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Topic model is a popular tool for visual concept learning. Most topic models are either unsupervised or

fully supervised. In this paper, to take advantage of both limited labeled training images and rich

unlabeled images, we propose a novel regularized Semi-Supervised Latent Dirichlet Allocation

(r-SSLDA) for learning visual concept classifiers. Instead of introducing a new complex topic model,

we attempt to find an efficient way to learn topic models in a semi-supervised way. Our r-SSLDA

considers both semi-supervised properties and supervised topic model simultaneously in a regulariza-

tion framework. Furthermore, to improve the performance of r-SSLDA, we introduce the low rank graph

to the framework. Experiments on Caltech 101 and Caltech 256 have shown that r-SSLDA outperforms

both unsupervised LDA and achieves competitive performance against fully supervised LDA with much

fewer labeled images.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Visual concept detection is a key problem in image retrieval.
It aims at automatically mapping images into predefined seman-
tic concepts (such as indoor, sunset, airplane, and face), so as to
bridge the so-called semantic gap between low-level visual
features and high-level semantic content of images. Although
there have been many studies over the last decades [1–3], it is
still a challenging problem within multimedia and computer
vision communities. Recently, topic models have been introduced
to solve this problem, and achieve impressive results [4–9]. In
these applications, each image is treated as a document, and
represented by a histogram of visual words. A visual word is equi-
valent to a text word, and often generated by clustering various
local descriptors such as SIFT. Topic models cluster co-occurring
visual words into topics, which are used to image classification.

Among current topic models, Latent Dirichlet Allocation (LDA)
[10] is one of the most popular ones. Classic LDA is an unsupervised
model without using any prior label information. The lack of useful
supervised information usually leads to slow convergence and
unsatisfactory performance. Moreover, only the visual words in
the training images are modeled in classic LDA. During classification,
class labels are simply treated as features extracted from the topic
distribution [5]. Since class label is not part of the model, classic LDA
ll rights reserved.

).
is not well suited for classification problems, thus resulting in not so
robust performance in visual concept detection.

To make LDA more effective for classification and prediction
problem, Blei et al. introduced a supervised Latent Dirichlet
Allocation (sLDA) model [11,7]. In the sLDA model, label para-
meter is a domain structure and topics are trained to best fit the
corresponding variables or labels. Both visual words and class
labels are modeled at the same time. Similarly, Wang et al. [6]
proposed a Semi-Latent Dirichlet Allocation for human action
recognition. Different from sLDA, Semi-LDA introduces supervised
information into its model by associating image class labels with
visual words. That is, Semi-LDA assumes that the topic of a visual
word is observable and equal to the image class label. Fig. 1 shows
the difference between classic LDA, sLDA and Semi-LDA. By
modeling the class label, both sLDA and Semi-LDA outperforms
classic LDA significantly for classification problems. Beside sLDA
and Semi-LDA, Pang et al. [12] also proposed a supervised topic
model called Travelogue Model, which can extract both local and
global topics with each local topic corresponding to some seman-
tics that characterize a few specific locations.

However, all these models (sLDA, Semi-LDA and Travelogue
Model) improve the model performance in a fully supervised
fashion, and therefore require all training images to be labeled.
For a large dataset, any label information is labor intensive and
expensive, making fully supervised topic models greatly restricted
to only a few concepts. On the other hand, huge amounts of
unlabeled images are available in the Internet and easy to obtain.
These unlabeled images contain enough information to train visual
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Fig. 1. Graph model representation of classic LDA (a), Semi-LDA (b) and full supervised LDA (c).

1 The subspaces are independent if and only if
Pk

i ¼ 1 Si¼�
k
i ¼ 1Si , where � is

the direct sum.
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concept classifiers, and can help avoid overfitting. Therefore, learn-
ing visual concepts classifiers with a fully supervised topic model in
a semi-supervised manner, which aims to utilize a large amount of
unlabeled images, is a promising direction to explore.

