s, and pc1
e, pc2

e, · · · , pcqe are the principal components of submatrix De
m×t.

III. EXPERIMENTAL METHODS

The proposed SRISM method was extensively
evaluated using simulated gas chromatography coupled
with infrared spectroscopy (GC-IR), experimental high-
performance liquid chromatography coupled with diode
array detector (HPLC-DAD), experimental pulsed field
gradient nuclear magnetic resonance (NMR) datasets,
and open-path Fourier transform infrared (OP/FT-IR)
spectra obtained from atmospheric monitoring. All pro-
grams were written in MATLAB 2017a (The Math-
Works, Inc., Natick, MA).

A. Simulated datasets

Based on Beer’s law, three-component GC-IR
datasets of diethyl ether, ammonia, and beta pro-
piolactone were emulated with IR spectra and
chromatograms. The IR spectra were within wavenum-
ber range of 750−1250 cm−1 (FIG. 2(a)). The chro-
matograms were generated using a Gaussian function
spanning a 10 min period (FIG. 2(b)). The size of all
simulated data matrices is 50-by-2075.

B. Experimental datasets

1. HPLC-DAD datasets

Each rare-earth oxide (99.95%) was dissolved
in hydrochloric acid solvent (1.0 mol/L) yielding
a stock solution (1.000 g/L). A three-component
mixture solution contained Yb (2.0 mg/L), Tm
(2.0 mg/L), and Er (2.0 mg/L) (mixture 1). A six-
component mixture solution was prepared contain-

FIG. 2 (a) Spectra and (b) chromatograms of three chemical
components used to simulate GC-IR data matrices. Dashed,
black, and gray lines are spectra or chromatograms of diethyl
ether, ammonia, and β-propiolactone, respectively.

ing Lu (1.5 mg/L), Yb (1.0 mg/L), Tm (3.0 mg/L),
Er (2.5 mg/L), Ho (3.8 mg/L), and Tb (2.1 mg/L)
(mixture 2). Another six-component mixture solu-
tion contained Lu (1.0 mg/L), Yb (2.0 mg/L), Tm
(3.5 mg/L), Er (3.2 mg/L), Ho (2.4 mg/L), and Tb
(2.1 mg/L) (mixture 3). The three rare-earth mix-

DOI:10.1063/1674-0068/31/cjcp1805115 c⃝2018 Chinese Physical Society



Chin. J. Chem. Phys., Vol. 31, No. 6 Using SRISM to Determine the Number of Chemical Species 821

tures were analyzed with a FL 2000 HPLC Worksta-
tion (Spectra-Physics, USA) at multiple wavelengths
of the Ultraviolet-visible (UV-Vis) spectroscopy detec-
tor (Spectra-Physics, USA) and 5 nm intervals. A 1-
dodecanesulphonate solution (0.01 mol/L) was used as
hydrophobic ion reagent to pretreat the reversed-phase
column. Two mobile phase solutions were prepared con-
taining 0.25 mol/L lactic acid (pH=2.5 and 4.5 respec-
tively). A 0.0001 mol/L post-column reaction reagent
of arsenazo III (Fluka Chemie, Switzerland) was pre-
pared with redistilled water. All solutions were fil-
tered through a 0.25 µm membrane filter. The three-
component rare-earth mixture 1 was eluted between the
4.5−9.9th min of a 15 min sampling duration at 0.344 s
intervals, and was recorded within a 580−720 nm wave-
length range as Dataset 1. The two six-component
rare-earth mixtures 2 and 3 were detected between the
3.9−12.0th min of a 12 min sampling duration at 0.302 s
intervals, and were recorded within wavelength ranges
from 600 nm to 720 nm as Datasets 2 and 3, respec-
tively.

