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ABSTRACT: Principal component analysis (PCA) is a powerful tool to
process matrix-type data that is more and more common in analytical
chemistry, so the necessity to teach PCA becomes more and more
evident. Students can easily implement PCA with modern software, but
they need deep understanding of the theory to avoid misuses and
misinterpretations. However, the theory of PCA is fairly difficult. In order
to ensure effective teaching, we have designed a series of questions and
answers (Q&As) that begin with a daily life example and end at the core
logic of PCA. These Q&As form a heuristic chain for students to follow,
so that they can gradually approach and eventually comprehend the
theory of PCA. Once students are equipped with such a comprehension, it
is easy and natural to further teach PCA properties and applications. For
that purpose, we prepared four typical examples as well as in-depth discussions. Positive feedbacks from students confirm the
effectiveness of this approach.
KEYWORDS: Analytical Chemistry, Principal Component Analysis, Teaching PCA

1. INTRODUCTION
Principal component analysis (PCA) is a powerful tool to
process complex matrix-type data. It has been widely recognized
in various fields. A search on theWeb of Science (topic: principal
component analysis; database: Core Collection) shows 92,925
publications from 2013 to 2023, and the top five categories are
environmental sciences (11%), engineering electrical electronics
(10%), food science technology (7%), computer science
artificial intelligence (6%), and analytical chemistry (5%).
Modern instruments usually measure too many features for a

finite number of samples. The phenomenon that measured
features outnumber samples is referred to as curse of
dimensionality.1 The curse of dimensionality is more and more
common in analytical chemistry because of instrumental
advances, which necessitate methods of dimensionality
reduction such as PCA.
In analytical chemistry, PCA is applied to chromatography,2

molecular spectrometry,3,4 nuclear magnetic resonance,5 mass
spectrometry,6,7 imaging,8−11 and bioinformatics.12 Moreover, it
is the base of factor analysis methods.13 Such wide applications
encourage teachers to explore teaching PCA, even though it is
not included in the traditional course of analytical chem-
istry.14−24 Most explorations use various examples to demon-
strate the applications of PCA instead of focusing on teaching
the theory.
Since 2014 we started teaching PCA in a one semester course

entitled “Chemometrics” for fourth-year undergraduate and
first-year graduate students of chemistry. The number of

students was about 15 to 20 in the beginning and now reaches
70 with more graduate students. Students enrolling in the course
are required to have basic knowledge of calculus and linear
algebra, such as partial derivatives and matrix operations. In
2023, the Ministry of Education of China initiated a nationwide
project to reform higher education named the “101 Plan”. The
“101 Plan” of Chemistry includes PCA in the course of
Analytical Chemistry. Analytical chemistry is a compulsory
course in most Chinese universities for first- or second-year
students of chemistry who already have the prerequisite
knowledge.
Although we started teaching PCA a long time ago, it was not

until recently that we came up with an effective approach. In this
approach, students are given a question and then guided by the
teacher to form the answer that leads to another question. These
Q&As were elaborately designed in order to form a heuristic
chain. By following the chain, students gradually get insight into
PCA, from easy aspects to more difficult aspects and from
surface understanding to deep understanding. This approach is a
result of our explorative attempts.
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Our first attempt to teach PCA was naturally application-
focused. It was easy for the teacher because of many application
examples accumulated in the long history of PCA. It was also
easy for the students because user-friendly software implements
PCA with just a few mouse clicks. We observed noticeable
progress in the students who quickly learned how to perform
PCA, visualize results, and interpret conclusions. Such a success
is partly because we deliberately allocated more time to
applications rather than to the theory of PCA. A brief
introduction to the theory did save some time but resulted in
shallow understanding and consequent disadvantages. For
instance, students learned the well-known notion of dimension-
ality reduction by PCA but had difficulty in grasping the core;
they could recite the well-known sentence of “the f irst principal
component accounts for the most variance” but did not understand
the mechanism or the role of variance. In this way, students
learned PCA as a black-box. So, if at a later time they do not have
chances to use PCA, they will likely forget how to implement it,
and what they had learned would not change into knowledge to
strengthen their scientific thinking.
Our second attempt to teach PCA was an upgrade from the