Although much work on semi-supervised learning (SSL) algo-
rithms has been developed, few considered combining semi-
supervised properties with topic models to solve the visual
concept learning problem. In [8], Zhuang et al. proposed a method
called Semi-supervised pLSA (Ss-pLSA) for image classification.
By introducing category label information into the EM algorithm
during training, they can train classifiers with pLSA in a semi-
supervised fashion. Although supervised information effectively
speeds up the convergence to achieve desire results, Ss-pLSA does
not encode class labels into its model, and seems to be a loosely
coupled way of simple label propagation in conjunction with a
unsupervised pLSA model. Different from [8], [13–15] carried out
semi-supervised topic models in a more consistent fashion by
incorporating the manifold assumption into the topic model. They
assumed that the probabilities of latent topics of images resided
on or close to a manifold, and incorporated the manifold structure
into the standard EM algorithm as a regularization term. Since the
underlying manifold was unknown, they simply used a nearest
neighbor graph to approximate it. However, a nearest neighbor
graph is mainly based on pairwise Euclidean distances, and thus is
very sensitive to data noise. Since only taking local pairwise
relationship into account, a nearest neighbor graph cannot well
capture the global geometric structure of the manifold, thus
having poor performance. Moreover, all these methods use only
class label information to help model learning, while not model-
ing the class label in their models. As the above analysis, this will
decrease the performance of visual concept classifiers.

In this paper, we propose a novel semi-supervised topic model
called regularized Semi-Supervised Latent Dirichlet Allocation
(r-SSLDA) for visual concept learning. Inspired by Wang et al.
[16], instead of attempting to introduce a new Bayesian statistical
model, we try to find a simple and an efficient semi-supervised
way to learn visual concept classifier with topic models. Unlike
the loosely coupled solution in [8], we consider both semi-
supervised properties and topic models simultaneously in a
regularization framework. By minimizing the cost function of
the regularization framework, we provide a direct solution to the
semi-supervised topic model problem. Different from current
semi-supervised topic models [8,13–15], our r-SSLDA encodes
class labels into its framework by adopting a supervised LDA
model to learn the visual concept classifiers. Meanwhile, instead
of using a nearest neighbor graph, r-SSLDA uses the low rank
graph (LR-graph) [17] to approximate the manifold. Compared
with existing popular graphs (k NN-graph [18], ‘1-graph [19,20],
LLE-graph [21,22]), LR-graph uses both the global property and
local property of the graph, and thus is better at capturing the
global structure of all data. Experimental results showed that
r-SSLDA significantly outperformed classic unsupervised LDA and
achieved competitive performance compared with fully super-
vised LDA with fewer labeled images.

The rest of this paper is organized as follows: In Section 2, we
give the detail of low rank graph construction. Then, we introduce
the regularized Semi-supervised LDA framework in Section 3.
Experiments and result analysis follow in Session 4. Section 5 is
our conclusions.
2. Low rank graph construction

Let X ¼ ½x1,x2, . . . ,xn�ARd�n be a set of data points drawn from
a manifold. Each column of X is a data point in Rd. Since the
manifold is unknown, we construct a graph from these data
points to approximate it. Let G¼ ðV ,EÞ be a graph, where
V ¼ fv1, . . . ,vng is the set of graph vertices (node vi corresponds
to data point xi), and E is the set of graph edges and associated
with a weight matrix WARn�n. For any two neighboring nodes vi

and vj, Wij40 if they are connected with an edge EijAE, other-
wise Wij ¼ 0. Fixing the nodes set V, the goal of graph construction
is to learn the edge weights matrix W.

