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Abstract This paper presents a regularized patch-based
representation for single sample per person face recognition.
We represent each image by a collection of patches and seek
their sparse representations under the gallery images patches
and intra-class variance dictionaries at the same time. For the
reconstruction coefficients of all the patches from the same
image, by imposing a group sparsity constraint on the recon-
struction coefficients corresponding to the patches from the
gallery images, and by imposing a sparsity constraint on the
reconstruction coefficients corresponding to the intra-class
variance dictionaries, our formulation harvests the advan-
tages of both patch-based image representation and global
image representation, i.e. our method overcomes the side
effect of those patches which are severely corrupted by the
variances in face recognition, while enforcing those less dis-
criminative patches to be constructed by the gallery patches
from the right person. Moreover, instead of using the man-
ually designed intra-class variance dictionaries, we propose
to learn the intra-class variance dictionaries which not only
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greatly accelerate the prediction of the probe images but also
improve the face recognition accuracy in the single sam-
ple per person scenario. Experimental results on the AR,
Extended Yale B, CMU-PIE, and LFW datasets show that
our method outperforms sparse coding related face recogni-
tion methods as well as some other specially designed single
sample per person face representation methods, and achieves
the best performance. These encouraging results demonstrate
the effectiveness of regularized patch-based face representa-
tion for single sample per person face recognition.

Keywords Single sample per person · Regularized patch-
based representation · Group sparsity · Intra-class variance
dictionary

1 Introduction

Face recognition (FR) is a classical and important problem
in both computer vision and pattern classification because
of its potential applications in security, video surveillance,
human-computer interface, etc. In real applications, single
sample per person (SSPP) face recognition is more realis-
tic and more important because of the limitations on the
availability of training photos for persons to be identified
in many application scenarios, for example, passport iden-
tification and gate ID identification. Furthermore, variations
between the test faces (probe images) and their training faces
(gallery images) in illumination, expression, occlusion, etc.,
usually exist and make SSPP face recognition even more
challenging.

It is very important for SSPP to use the right image repre-
sentation. An effective image representation should be able
to overcome the effect of variances in expression, illumina-
tion, pose, occlusion, etc. Lots of work (Deng et al. 2012;
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Zhu et al. 2012; Su et al. 2010; Lu et al. 2011) has been done
to explore different image representations for more effec-
tive SSPP. These methods can be roughly categorized as
global image representation and patch-based/local represen-
tation. Global image representation represents each image
by one feature vector (Lee et al. 2006; Su et al. 2010).
On one hand, global image representation is robust to the
recognition of those regions which are not very discrimina-
tive, like cheek, forehead, etc., in SSPP. On the other hand,
global image representation can be easily affected by those
regions that are severely corrupted by variances in illumina-
tion, occlusion, expression, etc., Patch-based/local represen-
tation divides each image into a collection of patches, repre-
senting each patch with one feature vector (Zhu et al. 2012;
Gottumukkal and Asari 2004), and it predicts the label of the
image based on the labels predicted by all the patches. There-
fore a patch-based representation can easily avoid the effect
of severely corrupted noninformative regions, but may suf-
fer from non-discriminative regions. After representing each
image with a global feature or a collection of local features
corresponding to all the patches, a classification technique,
like nearest neighbor (NN), sparse representation based clas-
sification (SRC) (Wright et al. 2009), collaborative represen-
tation based classification (CRC) (Zhang and Feng 2011), or
patch-based CRC (PCRC) (Zhu et al. 2012) can be used to
predict the label of each image or each patch. Recently, Deng
et al. (2012) propose an extended sparse representation for
classification (ESRC) which extends SRC to the SSPP case.
By introducing an intra-class variance dictionary that charac-
terizes possible variances of the probe images, such a global
representation based ESRC method shows promising results
in SSPP.