first one, with emphasis on the theory. We prepared a complete
scheme to cover important aspects of the theory, but
unfortunately, the result was worse. Students told us that they
were quickly lost in expressions of linear algebra; even after they
managed to understand those, they found difficulties in grasping
the underlying logic. Students doubted the merits of pondering
on the theory; after all, they could easily perform PCA without
much understanding of it. Contrary to what we had planned, a
detailed lecture on the theory was no more effective than a brief
introduction.
The two aforementioned attempts created a dilemma in

teaching PCA; i.e., the theory should be taught in detail for deep
understanding, while linear algebra is an overwhelming obstacle.
After a while we realized that the theory could be effectively
delivered if the fundamental logic is sufficiently explained. Such
an explanation could be prepared in plain texts. Plain texts are
not as precise as linear algebra expressions, but they are readily
understandable, particularly with analogies that students are
familiar with in daily life. Once students understand the
fundamental logic of PCA, they would not resist linear algebra
expressions in the theory, because (1) the expressions represent
what they have already understood and (2) the expressions are
precise and concise. After students have sufficient knowledge of
the theory of PCA, further teaching its properties and
applications becomes easy. This method is consistent with the
teaching philosophy of Richard P. Feynman who proposed
avoiding definitions in the first lesson despite their importance,
and his words are “That is just an example of the dif ference between
def initions (which are necessary) and science. The only objection in
this particular case was that it was the f irst lesson.”25

2. TEACHING THE FUNDAMENTAL LOGIC OF PCA
THROUGH A Q&A BASED HEURISTIC CHAIN

PCA was invented by Karl Pearson in 190126 and independently
developed and named in 1933 by Harold Hotelling.27 Since
then, PCA has been gradually and widely applied in various
fields.
This brief introduction was meant not only to describe the

origin of PCA but also to lead to the first question of the
following Q&A chain naturally. The Q&A chain could be
conducted between the teacher and students or solely by the
teacher.

• Q: Why is PCA taught in the course of analytical
chemistry long after it was invented?

• A: Experimental data in analytical chemistry used to be
fairly simple, and did not need powerful tools like PCA to
process. The situation changed when advanced instru-
mentation, such as GC-MS, appeared and generated
matrix-type data. Matrix is the target of PCA.

• Q: Matrix sounds quite abstract to understand.
• A: It is, but we have a good helper. Suppose a score table
of m students who each have n scores, it is an m-by-n
matrix, and let’s denote it as Dm×n.

• Q: Dm×n seems abstract, but easy to understand when
associated with a real-world example. It is also easy to
process a score table, e.g., to calculate total scores. Does
such a calculation have any matrix-related meaning?

• A: Calculating total scores from score table Dm×n can be
concisely expressed with matrix multiplication Dm×nan×1,
where an×1 is an n-by-1 vector of all ones. Interestingly,
vector an×1 not only yields total scores, but also simplifies
Dm×n, given the fact that Dm×n has m × n values (the
original scores), whereas Dm×nan×1 has m values (the total
scores).

• Q:We have not noticed that calculating total scores also
means simplification, but it does make sense. When Dm×n
is simplified into Dm×nan×1, the number of values is
reduced from m × n to m. So, is there any consequent
information loss?

• A: You are right, there is information loss.
• Q: It has never occurred to us that calculating total scores
incurs information loss. Can we prevent such loss?

• A: Yes, we can. Do not calculate total scores, just use the
original score table, then there will be no information loss.

• Q: Is it a joke? How are we supposed to use the score table
directly?

• A: We cannot directly use the score table because of its
complexity, so we calculate total scores as a way to
simplify it. This natural operation reflects the core of PCA
that is called dimensionality reduction. Dimensionality
reduction essentially simplifies a data matrix that is too
complex to process directly.

• Q:Now we understand that simplification, or dimension-
ality reduction for that matter, is a necessary step to
process a complex data matrix. But the consequent
information loss still concerns us. How does PCA handle
this problem?

• A: Although information loss is inevitable, PCA could
keep as much information as possible. This feature also
earns its name, which suggests the ability to produce the
principal component of the original matrix.

• Q: While we are wondering how PCA could keep the
most information, we are also eager to know how you
measure the amount of information.

• A: Let’s look at an example (draw a horizontal line and a
random curve on the blackboard). We would say that the
curve has “more” information than the straight line;
moreover, the more the curve varies, the more
information it has.

• Q: It is reasonable to link the amount of information with
variation. Then, how is variation evaluated?