2. Pulsed field gradient NMR datasets

A three-component mixture containing glucose
(10.65 mg), sucrose (12.82 mg), and maltotriose
(17.13 mg) was prepared in D2O (460 µL) (mixture 4).
A six-component mixture was produced containing
methanol (3 µL), ethanol (4 µL), 1-butanol (8 µL),
sorbitol (15.59 mg), lysine (14.99 mg), and sucrose
(21.13 mg) in D2O (460 µL) (mixture 5). Pulsed field
gradient experiments were performed at 25 oC using
a Bruker Avance 600 MHz spectrometer. The Bruker
pulse sequence “ledbpgppr2s” was used with 0.20 s
(mixture 4) and 0.18 s (mixture 5) diffusion delays and
a net diffusion-encoding pulse width (δ) of 2 ms. Wa-
ter signal was suppressed by presaturation. A spec-
tral width of 20 ppm was used to produce 16000 com-
plex data points with 8 scans for each gradient strength
along with 8 (mixture 4) and 4 (mixture 5) dummy
scans. An acquisition time of 1.36 s was used with
a relaxation delay of 1.00 s. 64000 (mixture 4) and
32000 (mixture 5) complex data points were Fourier
transformed using an exponential window with a line
broadening value of 1.0 Hz (mixture 4) and 0.3 Hz (mix-
ture 5). For linear space in a nominal gradient, 16
gradient strengths ranging between 1.465 and 47.865
G/cm were used for the three-component mixture 4. All
compounds in mixture 4 have significant signals in the
chemical shifts within the value of 6.000−2.8000 ppm
designated as Dataset 4. 32 gradient strengths ranging
from 1.445 to 47.187 G/cm were collected for the six-
component mixture 5 (Datasets 5−8, see Section IV).

3. OP/FT-IR datasets

OP/FT-IR spectra were measured around animal
farms using two types of spectrometers (System A: Air-

Sentry, Cerex Monitoring Solutions, Atlanta, GA and
System B: MDA Corp., Atlanta, GA). A Global source
was coupled with an interferometer (Bomem Michel-
son 100, Canada), a splitter and a 25 cm expand-
ing telescope. The expanded beam was reflected at
a 100−200 m distance. The reflected beam was mea-
sured by a mercury-cadmium-teluride detector. Inter-
ferograms, with a resolution of 1 cm−1, were recorded
continuously at an interval of several seconds. The in-
terferograms were transformed to absorption spectra us-
ing 8 zero-filling factors and medium Norton-Beer func-
tion for apodization. The absorption spectra were then
corrected through wavelet transformation to reduce the
effect of baseline shift. Absorption spectra with a
wavenumber ranging from 750 cm−1 to 1250 cm−1 were
used in our calculations. The spectra contained infor-
mation that included both water and ammonia. Four
datasets were collected over years as Datasets 9−12 (see
Table S1 in supplementary materials).

IV. RESULTS AND DISCUSSION

A. Three-component simulated datasets

All the GC-IR datasets were simulated with various
levels of interference, such as signal overlapping, minor
component, and noise.

1. Use of SRISM to determine the number of chemical species

Four GC-IR data matrices were simulated with 0.1%
of homoscedastic noise added in four different runs. The
data matrices were analyzed by SRISM (FIG. 3). In
each case, the correlation coefficients were close to 1 for
the first three PCs. SRISM analysis showed that the
number of chemical species was 3 for each data matrix,
which was the correct estimation of the chemical species
number in the simulated dataset.

2. Effects of chromatographic overlap, strength, and noise

Chromatographic overlap was simulated by moving
the chromatographic peak of ammonia toward that of
diethyl ether. Variations of chromatographic strength
were simulated by decreasing the chromatographic peak
height of ammonia. Homoscedastic or heteroscedastic
noise was added to all data matrices. Corresponding
data matrices were analyzed by SRISM and other com-
monly used methods. SRISM alone dealt well with the
four types of interference of high levels and gave the
correct number of chemical species (see Table I).

In Tables S2 and S3 (see supplementary materials), it
can be seen that mathematical methods generally pro-
duced an accurate number of chemical species. SRISM,
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FIG. 3 Correlation coefficients of paired PCs calculated from SRISM for four simulated GC-IR data matrices with 0.1% of
homoscedastic noise added in four different runs. The red lines mark the 0.9 threshold.

OPALS, and DRAUG were able to detect the most over-
lapped or minor components. Empirical and statistical
methods performed well when interference levels were
low but they tended to underestimate numbers when
interference levels were high.

The results shown in Tables S4 and S5 (see supple-
mentary materials) indicate that SRISM has a strong
tolerance for the two types of noise present at each level
and is able to correctly determine the number of chem-
ical species. Most of other analytical methods were
adversely affected by high noise levels and tended to
over- or under-estimate the number of chemical species.
OPALS and MS were capable of successfully dealing
with homoscedastic noise, but had more difficulty pro-
ducing the correct number of chemical species in pres-
ence of heteroscedastic noise. This was also true with
IND, DRMAD, and DRAUG. These methods were un-
able to deal with added levels of heteroscedastic noise
because empirical IND and statistical DRMAD and
DRAUG are based on the assumption that noise is
specifically or normally distributed [17]. By contrast,
SRISM analysis depends upon frequency differences be-
tween chemical information and noise and, therefore, is
free of such assumptions. Thus, it performs much better
regardless of the noise type. Based on frequency differ-
ences, NPFPCA also estimated the correct number of
chemical species in the presence of high-level noise.