Interestingly, the advantages of global image representa-
tion and those of patch-based representation are rather com-
plementary. To harvest the advantages of both patch-based
representation and global image representation, and to over-
come their disadvantages, we propose a regularized patch-
based representation (RPR) for face recognition in the SSPP
setting. Specifically, in our method, each face image is rep-
resented by a collection of patches. For the patches from
the same image, we simultaneously seek the sparse repre-
sentations of them with respect to their gallery patches and
their corresponding intra-class variance dictionaries, with
some additional constraints. Here the gallery patches are the
patches from the gallery images, while the intra-class vari-
ance dictionaries are learned to capture intra-class variations.
For reconstructing coefficients for all the image’s patches, we
impose a group sparsity constraint on the coefficients associ-
ated with the gallery patches, and impose a sparsity constraint
on the coefficients associated with the intra-class variance
dictionaries. Such structured sparsity constraints allow the
identification of non-discriminative patches to be predicted
by the discriminative ones, and they also allow a small num-

ber of severely corrupted regions to be represented (sparsely)
by their intra-class variance dictionaries. In this way, such a
regularized patch-based representation elegantly integrates
the advantages of both global and patch-based image repre-
sentations while avoiding their respective shortcomings.

The main contributions of this paper can be summa-
rized as follows. (i) We propose a regularized patch-based
image representation for SSPP face recognition. By seeking
the sparse representations for all the patches of the same
image simultaneously, our regularized patch-based image
representation integrates the advantages of both the global
image representation and the patch-based image represen-
tation. (ii) To improve the computational efficiency of our
regularized patch-based image representation, we propose
to learn the intra-class variance dictionaries automatically
from data other than using the manually designed dictionar-
ies. (ii) We evaluate the effect of different regularizers on
the reconstruction coefficients and validates the effective of
our regularized patch-based image representation in the case
of using intra-class variance dictionary. Experimental results
show that in additional to the improvement in the computa-
tional efficiency, our learnt dictionaries also boost the recog-
nition accuracy.

The rest of the paper is organized as follows. In Sect. 2,
work related to our SSPP face recognition is reviewed. In
Sect. 3, we first briefly revisit the ESRC based face recog-
nition, after which we propose the formulation of our regu-
larized patch-based image representation as well as its opti-
mization. In Sect. 4, we introduce the details of learning the
intra-class variance dictionary. We experimentally evaluate
our proposed method in Sect. 5, and we conclude our work
in Sect. 6.

2 Related Work

General face recognition is comprised of two subproblems:
face representation and pattern classification. For an effec-
tive and efficient face representation, subspace analysis meth-
ods are usually adopted among which Eigenfaces (Turk and
Pentland 1991) and Fisherfaces (Belhumeur et al. 1997) are
two representative methods. Eigenfaces are generated by per-
forming principle component analysis (PCA) on a large set
of face data. Then each image can be represented by these
Eigenfaces. Fisherfaces projects face data onto a subspace
which maximizes the between-class distance and minimizes
the within-class distance by using Fisher linear discrimina-
tive analysis (FLDA). After face representation, a pattern
classification technique is used to to predict the label for any
given probe image. For face recognition, nearest neighbor
(NN) and nearest subspace (NS) are two typical classifiers.
NN predicts the label of the test face based on the label of
the nearest training sample. NS represents the test face with

123



Int J Comput Vis

the instances from each class sequentially, and assigns it to
the class with the minimum reconstruction error. Breaking
from NN and NS, Wright et al. (2009) propose to use all
the training samples from all the subjects to sparsely repre-
sent the test sample, and to assign the label of the class with
the minimum reconstruction error to the test sample. Such
a sparse representation based face classification (SRC) tech-
nique achieves considerable success for the face recognition
with enough training samples. Aside from sparse represen-
tation, Zhang and Feng (2011) argue that collaborative rep-
resentation for face classification (CRC) is the key for the
success of using SRC. By replacing the �1 norm constraint
on the reconstruction coefficients with the squared �2 norm
constraint, CRC greatly accelerates the computational speed.
Moreover, Gao et al. (2013) also propose to use kernel sparse
representation for face recognition by mapping features to a
high dimensional reproducing kernel Hilbert space (RKHS),
which further improves the recognition accuracy.