• A: Variation is usually evaluated with a statistical concept

named variance. Variance is defined as x x

n

( )

1
i
n

i
2

, where xi
represents one of the n values, and x̅ is the average.
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• Q: We seem to understand the logic of PCA now. PCA
simplifies data matrix Dm×n that is too complex to process
directly. The simplification is implemented bymultiplying
it with vector an×1, and the result Dm×nan×1 somehow has
the largest variance, which ensures the retention of the
most information. Is that right?

• A: You are totally right, and you already know enough to
understand some popular statements about PCA, such as
“Dm×nan×1 contains as much information as possible”,
“Dm×nan×1 accounts for the most variance”.

• Q: Vector an×1 plays a key role to keep the most
information, how can we obtain it?

• A: Vector an×1 is obtained through a rigorous mathematic
procedure, which is explained in section #3 of the
Supporting Information. At this moment, just keep in
mind that there exists such a vector, and it ensures that
Dm×nan×1 keeps the most information of Dm×n.

• Q: How about the information that is not kept in
Dm×nan×1?

• A: We find another vector, say bn×1, so that Dm×nbn×1
keeps the most of the rest of the information. We also say
that Dm×nbn×1 keeps the most information of Dm×n, and it
is irrelevant to Dm×nan×1. Dm×nan×1 is called the f irst
principal component (PC1), and Dm×nbn×1 is called the
second principal component (PC2). Interestingly, PCs are
also called score vectors, or scores. The percentage of the
information kept by a PC is the ratio of its variance over
the total variance of all PCs. The percentage can be
conveniently calculated with i

j
, where λi is the eigenvalue

corresponding to the ith PC. Explanations of eigenvalues
and eigenvectors were presented in section #3 of the
Supporting Information.

• Q: Is there a third PC, i.e., PC3? How many PCs are
there?

• A:The number of PCs is mathematically determined, and
explained in section #3 of the Supporting Information. At
this moment, just keep in mind that there are sufficient
PCs, and they together contain all the original
information.

• Q: Then, if we keep all PCs, is there still information loss?
• A: If so, there will be no information loss, but there will be
no simplification either.

• Q: Is information loss the price we pay to simplify a
complex data matrix?

• A: Exactly. Information loss is inevitable, but PCA can
minimize the loss. In other words, if you want to simplify
matrixDm×n into a single column, PC1 is your best choice;
if you want to simplify Dm×n into two columns, PC1
together with PC2 is your best choice, and so on.

• Q: All right, the fundamental logic of PCA seems clear,
anything else?

• A:We are done. Please be noted that this conversation is
intended to pave the road to understanding the rigorous
mathematics of the theory, not to replace it. Everyone is
encouraged to study the theory sheet.Mathematics and its
symbolic system are crucial and indispensable to science.

• Q: Wait, since PC1 contains the most information, why
shouldn’t we select PCA over calculating total scores to
process a score table?

• A: PC1 undoubtedly has the most information, as long as
the amount of information is measured with variance.
Variance is a good measure, but not an exclusive one. To

simplify a score table, calculating total scores is fine and
very convenient.

• Q: Do you imply that PCA is difficult to compute?
• A:With advanced software like Matlab or Octave, it only
takes a few commands to perform PCA, which you can
find in the theory sheet. What really matters is
interpretations of the results, and that requires a deep
understanding of the theory.

The theory sheet of PCA can be found in section #3 of the
Supporting Information, and it is given to students after the
Q&A script is finished. In both the above explanation and the
theory of PCA, no assumptions were made. However, if PCA is
used for the purpose of statistical inference, normal distribution
of data is desired.28

For the Q&A script to be used in a live instructional session, it
would have to be controlled by the instructor, so that students
are in the right track planned toward understanding the theory of
PCA. In our practice, the lecture of this part takes 45 min, the
length of a class in most Chinese universities.