To construct a low rank graph, we assume that (1) Data points
are drawn from a union of low rank and independent subspaces,1

and each data point can be represented as a linear combination of
few other points and (2) A fraction of the data vectors are
corrupted by noise or contaminated by outliers, or to be more
precise, the data contains sparse and properly bounded errors.
These assumptions are the same to [23]. The independence
assumption is mild, because this is usually true especially when
the subspaces are low-rank. For clean data, we have

min
Z

rankðZÞþbJZJ0,

s:t: X ¼ XZ, DiagðZÞ ¼ 0, ð1Þ

where Z ¼ ½z1, z2, . . . , zn� is the coefficient matrix with each zi

being the reconstruction coefficient of point xi. b40 is a parameter
to trade off between low rank and sparsity.

Problem (1) is difficult to solve due to the discrete nature of
the rank function and the ‘0 norm. Fortunately, as suggested by
matrix completion methods [24–26], the following convex opti-
mization can provide a good surrogate for problem (1):

min
Z

JZJnþbJZJ1, s:t: X ¼ XZ, DiagðZÞ ¼ 0: ð2Þ

here J�Jn denotes the nuclear norm [27] of a matrix and J�J1 is the
‘1-norm of a matrix. In real applications, observations are often noisy,
or even grossly corrupted, and may be missing. For small Gaussian
noise, a reasonable strategy is simply to relax the equality constraint
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in problem 2, similar to [28]. If a fraction of the data vectors are
grossly corrupted, a more reasonable optimization model is

min
Z,E

JZJnþbJZJ1þlJEJ2,1, s:t: X ¼ XZþE, DiagðZÞ ¼ 0, ð3Þ

where JEJ2,1 ¼
Pn

j ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 1 ð½E�ijÞ

2
q

is called the ‘2,1-norm, which
encourages the columns of E to be zero. The underlying assumption
here is that the corruptions are ‘‘sample-specific’’, i.e., some data
vectors are corrupted and the others are clean. The parameter l40 is
used to balance the effects of the three terms.

To solve problem (3), we first convert it to the following
equivalent problem:

min
Z,E,W

JZJnþlJEJ2,1þbJWJ1,

s:t: X ¼ XZþE, W ¼ Z, DiagðWÞ ¼ 0: ð4Þ

Problem (4) can be solved by minimizing the following
augmented Lagrange multiplier (ALM) function:

LðZ,W ,E,Y1,Y2,mÞ ¼ JZJnþlJEJ2,1þbJWJ1

þ/Y1,X�XZ�ESþ/Y2,W�ZS

þ
m
2
ðJX�XZ�EJ2

FþJW�ZJ2
F Þ ð5Þ

where Y1 and Y2 are Lagrange multipliers and m is the penalty
parameter which is positive. If we drop the terms independent of
Z, a linearization of L w.r.t. Z at Zk is

~LðZ,W ,E,Y1,Y2,mÞ ¼ JZJnþm Z�Zk,XT
�XþXZkþE�

Y1

m

� ��

�WþZk�
Y2

m

�
þ
mZ
2

JZ�ZkJ
2
F ð6Þ

where Z¼ 1þs2
maxðAÞ and smaxðAÞ is the largest singular value of

A. We can minimize over function ~L to update Z, and minimize
over function L to update W and E [29,23]. The complete
algorithm is outlined in Algorithm 1.

Algorithm 1. Solving problem 4 by inexact ALM.
Input: data matrix X, parameter l40
Initialize: Z ¼W ¼ 0, E¼0, Y1 ¼ Y2 ¼ 0, m¼ 0:1, r¼ 1:1,

e1 ¼ 10�8, e2 ¼ 10�1
1:
 while not converged do

2:
 Update the variable Z by
Zkþ1 ¼ argmin
Z

~LðZ,Wk,Ek,Y1,k,Y2,k,mktÞ

¼Y
ðZmkÞ

�1 Zkþ

XT X�XZk�Ekþ
Y1,k

mk

� �
þWk�Zkþ

Y2,k

mk

Z

0
BB@

1
CCA
where Y is the singular value shrinkage operator [30].

3:
 Update the variable E by
Ekþ1 ¼ argmin
E

LðZkþ1,Wk,E,Y1,k,Y2,k,mkÞ

¼Olm�1
k

X�XZkþ1þ
Y1,k

mk

� �
where O is the l2,1 minimization operator [23].
4:
 Update the variable W by
Wkþ1 ¼ argmin
Wi,i ¼ 0