However, previous image representation methods and col-
laborative representation based methods (e.g. CRC and SRC)
only work well under the condition that there are sufficient
training samples for each subject so that the intra-class vari-
ances can be covered by these training samples. Compared
with general face recognition, the key problem in SSPP face
recognition is that there is only one training sample for each
person, hereby affecting both the image representation and
classification. Specifically,

– Though unsupervised image representation methods, like
PCA (Turk and Pentland 1991), 2DPCA (Yang et al.
2004), and Kernel PCA (Kim et al. 2002), can still
be directly used, they may easily suffer from vari-
ances in occlusion, expression, illumination, etc. that
usually accompany with the probe images but cannot
be estimated by only one gallery image per subject.
To make such unsupervised methods more suitable for
SSPP, projection-combined principal component analy-
sis ((PC)2A) (Wu and Zhou 2002), enhanced (PC)2A
(E(PC)2A) (Chen et al. 2004b), etc., are proposed, and
the idea behind these methods is to perform PCA with
the help of virtual faces, like first order projection (Wu
and Zhou 2002), or second order projection (Chen et al.
2004b). These methods have demonstrated good perfor-
mance on some simple data, but they cannot handle real
SSPP data where intra-class variance is more significant
and cannot be estimated from virtual samples. Differ-
ent from these methods, an uniform pursuit algorithm is
proposed by Deng et al. (2010) and this uniform pur-
suit algorithm improves the SSPP by discriminating sim-
ilar looking faces with the help of an additional dataset,
and such uniform pursuit algorithm can be viewed as an
extension of PCA by taking advantage of local neighbor-
hood information.

– FLDA (Belhumeur et al. 1997) based image representa-
tion is impossible to be directly used in the SSPP scenario
because the within-class variance cannot be estimated
by only one gallery image for each subject. To make
FLDA feasible in SSPP, many efforts have been made,
and they can roughly be categorized as virtual samples
based methods and generic training sets based methods.
Virtual samples based methods generate the images with
the same category label via a small perturbation (Mar-
tinez 2002), some kind of transformation (Shan et al.
2002), an SVD decomposition on the original images
(Gao et al. 2008), or by dividing the whole image into
small sub-images (patches) with the same size (Chen et
al. 2004a). Generic training set based methods (Su et
al. 2010; Kim et al. 2005) introduce a separate dataset
which includes the possible variances in, for example,
illumination, pose, expression, and occlusion. Then the
within-class (and between-class) variance of each gallery
image is estimated with the help of this generic dataset.

– SSPP greatly restricts the classification accuracy of the
NN classifier, NS classifier, SRC and CRC. To solve this
problem, some researchers Zhu et al. (2012), Tan et al.
(2005), Kumar et al. (2011), and Lu et al. (2011) propose
to divide each image into many sub-images (patches),
and perform classification for these sub-images by either
using NN, CRC, or some other classifier. Then the clas-
sification results of all the sub-images can be aggre-
gated to make the final decision, where a majority vot-
ing strategy is usually used. As previously stated, SRC
and CRC depend on having enough training samples that
include all possible variance of each subject, therefore
SSPP setting greatly restricts their performance. To make
SRC suitable in SSPP, Deng et al. (2012) successfully
extended SRC by introducing an intra-class variance dic-
tionary which characterizes the variances in illumination,
occlusion, and expression. Such extended SRC (ESRC)
achieves good performance for SSPP. But in ESRC, the
intra-class variance dictionary is manually designed and
is usually large, thus greatly reducing its computational
efficiency. Moreover, ESRC is based on a global image
representation that may suffer from image regions that
are severely corrupted by variances in SSPP. Recently,
Yang et al. (2013) and Deng et al. (2013) further improve
ESRC with better intra-class variance dictionary but these
methods are still based on the global image representa-
tion.