3. ILLUSTRATING PROPERTIES OF PCA WITH
EXAMPLES

Once students understand the fundamental logic of PCA, they
are ready to learn properties of PCA. With such knowledge, they
could correctly interpret the results and more importantly avoid
misusing PCA. Four aspects of the knowledge are particularly
elaborated in our class with selected examples. The four aspects
were chosen for the sake of balancing the theory and applications
of PCA; students should grasp such knowledge for the proper
applications of PCA.
After class, all data of the examples are given to students to

practice with. The students are asked to reproduce the results
that the instructor presents during the lecture and encouraged to
use the codes in section #3 of the Supporting Information.
3.1. Mean-Centering or Not?
Mean-centering a matrix subtracts the mean of each column
from all elements of the column. So, for a mean-centered matrix,
each column has a zero mean.
Mean-centering is the first step of PCA. In some cases,

however, this step is omitted either unintentionally or
deliberately, and the results might not be significantly different.
This phenomenon and the role of mean-centering can be
explained by the theory of PCA.
As explained in the first section, the measure of information in

PCA is variance expressed as x x

n

( )

1
i
n

i
2

. This expression implies

mean-centering, and without mean-centering, it becomes x

n 1
i
n

i
2

,
referred to as mean squared Euclidean norm (MSEN).
Therefore, if the step of mean-centering is omitted from PCA,
the measure of information changes from variance to MSEN.
When variance is the measure of information, a signal with

large fluctuations is considered information-rich regardless of
intensities. When MSEN is the measure of information, a signal
with large intensities is considered information-rich, regardless
of fluctuations.
For practical signals, fluctuation often relates to intensity;

therefore, high variance also means high MSEN, and vice versa.
For such signals, the results of PCA with or without mean-
centering are fairly similar.
There do exist signals with high intensities and low

fluctuations, e.g., baselines. If such signals are present in the
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matrix, they are probably lost in the results of PCA with mean-
centering but kept in the results of PCA without mean-
centering.29

Figure 1A shows a piece of dyed silk fabric, and the marks are
the 15 locations at which infrared spectra (IR) were measured.
Each of the 15 spectra has 831 data points within the
wavenumber range from 1800 to 1000 cm−1. The spectra were
arranged rowwise to form a 15-by-831 data matrix. The matrix
was processed with PCA to reveal possible relationships
between the IR spectra and their sampling locations. Data and
Matlab codes were provided in the Supporting Information.
Figures 1B and 1C show the results of PCA with and without

mean-centering, respectively. There are five stripes in Figure 1B,
each of which is formed by the three dots of the same horizontal
line in Figure 1A. There are only four stripes in Figure 1C; the
stripe formed by dots #10, #11, and #12 completely overlaps
with the stripe formed by dots #13, #14, and #15. PCA with and
without mean-centering measures information by variance and
MSEN, respectively, so the characteristics in Figures 1B and 1C
are controlled by large variations and large numerical values of
the variables. This led us to inspect the spectra, revealing large
variations and large values between 1674 and 1481 cm−1. We
deleted these data from the matrix, performed PCA, and found
that the stripes along the PC2 axis were better separated,
especially by PCA without mean-centering, as shown in Figure
S1. Therefore, spectral data outside the ranges of 1674 and 1481
cm−1 are more helpful to relate PC2 to the sampling locations of
the spectra. Data and Matlab codes for Figure S1 were provided
in the Supporting Information.
In summary, mean-centering is an integral part of the standard

procedure of PCA, yet PCA without mean-centering should not
be considered wrong; instead, it is another way of simplifying a
matrix to explore information. Brereton has extensively studied
several cases, in which results from mean-centered matrices
differ from those from non-mean-centered matrices.30 The role
of mean-centering is also discussed in quantitative analysis.28,31

In some references or books on PCA, mean-centering is
regarded as a preprocessing step. Another common preprocess-

ing method is scaling, which divides variables (columns of the
data matrix) by the corresponding standard deviations. Scaling
makes variables in different units more comparable.28 In the
sense of preprocessing, there are several methods, such as
smoothing, baseline removal, derivative transformation, etc. It is
noteworthy that mean-centering is an integral part of PCA,
whereas preprocessing methods are not, and their effects are
often case-dependent.
In our teaching practice, this part takes about 20 min with

emphasis on the meaning and the operation of mean-centering
and the effect on the loss of certain information after PCA.
3.2. The First Pattern of Simplification by PCA