B. Experimental datasets

FIG. S1 (see supplementary materials) shows the
three-dimensional (3D) plot and chromatograms of
three HPLC-DAD Datasets 1−3. FIG. S1 (a), (b) (see
supplementary materials) show severe pump oscillations
in the original Dataset 1 which consequently dis-
torted chromatographic information. To reduce the
severe instrument aberrations, chromatograms ranging
625−720 nm from the original Dataset 1 were used for
later calculations. Pump oscillation was still present at
a high level in Dataset 1. Dataset 1 size is 932-by-20.
In FIG. S1 (c, d) (see supplementary materials), high-
level instrument aberrations appeared in Datasets 2
and 3. Also present were high signal overlap levels
(FIG. S1 (c, d) in supplementary materials) in both

Datasets 2 and 3 as evidenced by four distinct and one
minor chromatographic peaks for the corresponding six-
component mixtures. The sizes of Datasets 2 and 3 are
1600-by-25. The numbers of chemical species for three
HPLC-DAD Datasets 1, 2, and 3 are 3, 6, and 6, re-
spectively.

Compared to spectra of GC-IR and HPLC-DAD,
NMR spectra contain smaller high-frequency signals.
Downsampling in decay-profile domain was carried out
to avoid undersampling any of the chemical informa-
tion. The three components mixture of glucose, sucrose,
and maltotriose was detected and recorded as 10470-by-
16 Dataset 4. The six-component mixture of methanol,
ethanol, butanol, sorbitol, lysine, and sucrose was ana-
lyzed. The corresponding experimental NMR data ma-
trix contained problematic noise and collinearity. To
more easily analyze the six-component mixture, four
data matrices were obtained using NMR spectral seg-
ments within chemical shift ranges of 3.280−3.240 ppm
(262-by-32 Dataset 5, methonal response), 2.000−1.149
ppm (5570-by-32 Dataset 6, butanol and lysine re-
sponse), 3.864−3.700 ppm (1074-by-32 Dataset 7, su-
crose and sorbitol response) and 3.864−3.605 ppm
(1696-by-32 Dataset 8, sucrose, sorbitol and lysine re-
sponse). Therefore, the resulting chemical species num-
ber accounting for the five NMR Datasets 4, 5, 6, 7, and
8 were 3, 1, 2, 2, and 3, respectively.

1. Use of SRISM to determine the number of chemical species

The SRISM results for the experimental data matri-
ces are shown in FIG. 4. Eight plots demonstrate that
the correlation coefficients of the first few paired PCs
were close to 1 and higher than the 0.9 threshold. Corre-
lation coefficients for the remaining PCs were all below
threshold. The numbers of chemical species were deter-
mined to be 3, 6, 6, 3, 1, 2, 2, and 2, which are consistent
with the actual numbers of chemical species except for
Dataset 8. The SRISM results exhibit clear separation
between the primary and secondary PCs. The remark-
able difference between the two sets of PCs stems from
their inherent frequency differences. SRISM was able
to distinguish such differences to successfully separate
the two types of PCs. In summary, this method pro-
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TABLE I Numbers of chemical species determined by three categories of analysis methods using three-component simulated
GC-IR datasetsa with various types of interference.

Interference type Mathematical Empirical Statistical

SRISM OPALS RESO NPFPCA IND REFAE MS F-test DRMAD DRAUG

Signal overlappingb 3 3 2 2 2 2 2 2 2 3

Minor componentc 3 3 2 3 2 3 3 2 2 3

Homoscedastic noised 3 3 2 3 2 2 3 2 2 3

Heteroscedastic noisee 3 5 3 3 33 2 4 3 36 36
a The default values of chromatographic peak position were 3rd min (diethyl ether), 4.283th min (ammonia), and 7th min
(beta propiolactone). The default values of relative chromatographic peak height were 1. The default level of homosceda-
stic noise was 0.1% as a percentage of the maximum signal strength. The default level of heteroscedastic noise was 0 as a
percentage of the square root of respective signal strengths.
b The chromatographic peak position of ammonia was set as 3.005th min.
c The relative chromatographic peak height of ammonia was set as 0.003.
d The level of homoscedastic noise was set as 5%.
e The level of heteroscedastic noise was set as 1.5%.