LðZkþ1,W ,Ekþ1,Y1,k,Y2,k,mkÞ

¼D Slm�1
k

X�XZkþ1þ
Y2,k

mk

� �� �
where S is the shrinkage operator and D(X) is an
operator that sets the diagonal zeros.
5:
 Update the multiplier using the newly updated
variables:
Y1,kþ1 ¼ Y1,kþmkðX�XZkþ1�Ekþ1Þ

Y2,kþ1 ¼ Y2,kþmkðWkþ1�Zkþ1Þ:
6:
 Update the parameter m by
mkþ1 ¼
rmk if

mkðJZkþ1�ZkJFþJEkþ1�EkJFþJWkþ1�WkJF Þ

JXJF
oe2,

mk otherwise:

8><
>:

7: Check the convergence conditions:

JX�XZkþ1�Ekþ1JFþJWkþ1�Zkþ1JF

JXJF
oe1.

8: Update k : k’kþ1.

9:end while
Output: an optimal solution ðZn,En

Þ.

After solving problem (3), we can obtain the reconstruction
coefficient matrix Zn

¼ ðzn1, . . . ,znnÞ of data X. This coefficient matrix
naturally reveals the relationship among samples: the reconstruc-
tion coefficients zni reflect a closeness relationship between point
xi and the other samples, and the magnitude of the corresponding
coefficients naturally weighs the closeness of the relationship.
The graph weight matrix WARn�n is defined as

Wn
¼

9Z9þ9Zn9
2

ð7Þ

In practice, Zn is often dense due to noise. To make it sparse, we
often zeroize those elements with small absolute values in Wn.
3. Framework of regularized semi-supervised LDA

Given an image set X ¼ fx1, . . . ,xl, xlþ1, . . . ,xng � Rd and a label
set C ¼ f1, . . . ,cg � R, the first l images XL

¼ fx1, . . . ,xlg are labeled
and the others XU

¼ fxlþ1, . . . ,xng are unlabeled. Let y¼ ðy1,
y2, . . . ,ynÞ

T be the label vector of all images. For labeled image
xiAXL, yi is set to one of the elements in C. For unlabeled images
xiAXU , yi can be any limited value beyond C. To simplify our
discussion, this paper only considers binary classification with
C ¼ f1,�1g. In this case, yi is set to 1 for positive labeled images,
�1 for negative labeled images. For unlabeled images, we set yi to
be 0. The goal of regularized semi-supervised LDA is to learn an
efficient binary classifier from X and y. The basic idea behind
r-SSLDA is to use labeled images to predict the unlabeled images,
and train final classifiers with all training images and their labels.

3.1. Low rank graph based label propagation

In essence, the goal of label propagation is to estimate a function
f on a graph. It is based on two basic assumptions: local consistency

assumption and manifold assumption. The former says that nearby
points are likely to have the same label, whereas the latter says that
points lying in the same manifold are likely to have the same label.
Based on these two assumptions, we first build a low rank graph
[17] to approximate the underlying manifold, and then propagate
existing labels to unlabeled images along the graph.