When we focus on principal components instead of the original
matrix, we follow the first pattern of simplification by PCA. In
this pattern, the original matrix is simplified into a few PCs for
subsequent analysis, and the most common way is plotting PC2
versus PC1.
Such a convenient 2D plot comes at the cost of information

loss, which might result in significant biases in any conclusions
drawn from the plot. Therefore, such a plot usually includes the
percentage of the information kept in PC1 (or PC2), that is, the
ratio of the variance of PC1 (or PC2) to the total variance of the
original matrix.
35 samples of 3 components were simulated; concentrations

of the 3 components are listed in Table S1 of the Supporting
Information. The table provides a little information about the 35
samples due to its complexity. So, the matrix was simplified by
PCA, and PC2 was plotted against PC1 in Figure 2. Data and
Matlab codes were provided in the Supporting Information.
Figure 2 clearly shows 7 distinct groups, which guides us to

rearrange the original data of Table S1 accordingly. The
rearranged data in Table S2 reveal obvious similarity in each
group, so we conclude that the original samples can be classified
into 7 groups. Without PCA, such a classification would be fairly
difficult to obtain directly from the original 35-by-3 matrix.
According to the axis labels in Figure 2, PC1 and PC2 together

contain 77.8% of the original information. The addition of the

Figure 1. (A) Photograph of a piece of silk fabric, on which 15 IR spectra were measured; the first sampling mark in each of the 5 horizontal lines is
numbered for reference. (B and C) Scatter plots from PCA with and without mean-centering the data matrix, respectively. Dots in (B) or (C)
correspond to sampling marks in (A). Each gray stripe in (B) or (C) is formed by the three dots of the same horizontal line in (A); darker parts indicate
overlapping.

Journal of Chemical Education pubs.acs.org/jchemeduc Article

https://doi.org/10.1021/acs.jchemed.4c00818
J. Chem. Educ. 2025, 102, 155−163

158

https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.4c00818/suppl_file/ed4c00818_si_003.zip
https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.4c00818/suppl_file/ed4c00818_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.4c00818/suppl_file/ed4c00818_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.4c00818/suppl_file/ed4c00818_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.4c00818/suppl_file/ed4c00818_si_006.zip
https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.4c00818/suppl_file/ed4c00818_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.4c00818/suppl_file/ed4c00818_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.4c00818/suppl_file/ed4c00818_si_004.zip
https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.4c00818/suppl_file/ed4c00818_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.4c00818/suppl_file/ed4c00818_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00818?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00818?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00818?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00818?fig=fig1&ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.4c00818?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


two percentages should not be taken for granted; it is allowed
because PCs are irrelevant.
This example is meant for illustration. The original matrix can

be visualized in a 3D plot without information loss, but it is less
clear than the 2D plot in Figure 2. If a matrix has more than 3
columns, which is fairly common in practice, it cannot be
visualized directly, whereas visualizations by PCA are feasible
and convenient.
This example shows the applicability of PCA to clustering,

another method of which is k-means. Both PCA and k-means are
unsupervised, as opposed to supervised methods, such as k-
nearest neighbors (k-NN), which are used for classification.
Conceptually, supervised and unsupervised refer to whether

samples are labeled or unlabeled, with concentrations of
samples, for instance. In other words, supervised methods
need extra information to yield desired results, which is not the
case for unsupervised methods like PCA.
In our teaching practice, this part takes about 20 min with

emphasis on the logic of the simplification by PCA, the
calculation of information loss, and the presentation of the
results.
3.3. The Second Pattern of Simplification by PCA

The second pattern of simplification by PCA includes 3 steps.

1. Perform PCA to the original matrix Dm×n.

Figure 2. Scatter plot of PC2 versus PC1. Each sample is represented by a dot, and next to it is the sample number. Aggregated dots are encircled for
clarity. The two parenthesized values in axis labels are the percentages of information kept in PC1 and PC2, respectively.

Figure 3. (A) The original picture; (B, C, andD) pictures constructed with 1, 11, and 57 PCs, respectively. PCs were obtained by performing PCAwith
the RGB matrices of the original picture. All 4 pictures have the same resolution of 700 × 500.
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2. Arrange the first p PCs in the descending order of variance
to form a matrix Um×p in a column-wise manner. Do the
same to the corresponding p eigenvectors to form another
matrix Vn×p.