3 Regularized Patch-Based Presentation with
Intra-class Variance Dictionaries

In this section, we first briefly review the ESRC based face
recognition. Then we introduce the formulation of our regu-
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larized patch-based image representation as well as its opti-
mization.

3.1 A Revisit of ESRC for Face Recognition

3.1.1 ESRC for SSPP

To extend SRC to the SSPP task, Deng et al. (2012) proposed
an ESRC which manually constructs an intra-class variance
dictionary from an additional collection of faces which cover
the possible intra-class variance for each class (following Su
et al. (2010), we also name this dataset as the generic dataset).
Then a given probe image can be reconstructed by using the
single training sample which has the same class label with this
probe image and the intra-class variance dictionary. Mathe-
matically, we denote the training set as A = [A1, . . . , AN ]
where Ai ∈ R

d only contains one training sample from the
i th class, and we denote the intra-class variance dictionary as
D which includes the possible intra-class variances. There-
fore, in ESCR, the reconstruction of the test sample can be
written as y = Aα + Dβ + e. Similar to the SRC, the recon-
struction coefficients in ESRC are also sparse. So ESRC is
formulated as follows:

min
α,β

‖α‖1 + ‖β‖1 s.t. ‖y − Aα − Dβ‖2 ≤ ε. (1)

After getting the sparse reconstruction coefficients, ESRC
also predicts the label of the test sample in the same way
as SRC, i.e. it assigns the test sample to the class with the
minimum reconstruction error.

Label(y) = arg min
i

‖y − Aiαi − Dβ‖2. (2)

Here αi is the reconstruction coefficient corresponding to the
single gallery image of the i th class (Ai ).

3.2 Formulation of Regularized Patch-Based
Representation

To represent variances in illumination, expression, occlusion,
etc., we also adopt intra-class variance dictionaries in our reg-
ularized patch-based representation. Given a probe image y,
we divide it into N patches, and each patch is characterized
as a column feature vector Yi . Then Y = [Y1, Y2, . . . , YN ] is
used to represent the image y. We also divide all the gallery
images into patches in the same way, and name these patches
as gallery patches. For the patch Yi , we denote the gallery
patches used for reconstructing it as Ai , and denote its cor-
responding intra-class variance dictionary as Di . Here we
assume that all the images are well aligned, therefore Ai is
constructed by collecting the patches with the same coordi-
nate of Yi from all the gallery images. With the help of Ai

and Di , the patch Yi can be reconstructed as follows:

Yi = Ai Xi + Di Si + Ei , ∀i. (3)

Firstly, in addition to the intra-class variance dictionaries,
the patches corresponding to the same probe image should
ideally be constructed by the gallery patches from the same
gallery image that the probe image belongs to. However,
some faces patches are not very discriminative, for example,
the cheek patch in Fig. 1. If we directly impose the sparsity
constraint on the reconstruction coefficients corresponding
to the gallery patches [Xi in Eq. (3)] as what SRC does, this
cheek patch may also be well reconstructed by gallery patch
from other persons, which would mislead the recognition of
the probe. We denote the reconstruction coefficients corre-
sponding to the gallery patches as X = [X1, X2, . . . , X N ].
Therefore, it is desirable that all the non-zero coefficients
only appear at the place which corresponding to the person
these patches belonging to (please refer to Fig. 1), which
results in a row-wise sparse structure on X . Hence, to avoid
the misclassification of those less discriminative patches, we
impose a group sparsity constraint on X . Secondly, we also
assume that variances of the patches between the test sample
and the training sample are caused by a limited number of
variations. For example, for the patches around eyes, vari-
ances in appearance may be caused by wearing glasses, and
for the patches around lips, variances may caused by illu-
mination or expression. Therefore, for each patch, the coef-
ficients associated with the intra-class variance dictionary
should be sparse. Thirdly, it is also desirable that the recon-
struction error should be as small as possible. Based on the
above discussions, we arrive at the following optimization
problem:

min
X,S,E

‖E‖2
F + λ‖S‖1 + γ ‖X‖2,1

s.t. Yi = Ai Xi + Di Si + Ei , ∀i. (4)

