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a b s t r a c t 

Monitoring atmospheric pollutants has raised worldwide concerns in last decades, due to deterioration of air 
quality. Multivariate regression methods have gained extensive applications in calculating and monitoring con- 
centrations of air pollutants, for example ammonia (NH 3 ), using Open-Path Fourier Transform Infrared (OP/FT- 
IR) spectra data. However, the prediction accuracy of multivariate regression models is interfered heavily by the 
dominant and omnipresent absorption bands of atmospheric H 2 O vapor and CO 2 in OP/FT-IR spectra. Hence, 
a new method of variable selection, referred to as window of scanning and removing interference information 
(WSRII), is developed to remove interference data of OP/FT-IR spectra. The key of WSRII is to confirm infor- 
mative variables according to the change of root mean square error of calibration in the partial least squares 
regression (PLSR) model after removing a spectral window. If the change is greater than 0, the spectral window 

is reserved as an informative information window. Then, the new matrixes of spectral data are reconstructed by 
using the informative information windows, which are selected by changing position of the spectral window in 
full wave number range. Based on this, a PLSR model is rebuilt to predict accurately NH 3 concentrations. The 
results showed that the proposed method was able to eliminate uninformative information and improved predic- 
tion accuracy of PLSR models. Moreover, this process of variable selection is significantly potential to improve 
prediction accuracy of PLSR model for monitoring atmospheric NH 3 concentrations in real time. 
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. Introduction 

The pollutants in the atmosphere, such as ammonia (NH 3 ), methane
CH 4 ) and fine particulate matter (PM 2.5 ), have raised worldwide con-
erns in last decades [1–3] . Many researchers reported that the air pol-
utions were related to increasing of lung cancer, chronic obstructive
ulmonary disease and respiratory disease [4–6] , which posed a seri-
us threat to human health. NH 3 is the only alkaline molecule in the
tmosphere, which is easy to react with acid group for example SO 4 

2 − ,
o generate ammonium salt particles [7] . So, NH 3 in the atmosphere is
ommonly regarded as a precursor to form non-organic PM 2.5 , which is
ble to cause severe hazard for respiratory system of human body [8] . A
tudy showed airborne PM 2.5 had a positive relationship with increasing
espiratory or cardiovascular disease [9] . And then the deposited PM 2.5 

aused a series of environmental problems such as soil acidification and
nhances eutrophication [ 10 , 11 ]. Thus, it is of great significance for hu-
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an health to monitor and calculate NH 3 emission of atmosphere in real
ime. 

Open-Path Fourier Transform Infrared (OP/FT-IR) spectrometry is
idely used to monitor emissions of pollutant molecules, such as NH 3 ,
H 4 and nitrous oxide (N 2 O), in the atmosphere [12–14] . The reports re-
ealed that some atmospheric pollutant molecules, from various sources
uch as industrial plants and agricultural operations, were monitored
uccessfully via OP/FT-IR spectrometry [15–17] . Due to the potential to
xtract meaningful chemical information, multivariate regression meth-
ds had been used for quantitative analysis of OP/FT-IR spectra data
 18 , 19 ]. Therein, partial least squares regression (PLSR) is a very pop-
lar multivariate regression method, which was applied to multicom-
onent spectral analyses especially in vibrational spectroscopy, for in-
tance infrared (IR) spectroscopy and Raman spectroscopy [20] . How-
ver, the interferences from other atmospheric molecules are always
dded to OP/FT-IR spectra, which seriously disturbs the stability and
ccuracy of PLSR models. For example, the dominant and omnipresent
bsorption bands of H O vapor in IR spectra and moment-changing tem-
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erature make data analysis rather difficult [21] . Thus, the reducing
nterferences in OP/FT-IR spectroscopy is of the essence to rapid and
ccurate monitoring gaseous molecules in the atmosphere. 