3. Use Dm×n
# = Um×p(Vn×p)t to construct matrix Dm×n

# , where
superscript t denotes the transpose. Matrix Dm×n

# is used
instead of the original one Dm×n for subsequent analysis.

If Dm×n
# is constructed with all PCs, then it is identical to the

original one Dm×n; if not, some information is lost. The lost
information, according to the theory of PCA, has a low variance.
Therefore, this pattern of simplification could remove some low-
variance information that in experimental data usually means
noise. Obviously there should be sufficient PCs to construct
Dm×n

# so that it contain as much needed information as possible.
There are several criteria that determine the number of sufficient
PCs.13 One simple criterion is called Kaiser’s criterion, also
known as the scree graph. In Kaiser’s criterion, the original
matrix is standardized to have zero means and unit variances,
and PCs with eigenvalues greater than one are determined to be
sufficient and kept.
This pattern of simplification was illustrated by the processing

of a picture. The data of a picture are three matrices that contain
red, green, and blue information on all pixels, so it is an ideal
material to demonstrate matrix manipulations and result
visualizations.
The R, G, and B matrices in Figure 3A were processed by

PCA, respectively. For each of the three matrices, it was found
that the first PC contains more than 93% of the information, the
first 11 PCs contain more than 99% of the information, and the
first 57 PCs contain more than 99.9% of the information.
Pictures constructed with 1, 11, and 57 PCs are shown in Figures
3B, 3C, and 3D, respectively.
Figure 3B is far from the original picture despite the fact that

the first PC contains 93% of the information. When 11 PCs were
used to construct the picture, major details were restored, as
shown in Figure 3C, but distortions were visible. When 57 PCs
were used, the constructed picture is visually the same as the
original one, as shown in Figure 3D.
In Figure 3, the original picture and the constructed ones all

have the same resolution of 700 × 500 and the same number of
data (700× 500× 3 = 1,050,000), which does not seem to imply

simplification. In fact, all three constructed pictures are from
simplified data. For example, Figure 3D was constructed with 57
PCs (each has 500 data) and 57 eigenvectors (each has 700
data), so the total number of data is [(57× 500) + (57× 700)]×
3 = 205,200, which means it only took∼20% of the original data
to construct a picture close enough to the original one.
In our teaching practice, this part takes about 20 min with

emphasis on the logic of the simplification by PCA, the
difference between this pattern and the first one explained in
section 3.2. In the first pattern, both low-variance information
and the number of data points are reduced by PCA. In the
second pattern, only low-variance information is reduced, and
the constructed matrix has the same size as the original one.
3.4. Noise Reduction by PCA
In experimental data, noise usually has lower variance than the
interest signals, so it is considered less principal by PCA (with
mean-centering!) and less included in fore-end PCs, e.g., PC1,
or PC2, etc. This phenomenon is noise reduction. Mathematical
analysis can be found in refs 32 and 33.
Noise reduction by PCA seems natural, but the actual

situation is much more complicated. It turns out that noise
reduction by PCA is governed by the Law of Large Numbers;
when there is not a large number of data points, noise after PCA
might even be increased. Theoretical analysis presented in
section #4 of the Supporting Information is for students to study
after class, while simulated data are used for demonstration in
the class.
Matrices of different sizes were prepared with random values

from standard normal distribution. The sizes are set to be
16,000,000 by 10, 8,000,000 by 10, 4,000,000 by 10, ..., and 132
by 10, respectively, and there are 18 matrices in total. These
matrices contain pure noise, the noise level of which is
unanimously one, and the only difference is the number of
data points.
The 18 matrices were processed by PCA. PCA with and

without mean-centering yielded the same results since data were
from standard normal distribution with zeromean. The standard
deviations of the first 10 PCs were calculated to measure noise
levels, shown as a 3D plot in Figure 4. The 3D plot shows clearly
that, when there are a large number of data points, e.g.,
16,000,000 and 8,000,000, the noise levels of the 10 PCs are

Figure 4. Standard deviations of 10 principal components from 18 matrices. Each matrix comprises 10 random variables of standard normal
distribution (zero mean and unit variance). Sizes of the matrices are x by 10, where x starts from 16,000,000, is halved each time, and ends at 123.
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almost the same and equal to 1. This result is consistent with eq
7 of the Supporting Information. Data and Matlab codes were
provided in the Supporting Information.
When the number of data points decreases, the noise level of