Here ‖X‖2,1 = ∑
m

√∑
n X2

mn promotes X to be row-wise
sparse, and E = [E1, . . . , EN ] corresponds to the recon-
struction error. The group sparsity requirement for X inher-
its the advantages of global image representation. Meanwhile
by allowing certain patches to be reconstructed only by the
intra-class variance dictionaries, the effect of the severely
corrupted patches can be minimized. We name this image
representation method as regularized patch-based repre-
sentation (RPR). We illustrate the idea of such regular-
ized patch-based representation for SSPP face recognition in
Fig. 1. After getting the reconstruction coefficients of each
patch, we can predict the subject label of each patch based
on the minimum reconstruction error criteria used in SRC
and ESRC, and we can predict the label of the probe image
based on the majority voting of all the patches.
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Fig. 1 An illustration of our
regularized patch-based image
representation for SSPP face
recognition. Our method can
overcome the effect of
noninformative regions severely
corrupted by variances like
occlusion, while enforcing
non-discriminative regions to be
reconstructed by the regions
from the right person

3.3 Optimization

To solve problem (4), we adopt the commonly used aug-
mented Lagrange multiplier (ALM) method. Specifically, we
first convert Eq. (4) to the following problem:

min
X,S,E,G,Z

‖E‖2
F + λ‖Z‖1 + γ ‖G‖2,1

s.t. Yi = Ai Xi + Di Si + Ei , ∀i

G = X, Z = S. (5)

Based on the ALM method, problem (5) can be further con-
verted to the following unconstraint problem:

L = ‖E‖2
F + λ‖Z‖1 + γ ‖G‖2,1

+ tr(H T
1 (G − X)) + tr(H T

2 (Z − S))

+
∑

i

tr(J T
i (Yi − Ai Xi − Di Si − Ei ))

+ μ

2

(
‖G − X‖2

F + ‖Z − S‖2
F

+
∑

i

‖Yi − Ai Xi − Di Si − Ei‖2
F

)

. (6)

Here tr(·) is the trace of a matrix, and μ > 0 is a penalty
parameter. Then we alternatively update each unknown vari-
able with the rest of variables fixed. We list the details for
solving Eq. (6) in Algorithm 1. Please note that the objec-
tives in steps 1–5 in Algorithm 1 have closed-form solutions.
Specifically, for step 1, the objective is in the form (Yang et
al. 2009) minV

1
2‖X − V ‖2

F + μ‖V ‖2,1, and its solution is

V (i, :) =
{ ‖X (i,:)‖2−μ

‖X (i,:)‖2
X (i, :), if ‖X (i, :)‖2 > μ,

0, otherwise.

For step 2, the objective is in the form minV
1
2‖X − V ‖2

F +
μ‖V ‖1, and it can be solved with the singular value thresh-
olding (SVT) operator (Cai et al. 2008). To get the solutions
in steps 3–5, we just set the derivative of the objective func-
tion with the corresponding variable to be 0, then we can
get the closed-form solutions easily. Because we have the
closed-form solution for each subproblem, the optimization
in Algorithm 1 is efficient.

4 Designing Intra-class Variance Dictionary

4.1 Manually Designed Intra-class Variance Dictionary

The intra-class variance dictionary plays an extremely impor-
tant role in removing the effect of troublesome intra-
class variances during the recognition of the probe images.
Because of the limitation in the number of gallery images
(one training image for each person), a generic dataset,
which contains all possible intra-class variances in, expres-
sion, occlusion, illumination, etc., can be used to construct
the intra-class variance dictionary. In the following sections,
we name the images which are in the generic set and are
used to simulate the probe images in the evaluation set as the
reference images, and name the patches from the reference
images as reference patches. We also name the rest of faces
which contains some variations compared with the reference
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Algorithm 1 ALM algorithm for optimizing Eq. (6)
Input: Local patches Yi , gallery patches Ai , intra-class variance dic-
tionaries Di , λ and γ .
Output: Reconstruction coefficients X and S.
Initialize: Initialize X and S with the results of ESRC (Following
Yuan et al. (2012), we initialize them with the results of ESRC,
and we also find that such an initialization strategy achieves better
performance than an initialization with 0.). G = X , Z = S, E =
0, H1 = 0, H2 = 0, Ji = 0,∀i, μ = 0.5, μmax = 1010, ρ = 1.1 and
ε = 10−7.
while not converged do