FIG. 4 Correlation coefficients of paired PCs calculated from SRISM for eight experimental datasets. (a)−(c) HPLC-DAD
datasets. (d)−(h) NMR datasets. The red lines mark the 0.9 threshold.

duced accurate numbers of chemical species in presence
of high-level instrument aberrations, signal overlapping
and collinearity.

3D plots of the NMR experimental Datasets 4 and
8 are shown in FIG. S2 (see supplementary materials).
The high-level collinearity for the decay-profile made
it more difficult to determine the number of chemical

species especially for pulsed field gradient NMR spectra.
The proposed SRISM method was able to successfully
process multiple-component NMR datasets producing
clear determination (FIG. 4 (d)−(g)) with a high level
of collinearity. FIG. 4(h) illustrates that SRISM analy-
sis showed a chemical species number of 2 for the three-
component Dataset 8. Extremely similar decay-profiles
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TABLE II Numbers of chemical species determined by three categories of methods for experimental HPLC-DAD and NMR
datasets.

Dataset Mathematical Empirical Statistical Referencesa

SRISM OPALS RESO NPFPCA IND REFAE MS F-test DRMAD DRAUG

Dataset 1 3 6 3 4 5 2 3 4 5 4 [3]

Dataset 2 6 6 4 6 7 5 4 7 8 7 [6]

Dataset 3 6 6 5 6 8 5 5 6 8 6 [6]

Dataset 4 3 8 2 3 7 3 1 6 10 4 [3]

Dataset 5 1 5 1 1 15 1 1 12 12 2 [1]

Dataset 6 2 5 2 2 9 2 2 8 11 6 [2]

Dataset 7 2 5 2 2 15 2 2 8 14 3 [2]

Dataset 8 2 6 2 2 15 2 2 11 16 5 [3]
a The real number of chemical species in the corresponding mixtures.

for sorbitol and lysine account for this incorrect estima-
tion.

2. Comparison among three categories of methods

The eight experimental data matrices were also an-
alyzed by several other commonly used methods to
determine the number of relevant chemical species.
The results (Table II) show that SRISM determined
the correct number of chemical species for 7 out of
8 cases, achieving the highest accuracy for any of
the analytical methods tested. SRISM appeared to
perform well in the presence of high interference lev-
els of low-frequency pump oscillation and signal over-
lapping in Datasets 1−3. These types of high-level
interference were not adequately handled by other
methods. SRSIM, NPFPCA and REFAE were able
to deal with the high-level collinearity in the three-
component Dataset 4, and the others cannot yield reli-
able results (see FIG. S3 in supplementary materials).
Based on frequency differences, RESO, REFAE and
MS performed well with some datasets, but tended
to yield underestimations when dealing with compli-
cated multiple-component datasets like those seen in
Datasets 2 and 3. IND, F-test, DRMAD and DRAUG
were reported to offer surprisingly good results when
noise levels have an assumed or normal distribution
in other studies [17]. However, they tended to over-
estimate the number of chemical species in the pres-
ence of instrument aberrations, signal overlapping and
collinearity in the eight actual datasets. All methods
failed for Dataset 8 in the presence of severe collinear-
ity.

These methods were further evaluated in terms of cal-
culation time. The results are listed in Table III. The
size of data matrices varies from 932-by-20 (Dataset 1)
to 5570-by-32 (Dataset 6). SRISM completed the cal-
culation in a few milliseconds even for the largest
Dataset 6. The calculation time of SRISM did not in-
crease significantly with the size of dataset. SRISM was

always one of the fastest methods based on the length of
computational time listed in Table III. The other math-
ematical methods of analysis were more time-consuming
for complex procedures.