Variable (or wavelength) selection is a critical step to eliminate in-
erferences in multivariate analysis for datasets with many variables es-
ecially when number of samples is much smaller than the number of
ariables [22] . This technique is always used for the researches of re-
oving uninformative variables in near IR and Raman spectroscopies

23–26] . It always aims on three aspects: (1) to improve the prediction
erformance of a multivariate analysis model, (2) to build a faster model
y reducing dimensionality of data, which can reduce training and uti-
ization time, and provide more cost-effective predictors, and (3) to give
 better understanding and interpretation for measured data [ 27 , 28 ].
p to now, many variable selection methods have been employed to

mprove analytical performance in model of multivariate regression by
educing uninformative information, such as Monte Carlo uninforma-
ive variables elimination (MCUVE) [29] , genetic algorithm (GA) [30] ,
uccessive projections algorithm (SPA) [31] , and iteratively retains in-
ormative variables (IRIV) [32] . However, these methods of variable
election are always complicated to perform and difficult to implement.
herefore, developing a simple and actualized variable selection method

s essential for reducing interference information in OP/FT-IR spectra. 
In this work, a new method of variable selection, referred to as win-

ow of scanning and removing interference information (WSRII), is pro-
osed for reducing interference data of OP/FT-IR spectra to improve the
rediction performance of PLSR model for NH 3 in the atmosphere. A
alibration set containing 100 OP/FT-IR spectra was used for training
LSR model and a validation set containing 30 OP/FT-IR spectra was
sed for testing prediction performance of PLSR model. It was found
hat the proposed method could improve obviously the prediction ac-
uracy of the PLSR model for NH 3 concentrations of atmosphere. How-
ver, the relative errors of prediction concentrations were large in low-
oncentration range, which was due to that PLSR model in single cal-
bration set couldn’t fit the over wide concentration range, ultimately
esulting in a deviation of the Lambert-Beer’s law. In this case, a data of
ingle calibration set with over wide concentration range was divided
nto data of two calibration sets in low concentration range and high
oncentration range. Then, the two calibration sets were further used
or evaluating performance of the proposed method and these results
howed the WSRII could improve prediction accuracy of PLSR model.
herefore, the proposed method of variable selection is prospective to
e used in rapid and accurate monitoring and calculating NH 3 concen-
rations of atmosphere in real time. 

. Measurement and data processing 

.1. Experiment 

OP/FT-IR spectra were measured several years ago in southern
daho with the Northwest Irrigation and Soil Research Laboratory of
he United States Department of Agriculture, which was in a coopera-
ive project for monitoring gaseous emissions around animal farms. The
P/FT-IR spectrometer was manufactured by MDA Corp. (Atlanta, GA)
nd incorporated a Bomem Michelson 100 interferometer, a 31.5 cm
elescope, a cube-corner array retro-reflector, and a Sterling engine-
ooled mercury cadmium telluride (MCT) detector. The interferograms
ere measured with a resolution of 1 cm 

− 1 , then corrected for the non-
inear response of the MCT detector. The spectra were computed by fast
ourier transform (FFT) from interferograms with a zero-filling factor of
 and medium Norton-Beer (MNB) apodization function [33] . Spectral
ata in the region from 1250 to 750 cm 

− 1 was used in predicting con-
entrations of NH 3 . The manipulation of spectra and data processing
ere done using MATLAB 7.10 (2010) (The Math Works Inc., Natick,
A) on the Windows 7 operating system. 
2 
.2. Calibration set and validation set 

The calibration set to train PLSR model contains 100 OP/FT-IR spec-
ra data in the spectral range of 1250–750 cm 

− 1 and the concentrations
f NH 3 are nearly evenly distributed over the range of 0–1400 ppm-m.
he data in calibration set firstly was measured as interferograms and
hen the interferograms were calculated to absorption spectra by using
ourier transform (FT). Further, an iterative procedure was used to cal-
ulate accurately the concentrations of NH 3 as standard values (SV),
hich was described in reference [33] . Finally, the baseline of spectra
ata in the calibration set was adjusted using wavelet transform. The
alidation set to test PLSR model contains 30 OP/FT-IR spectra data
nd the concentrations of NH 3 are in the same range as the calibration
et. The validation spectra were processed in the same way as calibra-
ion set. The original spectra of calibration and validation were plotted
n Fig. S1. The reconstructed spectra of calibration and validation set
fter WSRII were shown in Fig. S2. 