1: Fixing the other variables and update G by

G = arg min
γ

μ
‖G‖2,1 + 1

2
‖G − (X − H1/μ)‖2

F .

2: Fixing the other variables and update Z by

Z = arg min
λ

μ
‖Z‖1 + 1

2
‖Z − (S − H2/μ)‖2

F .

3: Fixing the other variables and update X by

X = arg min tr(H T
1 (G−X))+

∑

i

tr(J T
i (Yi −Ai Xi −Di Si −Ei ))

+μ

2

(‖G − X‖2
F +

∑

i

‖Yi − Ai Xi − Di Si − Ei ‖2
F

)
.

4: Fixing the other variables and update S by

S = arg min tr(H T
2 (Z −S))+

∑

i

tr(J T
i (Yi −Ai Xi −Di Si −Ei ))

+μ

2

(‖Z − S‖2
F +

∑

i

‖Yi − Ai Xi − Di Si − Ei ‖2
F

)
.

5: Fixing the other variables and update E by

E = arg min ‖E‖2
F +

∑

i

tr(J T
i (Yi − Ai Xi − Di Si − Ei ))

+μ

2

∑

i

‖Yi − Ai Xi − Di Si − Ei ‖2
F .

6: Update the multipliers

H1 = H1 + μ(G − X).

H2 = H2 + μ(Z − S).

Ji = Ji + μ(Yi − Ai Xi − Di Si − Ei ), ∀i
7: Update the parameter μ by μ = min(ρμ,μmax ).
8: Check the convergence conditions:
‖Yi − Ai Xi − Di Si − Ei ‖2 < ε,∀i , ‖Z − S‖∞ < ε and
‖G − X‖∞ < ε.

end while

images as variation images, and the patches from these vari-
ation images as variation patch.

In ESRC (Deng et al. 2012), such an intra-class vari-
ance dictionary is generated from one of the following four
ways: the difference from a natural image, the difference
from the class centroid, pairwise difference, and the origi-
nal generic samples themselves. Experimental results show
that the difference based methods achieve better performance
than generic samples themselves (Deng et al. 2012). Hence
for our regularized patch-based image representation, we can
also manually design an intra-class variance dictionary for
each patch. Specifically, for each reference patch at certain

location, its intra-class variance dictionary can be generated
as follows. We collect all the variation patches which have
the same coordinates with the reference patch, and pair them
with the reference patch. Then the differences of all these
pairs make up the intra-class variance dictionaries.

4.2 Learning the Intra-class Variance Dictionary

One issue for manually designed intra-class variance dic-
tionaries is that their size is usually very large. Therefore
such large intra-class variance dictionaries inevitably lead to
expensive computational cost when optimizing regularized
patch-based face recognition. Therefore one question natu-
rally arises: can we learn some smaller intra-class variance
dictionaries without decreasing the performance compared
with manually designed intra-class dictionaries? To this end,
we propose an intra-class variance dictionary learning strat-
egy. Interestingly, in addition to improving the computational
efficiency, the learnt intra-class variance dictionaries also
achieve better performance than those based on manually
designed dictionaries. One possible reason for the better per-
formance of the learnt dictionaries is that the learnt intra-
class variance dictionaries not only include the variances in
the generic dataset but also may cover certain variances that
do not appear in the generic dataset but appear in the evalua-
tion dataset. Specifically, the manually designed dictionaries
are obtained by directly subtracting the variation images in
the generic dataset from their respective reference images or
the class centroid, therefore these intra-class variance dictio-
naries are somewhat person-specific, i.e., they are probably
restricted by the shape of faces and the positions of the nose
and mouth/eye corners of the persons in the generic dataset.
Given a probe image in the evaluation dataset, its variances
can be well removed probably only under the condition that
there is a person in the generic dataset having a similar face
shape (if the variances are related to the face shape), or hav-
ing similar mouth/eye corner positions (if the variances are
related to the mouth/eye corners). But for our learnt dictio-
naries, we require the variances for each person to be recon-
structed by using several atoms in our learnt dictionaries.
Therefore our dictionary learning method may decompose
each variance into several components which are shared by
different persons. As a result, the learnt dictionaries are less
restricted by person-specific properties, like face shape, the
positions of nose and mouth/eye corners, etc., and thus the
atoms in these learnt dictionaries may reconstruct the possi-
ble variances which appear only in the evaluation dataset.