Let F denote the set of n� 1 vectors. A vector f AF corresponds
to a classification function defined on X. 8f AF assigns a real value
fi to each image xi, where fi is the i-th element of f. The label of an
unlabeled image xuAXU is determined by the sign of fu. To find
the optimal vector fn to classify X, we design a cost function Q(f)
as follows:

f n ¼ arg min
f

Q ðf Þ ¼ arg min
f
ðQsmoothnessþmQL

fittingÞ ð8Þ
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The first term Qsmoothness is the smoothness cost, meaning that
a good classification function should not change too much
between nearby sample points. That is, images that are close
nearby in the feature space (thus similar) tend to have the same
labels. Similar to the standard SSL algorithm [31], we define the
smoothness cost function as follows:

Qsmoothness ¼
1

2

Xn

i,j ¼ 1

Wij
f iffiffiffiffi
di

p �
f jffiffiffiffi
dj

q
0
B@

1
CA

2

ð9Þ

where Wij represents the similarity between two images xi and xj,
di is the sum of the i-th row of W. In our framework, we obtain W

by constructing the low rank graph from observed samples.
The second term QL

fitting means that a good classification
function should not change too much from the initial label
assignment. So we define the fitting cost as follows:

QL
fitting ¼

X
xi AXL

ðf i�yiÞ
2

ð10Þ

where XL means a set of labeled images. Note that QL
fitting is only

used on the labeled images. For unlabeled images, yi is indefinite.
The regularization parameter m controls the trade-off between
constrains, and is empirically set to 1/9 in our experiments.

Thus, the cost function in our semi-supervised topic model is
defined as

Q ðf Þ ¼
1

2

Xn

i,j ¼ 1

Wij
f iffiffiffiffi
di

p �
f jffiffiffiffi
dj

q
0
B@

1
CA

2

þm
X

xi AXL

ðf i�yiÞ
2

ð11Þ

To minimize Eq. (11) with respect to f, we assume that the
affinity matrix W is symmetric and irreducible. Let D be a
diagonal matrix with its (i,i)-element equal to the sum of the
i-th row of W. Therefore, we rewrite the cost function as

Q ðf Þ ¼ f T
ðI�D�1=2WD�1=2

Þf þmðf�yÞT IL
ðf�yÞ ð12Þ

where IL is a diagonal matrix. Ijj is set to 1 if yj¼1, otherwise 0.
Differentiating Q(f) with respect to f, we have

dQ

df

����
f ¼ f n
¼ 2� ½ðI�D�1=2WD�1=2

Þf nþmIL
ðf n�yÞ� ¼ 0 ð13Þ

With simple deduction, we obtain

f n ¼ ðI�aS�bAL
Þ
�1bILy ð14Þ

where S¼D�1=2WD�1=2, AL
¼ I�IL, a¼ 1=ð1þmÞ and b¼ m=ð1þmÞ.

When the number of data is large, we can replace it with an
iteration process

f ðtþ1Þ ¼ ðaSþbAL
Þf ðtÞþbILy ð15Þ

When the iterative process converges, we obtain the modified
classification score vector f n. To achieve a good precision, we first
use supervised LDA to train an initial classifier from labeled
images, and estimate the labels of all unlabeled images. That is,
we first provide a good estimation f 0 based on initial labeled
images, and then refine it under above regularization framework.

3.2. Supervised Latent Dirichlet Allocation

To improve the performance of image classification, r-SSLDA
adopts supervised LDA [11,7] as its learning model, which
simultaneously models both visual words and class label. The
idea behind this model is that images and class label are related,
and we can leverage that relationship by finding a latent space
predictive of both. These latent topics will best predict the
categories for unlabeled images.
Each image is represented as a bag of visual words w1:N . The
category c is a discrete class label. We fix the number of topics K

and let C denote the number of class labels. The parameters of sLDA
are a set of K image topics p1:K , and a set of C class coefficients Z1:C .
Each coefficient Zc is a K-vector of real values. Each ‘‘topic’’ is a
distribution over a visual words vocabulary. An image and its class
label is given by the following generative process:
1.
 Draw topic proportions y�DirðaÞ.