.3. Theory and algorithm 

The multivariate regression analysis of OP/FT-IR spectra is based on
he Lambert-Beer’s law. The indirect linear model in multicomponent
pectral analysis is as follows: 

 = 𝑿 ⋅ 𝐛 + 𝐞 (1) 

Where X is an m -by -n matrix of m spectra. m and n represent the
umbers of samples and wavelength or wave number points, respec-
ively. C is an m -by-1 vector of sample concentrations. Vectors e and b
epresent the error vector and the vector of regression coefficient with
 elements, respectively. In order to solve Eq. (1) for vector b , PLSR

s used. After vector b is obtained, a PLSR model is ready to calculate
oncentrations of unknown samples. 

In a PLSR model, data matrix X is resolved with the assistance of C to
oadings and scores matrices. The scores matrix T is used in regression
hat is illustrated as the following equations. 

 = 𝑻 ⋅ 𝑷 + 𝑬 (2) 

 = 𝑻 ⋅𝑸 + 𝑭 (3) 

Where P and T denote the loadings and scores matrices for X , respec-
ively. Q refers to the loading vector for C . F and E are the residuals for
 and X , respectively. 

In the algorithm of WSRII, the process of leave-one-out cross valida-
ion in data of calibration set was firstly carried out to determine the
actor number for PLSR model. Then, a PLSR model with a selected fac-
or number was trained using data of calibration set ( X and C ) in the
hole wave number range of 1250–750 cm 

− 1 . The root mean square er-
or of calibration (RMSEC) was calculated and denoted as R 1 . Further,
 spectral window, which starts at the i -th wave number and ends at the
 i + h )-th wave number, is selected as the data cell for variable selection,
here h is the size of spectral window. The matrix data of the selected

pectral window was removed from matrix X and the residuary data of
 was used for another PLSR model. The RMSEC was calculated and
enoted as R 2 . On the previously selected factor number, the value of
 2 was compared with R 1 . When the values of R 2 is greater than R 1 , the
elected spectral window is reserved as an informative window for PLSR
odel, otherwise, it is deleted (Fig. S3). In wave number range of 1250–
50 cm 

− 1 , the start point of wave number i of selected spectral window
oved h cm 

− 1 at a time and a loop was carried out to collect all informa-
ive information windows by comparing values of R 1 and R 2 . The new
atrices of calibration and validation sets were reconstructed to use the

pectral data of informative information windows. Further, a new PLSR
odel was built with the reconstructed calibration and used in calculat-

ng NH 3 concentrations of unknown samples. It is noteworthy that the
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Fig. 1. RMSEC in different size of spectral window. 
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Table 1 

Predicted results of PLSR model and PLSR model after WSRII model of using 
measured OP/FT-IR Data. 

concentration range (ppm-m) factor number RMSEV (ppm-m) 

PLSR model 0–1400 5 17.24 
0–600 10 9.64 
600–1400 4 

PLSR model 

after WSRII 

0–1400 4 14.45 
0–600 8 6.43 
600–1400 3 
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roposed method does not use extra parameters for variable selection
nd exclusively based on the calculated values of RMSEC to eliminate
nterference information. The proposed WSRII is readily comprehensi-
le and easy to implement compared with most methods of variable
election. 

. Results and discussion 

.1. Investigation of size of spectral window 

The effect from size of spectral window (or h ) was studied firstly
n this work. On the one hand, an overlarge size makes the process
f variable selection very rough. It leads to misjudgments where some
nformative information is included in an uninformative window and
liminated. On the other hand, if the size of spectral window is small,
he process of variable selection is time-consuming and complicated for
raining model. Therefore, an appropriate window size is essential to
ariable selection in this work. As shown in Fig. 1 , the root mean square
rror of calibration (RMSEC) varies with size of spectral window. It can
e found that the accuracy of prediction gets worse, if the size of spectral
indow is either smaller than 2 cm 

-1 or larger than 4 cm 

-1 . Therefore,
he size of spectral window in this work was set as 2 cm 

− 1 . 