For the sake of an easy explanation and simple notation,
next we will explain how to learn the intra-class variance dic-
tionary for the global image representation. For raw pixel fea-
tures, the intra-class variance dictionary for each patch can be
generated by dividing the global intra-class variance dictio-
nary into local patches based on the coordinates of the patches
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of the reference images. Please also note that this intra-class
variance dictionary learning method also applies to learning
intra-class variance dictionary for each patch regardless of
the feature used for patch characterization.

Suppose there are K subjects in the generic dataset, and
denote the reference image corresponding to the cth subject
in the generic dataset as AG

c , then all the reference images
make up the matrix AG = [AG

1 , . . . ,AG
K ]. Denote all the

variation images belonging to the cth subject as Gc. Then we
use the following formulation to learn the intra-class variance
dictionary.

min
D,αc,βc

K∑

c=1

(

‖Gc−AG
c αc−Dβc‖2

F+ν

∥
∥
∥
∥
αc

βc

∥
∥
∥
∥

1

)

+ η‖DT AG‖2
F

s.t. ‖D(:, j)‖2 = 1, ∀ j. (7)

Remarks (i) The first two terms mean that each varia-
tion image should be sparsely reconstructed by its reference
image and the intra-class variance dictionary. (ii) The term
‖DT AG‖2

F means that the intra-class variance dictionary
should be incoherent with the reference image of each sub-
ject. Without this term, the D may itself be enough for the
reconstruction of the variation images (αc = 0), which is
undesirable because we want the intra-class variance dictio-
nary to only cover the possible variances in SSPP. (iii) The
constraint on each column of D is used to get rid of the trivial
solution.

To avoid the effect of differences in the number of variation
images used for dictionary learning on different datasets dur-
ing the experiments, we set η = η0× the number of columns
in AG . By default, we set η0 = 10−5 and ν = 10−2 in all the
experiments. Needless to say, our intra-class variance dic-
tionary learning can be plugged into the ESRC (Deng et al.
2012) framework, and it will be shown that our learnt intra-
class variance dictionary both accelerates the sparse coding
optimization and improves its prediction accuracy (please
refer to Sect. 5.3).

4.3 Optimization

The objective function in Eq. (7) is not convex, but it is convex

for the reconstruction coefficients
[
αc

βc

]
when the intra-class

variance dictionary D is fixed, and vice versa. Following Lee
et al. (2006), Kong and Wang (2012), we alternatively opti-
mize the reconstruction coefficients and the intra-class vari-
ance dictionary. When the intra-class variance dictionary D is
fixed, it is the standard Lasso/sparse coding formulation, and
we use the feature-sign search algorithm (Lee et al. 2006) to

Algorithm 2 Learning intra-class variance dictionary
Input: The variation images in the generic dataset Gc; The reference
images in the generic dataset Ac (c = 1, . . . , K ); ν; η

Initialize D by randomly selecting some atoms from the manually
designed intra-class variance dictionary.
repeat

for i = 1 to K do

Infer the sparse codes

[
αc
βc

]

by optimizing (7) with D fixed using

the feature-sign search algorithm;
end for
for i = 1 to the number of atoms in D do