2.
 For each visual word wn, nAf1,2, . . . ,Ng:

(a) Draw topic assignment zn9y�MultðyÞ.
(b) Draw visual word wn9zn �Multðpzn Þ.
3.
 Draw class label c9z1:N � softmaxðz,ZÞ, where z ¼ ð1=NÞPN
n ¼ 1 zn is the empirical topic frequencies and the softmax

function provides the following distribution, pðc9z,ZÞ ¼
expðZT

c zÞ=
PC

l ¼ 1 expðZT
l zÞ

Note here that different from [11], the class label variable is
assumed drawn from a generalized linear model with input given
by the empirical distribution of topics that generated the visual
words. In essence, above the sLDA model just simplify the model
in [7] by ignoring annotations. So, we can use variational EM
algorithm to infer the model, which is similar to [7].
4. Experiments

4.1. Data preparation

The datasets used in this paper were Caltech 101 and Caltech
256, two popular image datasets in the literature of image
classification. Compared with Caltech 101, Caltech 256 is more
challenging because of containing more complex clutters. In our
experiments, only 10 categories were selected, and 200 images
were randomly selected from each category, 100 images for
training and 100 images for test. Specifically, we chose five
categories (leopard, motorbike, watch, airplane and face) from
Caltech 101 and five categories (bathtub, billiard, binocular,
gorilla and grape) from Caltech 256. We selected these categories
only because these categories contain enough images (over 200
images). Sample images are shown as Fig. 2.

From these images, we extracted key points and their SIFT
descriptors, and then used k-means algorithm to quantize these
SIFT descriptors into visual words [32,33]. In the end, we generated
300 visual words to form our visual codebook, and represented
each image by the popular ‘‘bag of visual words’’ model.

4.2. Regularized Semi-Supervised LDA vs. fully supervised LDA

To validate the performance of our r-SSLDA, we conducted
image classification experiments on Caltech 101 and Caltech
256,2 and compared r-SSLDA with classic unsupervised LDA and
fully supervised LDA. In our experiments, we converted the multi-
class classification problem into a set of binary classification
problem, and trained binary classifiers for all categories. For any
category, there were totally 200 images to train its binary
classifier, 100 from its training images and 100 from the rest
categories. For r-SSLDA, only 20% of the training images were
randomly selected and labeled. That is, we randomly labeled 40
images out of 200 images training, 20 images from the given
category as positive samples and 20 images from the rest
categories as negative samples. For fully supervised LDA (sLDA),
we considered two cases, sLDA-40 and sLDA-200. In the former

http://www.vision.ethz.ch/projects/categorization/


Fig. 2. Sample images in our experiments: (a) images from Caltech 101, including airplane, face, leopard, watch, and motorbike; (b) images from Caltech 256, including

bathtub, billiard, binocular, gorilla, and grape.
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case (sLDA-40), sLDA only used the 40 labeled images to train a
binary classifier, which had less training images than r-SSLDA
(totally 200 training images). In most real applications, this case
often happens because labeled images are hard to obtain. In the
latter case (sLDA-200), sLDA labeled all the 200 training images,
and had the same number of training images to r-SSLDA. This case
is often restricted to small amounts of categories, and is very
unfair for r-SSLDA. For each classifier, we performed binary
classification on 200 test images (100 from the corresponding
category and 100 from the other categories). In all experiments,
the topic number was set to 30. To keep authority, all experi-
ments ran eight times and averaged all results. The final results
are shown in Fig. 3.

From Fig. 3, we can see that
�
 r-SSLDA significantly outperformed classic LDA for all 10
classes. This suggests that supervised information is important
to improve the classifier performance.
Fig. 3. Recognition results of unsupervised LDA, r-SSLDA and fully supervised LDA
�

on the ten categories. The percentage of labeled images for r-SSLDA is 20%. The

topic number was 30 for all the methods.
When having identical labeled images, our r-SSLDA also out-
performed sLDA (see sLDA-40) in all 10 categories. This
indicates that unlabeled images provide enough information
to boost the classifier performance.