3. Application of SRISM to infrared spectra of atmospheric
monitoring

OP/FT-IR spectra were continuously measured in
four sessions of atmospheric monitoring. The spectra
within a wavenumber ranging 750−1250 cm−1 feature
information of water and ammonia. Water is always
a significant component in air and produces strong in-
frared absorption [31]. In order to detect ammonia dur-
ing the monitoring session, 10 groups of consecutive
spectra were prepared and a matrix was constructed
from each group to determine the chemical species num-
ber. We also used partial least square (PLS) to cal-
culate the ammonia concentration of each spectrum.
In FIG. 5, the number of chemical species was deter-
mined by SRISM as 1 when the concentration of am-
monia was lower than 0.1 ppm. When the ammonia lev-
els exceeded 0.1 ppm, the number of chemical species
determined by SRISM was considered to be 2. Tak-
ing water into consideration for both cases, the other
chemical species detected was ammonia. In most cases,
SRISM was sensitive to the presence of ammonia when
concentrations were over 0.1 ppm. PLS provided re-
liable results when the concentration of ammonia was
higher than 0.1 ppm, but had larger quantitative errors
when dealing with spectra containing less ammonia [32].
Therefore, SRISM is a useful tool for qualitatively at-
mospheric monitoring that provides a rapid response to
the presence of ammonia without time-consuming cali-
bration and is independent of established models.

The OP/FT-IR Datasets 9−12 were also ana-
lyzed in 10 groups of spectra by other methods (see
Tables S6−S9 in supplementary materials). In real at-
mospheric monitoring data sets, there inevitably exist
wind, dust and rain which consequently produce un-
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TABLE III Calculation timea (in unit of s) of three categories of methods used for analyzing experimental HPLC-DAD and
NMR datasets.

Dataset Mathematical Empirical Statistical

SRISM OPALS RESO NPFPCA IND REFAE MS F-test DRMAD DRAUG

Dataset 1 0.0007 0.1 0.004 0.08 0.0005 0.0005 0.09 0.001 0.0007 0.1

Dataset 2 0.001 0.2 0.01 0.2 0.001 0.0009 0.2 0.002 0.001 0.2

Dataset 3 0.001 0.2 0.01 0.2 0.001 0.0009 0.2 0.002 0.001 0.2

Dataset 4 0.004 2 0.02 0.8 0.003 0.003 0.6 0.004 0.004 0.5

Dataset 5 0.0007 0.03 0.006 0.08 0.0006 0.0007 0.03 0.002 0.001 0.2

Dataset 6 0.006 1 0.04 1 0.005 0.005 0.6 0.006 0.005 0.8

Dataset 7 0.001 0.1 0.01 0.2 0.001 0.001 0.1 0.003 0.001 0.2

Dataset 8 0.002 0.2 0.02 0.3 0.001 0.002 0.2 0.003 0.002 0.3
a Averages of 100 runs.

FIG. 5 The number of chemical species in OP/FT-IR Datasets 9−12 determined by SRISM and concentration of ammonia
calculated by PLS against time. The black dashed lines with triangle markers indicate chemical species number determined
by SRISM. The dotted grey lines with square markers denote the maximum ammonia concentration (in unit of ppm) of 10
spectra calculated by PLS. The red lines denote the concentration of 0.1 ppm. The dotted grey lines and red lines are based
on 10 logarithms of ammonia concentration for clarity.

stable OP/FT-IR results and flawed data [33, 34]. In
spite of the fact that Datasets 9−12 were measured un-
der different conditions and with different instruments,
SRISM yielded a correct number of chemical species
in most cases. F-test showed similar efficacy for atmo-
spheric monitoring and determined the chemical species
number to be 3 for Dataset 9 containing high ammonia
concentrations. By contrast, REFAE and MS underes-
timated the number of chemical species. Other methods

tended to yield inconsistent chemical species numbers
when the concentration of ammonia varied. Therefore,
SRISM is a fast and powerful tool for atmospheric mon-
itoring.

V. CONCLUSION

In this report, the SRISM method is proposed as a
mathematically rigorous, computationally efficient, and
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readily automated technique for determining the num-
ber of chemical species in a mixture. Its performance
was evaluated using both simulated and experimental
datasets. The results show that it tolerated various
types of interferences such as signal overlapping, minor
components, homoscedastic and heteroscedastic noise,
instrument aberrations and collinearity to yield accu-
rate results. SRISM utilizes frequency differences to
differentiate between chemical information and noise. It
has a large number of potential of application for var-
ious datasets, because chemical information is always
completely sampled and noise is not. This method re-
quires no user intervention to determine the number of
chemical species, which makes it both objective and ef-
ficient. Its reliable results are useful for qualitative and
quantitative analyses of mixtures.

Supplementary materials: 3D plots of experimen-
tal datasets, experimental chromatograms, and re-
sults of three categories of methods are available in
FIGs. S1−S3 and Tables S1−S5.
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