PC1 is larger than 1, as shown in Figure 4. Specifically, for
matrices with 62,500, 3,907, and 977 rows, the noise level of PC1
increases by 1%, 5%, and 10%; when the number of data points is
123, the noise level of PC1 reaches 1.3, 30% higher than that of
the original noise level. The increase in the noise level was also
observed for PC2. For rear-end PCs, such as PC9 or PC10, the
noise level drops with a decrease in data points. The total
variance of all PCs equals 10, so higher variance for fore-end PCs
means lower variance for rear-end PCs.
In summary, the statistical independence of noise requires a

large number of data points in the matrix. If so, noise is
distributed homogeneously among all PCs; if not, noise is
treated as nonrandom information and included more in fore-
end PCs to maximize variance (due to the nature of PCA). For
the latter case, PCA actually increases the noise level of fore-end
PCs.
In analytical chemistry, the number of rows of a matrix equals

the number of chemical samples. Therefore, the well-known
advice in analytical chemistry of preparing as many samples as
possible has another benefit in PCA, which is to prevent PCA
from including more noise in fore-end PCs.
It should be noted that the above conclusion applies only to

the first pattern of simplification by PCA explained in section
3.2. In the second pattern of simplification explained in section
3.3, noise reduction is always observed in matrices constructed
from fore-end PCs.34,35

This section closely relates to the first and the second pattern
of simplification by PCA, and thus serves as a valuable material
for better and deeper understanding of PCA. This section is
important but mathematically challenging, so it is for students
with a strong mathematical background, not compulsory for
everyone.
In our teaching practice, this part takes about 15 min with

emphasis on the logic of the noise reduction by PCA, the reason
that noise reduction is generally not expected in the first pattern
of simplification by PCA.

4. EXERCISE FOR AND FEEDBACK FROM STUDENTS
Eight questions were handed out to students for them to practice
with, which cover the knowledge of PCA described in the
manuscript. These questions and suggested answers were
provided in section #5 of the Supporting Information.
In 2020 when the method was not adopted, 72 students

enrolled in the course and evaluated with the test provided in
section #7 of the Supporting Information. The average score was
82.1 with a standard deviation of 5.2. In 2024 when the method
was fully adopted, 99 students enrolled in the course and
evaluated with the same test for comparison. The average score
was 85.5 with a standard deviation of 5.5. Shapiro−Wilk tests
showed that neither of the two score sets was normally
distributed, so the Mann−Whitney U-test, a nonparametric
approach, was used to compare the two score sets instead of t-
test. Results showed that the median score in 2024 was
statistically greater than that in 2020 (P-value < 0.001).
Students’ scores and Matlab codes to perform Mann−Whitney
U-test were provided in the Supporting Information. Moreover,
a survey was conducted to evaluate the method’s efficiency.
In the spring semester of 2024, a survey was carried out with

54 students to evaluate the effectiveness of the approach. 45

students (83%) considered it very helpful, 9 students (17%)
found it helpful, and none reported it as unhelpful. The
consensus among most remarks is that the approach makes
abstract PCA concepts, like matrix and dimensionality
reduction, more concrete with a score table and the calculation
of total scores that are both straightforward and interesting.
Here is an example of the remarks:

“I think this approach is very helpful. Firstly, with the help
of a score table, we can directly understand why
dimensionality reduction is needed and how it is
implemented. Secondly, with the help of a score table, we
can clearly observe the operations and mathematics involved
in each step of PCA. Thirdly, we are familiar with score
tables and their processing, which makes learning PCA less
dif f icult and boring.”
Interestingly, a student interpreted a score table from the

perspective of PCA, which definitely results from a good grasp of
the theory:

“I think this approach is very helpful for several reasons.
Students are familiar with a score table, so they could
intuitively understand primary concepts of PCA; for
example, each subject is one variable, and scores of a
student is a sample of all variables. In a score table, some
subjects may be correlated, e.g., scores of Mathematics and
Physics, and PCA yields a combination of the scores that
keeps the most discrepancies.”

5. CONCLUSIONS
Principal component analysis (PCA) is commonly used
nowadays in analytical chemistry as a powerful tool to process
matrix-type data, so it has been taught in the course of analytical
chemistry at our university. Understanding the theory of PCA is
necessary to avoid misuses and misinterpretations, but it is fairly
difficult. In order to ensure effective teaching, we have designed
a series of questions and answers that begin with a daily life
example and end at the core logic of PCA. These Q&As form a
heuristic chain for students to follow, so that they can gradually
approach and eventually comprehend the fundamental logic of
PCA. Then we teach some important properties, which becomes
less difficult for students after they have adequate knowledge of
the theory.
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