.2. Criterion of eliminating uninformative variables 

The criterion of eliminating uninformative variables is crucial in the
rocess of variable selection. If the criterion is too rigid, some informa-
ive information might be removed improperly. However, if the crite-
ion is over tolerant, many uninformative variables might be reserved
nd subsequently damage the stability and accuracy of the model. In this
ork, we put forward a criterion with definite physical significance for
stimating informative information, which did not need to add an extra
arameter in variable selection. As shown in Fig. S3, the R 1 (red line)
as regarded as the threshold to variable selection. If value of R 2 was
reater than R 1 , the error of prediction in PLSR model increases, which
eant the removed window is informative for PLSR model. If value of
 2 was smaller than R 1 , the error of prediction in PLSR model decreased,
hich illustrated the removed window was uninformative and disturbed

he prediction accuracy of PLSR model. So, in this process of variable se-
ection, the proposed criterion is simple, comprehensible and possesses
istinct significance. 
3 
.3. Comparison among informative window, IR of spectrum pure NH 3 and

tmosphere without NH 3 

To further illustrate the significance of the proposed process of vari-
ble selection, an OP/FT-IR spectrum of atmosphere without NH 3 , se-
ected informative spectra windows and the IR spectrum of pure NH 3 

ere shown in the Fig. 2 as a comparison. In Fig. 2 , to avoid too many
ata points affecting the effect of comparison, a continuous informative
indow was regarded as a dot. So, the x-coordinate of red dots rep-

esents the start wavenumber of the selected spectral windows, which
ontain a number of continuous wave numbers, and the y-coordinate
f red dots is the RMSEC. The comparison between the IR spectrum
f atmosphere without NH 3 ( Fig. 2 , black line) and the selected spec-
ra windows ( Fig. 2 , red dot) demonstrates that some interference in-
ormation was removed clearly from the spectrum, which also was
een in Fig. S2. The comparison between the selected spectra windows
 Fig. 2 , red dot) and the IR spectrum of pure NH 3 ( Fig. 2 , blue line)
hows that the spectral features of NH 3 was reserved in informative
indow. 

However, some wave numbers were reserved where water absorbs
trongly such as in the range of 750 ∼850 cm 

− 1 and 1150 ∼1250 cm 

− 1 .
uch wave numbers were probably useful in the PLSR model to deal with
nterfering water absorbance. In systems of multiple variables, multi-
ariable analysis is solving several independent equations. Although one
nknown variable (NH 3 concentration) is desired, the irrelevant infor-
ation of NH 3 is necessary for equation set. This reveals that irrelevant

nformation of NH 3 is not necessarily bad for the PLSR model. However,
he irrelevant information of NH 3 should not be too much, otherwise it
ecomes a significant interference. Hence, in this process of variable
election, some irrelevant information was removed from spectrum to
mprove the prediction accuracy of PLSR model and the other irrele-
ant information was reserved because these data was useful to solve
he equation set. 

.4. Building one model in 0–1400 ppm-m 

In order to evaluate the performance of the proposed variable selec-
ion method, a calibration set and a validation set were used for building
 PLSR model in the concentration range of 0–1400 ppm-m. Then, the
oot mean square error of validation (RMSEV) and relative errors of each
ample were used to quantitatively assess the prediction performance of
LSR regression model. 

In this work, the leave-one-out cross validation was firstly carried
ut in data of calibration set to estimate the factor number and the fac-
or number was always determined at the smallest value of prediction
esidual error sum of squares (PRESS). Therefore, the factor numbers
f the PLSR model and the one after WSRII were selected as 5 and 4
 Fig. 3 A and Fig. 3 B), respectively. Obviously, the factor number of the
LSR model after WSRII was smaller than the factor number of PLSR
odel, which was due to the removal of the uninformative information.

In Table 1 , the RMSEV value of PLSR model lowered from 17.24
o 14.45 after WSRII. This results showed that the proposed method
ould reduce prediction errors for atmospheric NH 3 concentrations. As
hown in Fig. 3 C, the predicted concentrations of the PLSR model were
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Fig. 2. Comparison of spectrum of atmosphere without NH 3 (black line), IR spectrum of pure NH 3 (blue line) and selected informative wave number (red dot). 

Fig. 3. (A) Results of cross validation of the PLSR 
model in 0–1400 ppm-m. (B) Results of cross valida- 
tion of the PLSR model after WSRII in 0–1400 ppm- 
m. (C) Comparison of prediction results for validation 
set in PLSR model and the one after WSRII using one 
calibration set. (D) Relative errors of validation set in 
0–1400 ppm-m. 
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ery close to the standard values. The result illustrated that PLSR model
ossess good accuracy for the prediction of atmospheric NH 3 concen-
rations. In Fig. 3 D, after WSRII, the most samples relative errors of
redicted concentrations in the PLSR model were reduced. It illustrated
hat the PLSR model after WSRII had better prediction results. There-
4 
ore, the proposed variable selection method has good performance to
mprove the accuracy of prediction. 