�

Fig. 4. Performance comparison between r-SSLDA and s-SSLDA across all the ten

categories. 20% of the training images were labeled. The topic number was 30.
At last, even compared with sLDA-200, our r-SSLDA only
incurred little loss on the classification rate while significantly
reducing the required labeled data. In practice, labeled images
are often very costly to obtain, while unlabeled images are
readily available from the Internet. This makes our r-SSLDA
more suitable and advantageous for real applications.

4.3. Regularized semi-supervised LDA vs. Simple semi-supervised

LDA

There are many strategies to learn a topic model in a semi-
supervised way. One of the simple strategies is to implement
topic models twice. First, we use labeled images to train an initial
classifier with sLDA. Then, we use the initial classifier to predict
the label of unlabeled training data. After obtaining all the labels
for all the training images, we use sLDA to train the visual concept
classifier. We call this strategy simple Semi-supervised LDA
(s-SSLDA). s-SSLDA is vulnerable to prediction errors because of
data noise and model bias. To reduce the prediction errors, our
r-SSLDA refines the predictions using a regularization frame-
work that simultaneously considers smoothness and consistency.
To validate the efficiency of our regularization framework, we
compared r-SSLDA with s-SSLDA in all 10 categories. Fig. 4 show
the performance comparison between r-SSLDA and s-SSLDA,
when the percentage of labeled training images was 20%. As we
can see, our r-SSLDA outperformed s-SSLDA in all cases. This
suggests that the regularization framework is more efficient than
the simple semi-supervised strategy for combining supervised
and unsupervised information.
4.4. Influence of graph construction methods

Label propagation is one of the key components in r-SSLDA. In this
paper, we introduced the low rank graph (LR-graph) [17] into our
r-SSLDA framework. To verify the advantages of low rank graph, we
compared it with other popular graphs (k NN-graph [18], ‘1-graph
[19,20], LLE-graph [21,22]) under the framework of r-SSLDA. That is,
we constructed different graphs to predict unlabeled images, and
then trained different binary classifiers for each categories using
r-SSLDA. To achieve the best performance, parameters of different
graphs were set manually. More specifically, we set the number k of
nearest neighborhoods to 3 for the k NN-graph and LLE-graph. For the
LR-graph, we set l¼ 2 and b¼ 0:3. Other experiment settings were



Table 1
Recognition results of the r-SSLDA framework using different graphs on the ten

categories. The percentage of labeled images for r-SSLDA is 20%. The topic number

was 30 for all the experiments.

Data set k NN-graph ‘1-graph LLE-graph LR-graph

Face 89.0 86.6 84.0 91.1
Leopard 87.5 84.1 88.8 91.7
Airplane 95.3 94.8 95.5 96.3
Watch 91.2 88.8 92.0 93.0
Motobike 96.0 96.2 95.5 97.0
Bathtub 81.2 80.8 81.7 83.4
Billiard 80.5 75.7 82.5 85.1
Binocular 90.7 89.2 91.5 93.0
Gorilla 84.4 85.3 83.3 87.0
Grape 91.3 91.4 90.0 92.1
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similar to Section 4.2. The final results are shown in Table 1. As we
can see, the LR-graph significantly outperformed other popular
graphs for SSL. This suggests that the LR-graph is more informative
and discriminative than other graphs for SSL problems. Maybe it is
because the LR-graph can capture the global structure of all samples,
and is more robust to noises and outliers than other popular graphs.
5. Conclusion

In this work, we developed a novel regularized Semi-Supervised
Latent Dirichlet Allocation (r-SSLDA) for visual concept learning.
r-SSLDA considered both semi-supervised properties and topic
models simultaneously in the regularization framework. Also, we
introduced the low rank graph into the framework to improve the
performance. Experiments on Caltech 101 and Caltech 256 showed
that our r-SSLDA could effectively utilize both labeled images and
unlabeled images and achieved competitive performance against
fully supervised LDA (sLDA), while drastically reducing the require-
ment of labeled training images. However, current experiments are
only limited to small-scale datasets. Extending r-SSLDA to large-
scale datasets is an important direction in the future.
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