However, the relative errors in low concentration range (0–600 ppm-
), so far as the maximum value exceeding 0.7, are obviously greater

han relative errors in high concentration range (600–1400 ppm-m). It
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Fig. 4. (A) Comparison of prediction results and (B) relative errors for valida- 
tion set in PLSR model and PLSR model after WSRII using two calibration sets. 
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s possible that PLSR model in a single calibration set can’t fit over wide
oncentration range to result in a deviation of the Lambert-Beer’s law.
he similar problem had been reported in a previous report and it was
vercome by multiple calibration sets method [34] . Although the linear-
ty between concentration and absorbance deviates from Lambert-Beer’s
aw in this model, the proposed WSRII can decrease errors by eliminat-
ng uninformative information. 

.5. Building two models in 0–600 and 600–1400 ppm-m respectively 

In order to further improve prediction accuracy, the method of multi-
le calibration sets was used in training PLSR model. As shown in Fig. 3 C
nd Fig. 3 D, the relative errors was fairly small when the order of sam-
les was greater than 15. It was found that the concentration of the 15th
nd 16th sample were 531.46 ppm-m and 606.42 ppm-m, respectively.
herefore, the calibration set containing 100 spectra in concentration
ange of 0–1400 ppm-m was divided into two parts, i.e. a low concen-
ration set with 50 spectra in range of 0-600 ppm-m and a high con-
entration set with 50 spectra in range of 601–1400 ppm-m, for further
esearch. Based on this, prediction performance of the PLSR model af-
er WSRII was also evaluated using two calibration sets in two different
oncentration ranges. 

As shown in Table 1 , the value of RMSEV in the PLSR model de-
reased from 17.24 to 9.64 and the relative errors were decreased ob-
iously ( Figs. 3 D and 4 B, black bar) after using the method of multiple
alibration sets. This result showed that overlarge prediction errors, dis-
ussed in the previous section, was due to an over wide concentration
ange that results in a severe deviation from the linearity of Lambert-
eer’s law. In the model of two calibration sets, the factor number was
educed after WSRII, which indicated the proposed method could elim-
nate interference information. The value of RMSEV were lowered from
.64 in PLSR model to 6.43 in the PLSR model after WSRII, which illus-
rated that the proposed WSRII could improve further prediction accu-
acy of PLSR model. 

To further assess the property of WSRII in PLSR models of two cali-
ration sets, we compared the NH 3 concentrations of validation set sam-
les calculated by both the PLSR model and the one after WSRII. As
hown in Fig. 4 A, the predicted concentrations of PLSR model and the
odel after WSRII were more close to the standard values. This result

urther supported the previous assumption, which suggested over wide
oncentration range led to large errors in the calculated NH 3 concen-
rations. In Fig. 4 B, the relative errors of most samples were lowered
bviously in the low concentration range and the relative errors of val-
dation set samples were below 5%. These results showed that the pro-
osed method of variable selection can remove the interference data of
P/FT-IR spectra and improve the prediction accuracy of PLSR model
5 
or NH 3 concentrations in the atmosphere. It is obvious that the pro-
osed variable selection method possesses important potential in rapid
nd accurate monitoring of the atmospheric NH 3 concentrations. 

. Conclusion 

In this work, a new variable selection method, WSRII, is proposed
o improve the prediction accuracy of PLSR model for atmospheric NH 3 

oncentrations using OP/FT-IR spectra. The prediction performance of
he proposed method was evaluated by one calibration set and two cal-
bration sets of OP/FT-IR spectra, respectively. The value of RMSEV de-
reased significantly from 17.24 of the PLSR model to 6.43 of the model
fter WSRII. Meanwhile, relative errors of validation set samples were
educed below 5%. Therefore, the proposed WSRII can eliminate obvi-
usly interference data in OP/FT-IR spectra to improve prediction accu-
acy of PLSR model. It is noteworthy that the proposed method does not
ntroduce extra parameters in PLSR model for variable selection and is
eadily comprehensible compared with other ways. Thus, this process
f variable selection is significantly potential to monitor and calculate
H 3 emission of atmosphere in real time. 
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