Update each D(:, j) with Eq. (9);
Normalize the �2 norm of D(:, j) to 1.

end for
until stopping criteria is reached.
Output: The Intra-Class Variance Dictionary: D.

infer the reconstruction coefficients.1 When the reconstruc-
tion coefficients are fixed, we arrive at the following problem:

min
D

‖R − Dβ‖2
F + η‖DT AG‖2

F

s.t. ‖D(:, j)‖2 = 1, ∀ j (8)

where Rc = Gc − AG
c αc, R = [R1, . . . , RK ], β =

[βT
1 , . . . , βT

K ]T . Following the work of Kong and Wang
(2012), we alternatively update each column of D. All the
rest of the columns are fixed while updating a given column.
By setting the derivative of Eq. (8) w.r.t. D(:, j) to be 0, we
get

D(:, j) = (η(AG)(AG)T + ‖β( j, :)‖2I)−1 R̂ jβ(i, :)T . (9)

Here R̂ j = R −∑
i,i �= j D(:, i)β(i, :). Then we normalize

D(:, j) to make its �2 norm equal to 1.
Since both the update of the reconstruction coefficients

and the update the codebook reduce the objective, the solu-
tion of the problem in Eq. (7) converges after several iter-
ations. In Fig. 2 we empirically show the changes of the
objective value with respect to the number of iterations in
alternative updating the coefficients and codebook on the
Extended Yale B and the CMU-PIE datasets. We can see that
the solution converges very fast.

5 Experiments

In this section, we evaluate our proposed method on the AR,
Extended Yale B, CMU-PIE, and LFW datasets (some sam-
ples of the images in the datasets are shown in Fig. 3). More-
over, the effect of different parameters in our formulation
will also be empirically evaluated.

1 Feature-sign search can be regarded as a variant of LARS (Efron et
al. 2004) and the LARS method demonstrates good performance for
solving sparse coding for face recognition (Wright et al. 2009).
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Fig. 2 The change of the objective value with respect to the number of iterations on the Extended Yale B and the CMU-PIE datasets

Fig. 3 a–c Samples of the
gallery image (the first one) and
probe images (the rest of the
faces) in the AR, Extended Yale
B, and CMU-PIE datasets. d
Some sample images in the
LFW dataset. The variances in
illumination, pose, occlusion,
and expression between the
gallery image and probe make
single sample per person face
recognition extremely
challenging

(a)

(b)

(c)

(d)

5.1 Experimental Setup

This paper focuses on proposing a regularized patch-based
image representation for single sample per person face recog-
nition. To make the comparison fair among all methods and
to remove the effect of features, following patch-based col-
laborative representation for classification (PCRC) (Zhu et
al. 2012), unless otherwise stated, we use the intensity of the
pixels as the features for all the methods, and all the images

are resized to 32 × 32 pixels on all the datasets. To make
a fair comparison and to avoid the effect of patch size on
the final performance, we also keep the same setting with
PCRC, i.e., the patch size is set to be 8 × 8 pixels, and the
distance between two patch centers is 4, so the patches are
overlapped with each other. All the features are normalized
with their �2 norm being 1. In the following experiments,
we set λ = 0.001 and γ = 0.05 in the formulation of the
regularized patch-based representation.
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We compare our work with the following work because
of their close relationships with our method: (1) SRC
(Wright et al. 2009), (2) CRC (Zhang and Feng 2011), (3)
ESRC (Deng et al. 2012), (4) PCRC (Zhu et al. 2012), and
(5) Sparse variational dictionary learning (SVDL) (Yang et
al. 2013).2 Moreover, we also compare our proposed method
with other existing works which are specially designed for
solving SSPP problems, including (6) Block LDA (Chen et al.
2004a), (7) SVD based LDA (Gao et al. 2008), (8) AGL (Su et
al. 2010), (9) (PC)2A (Wu and Zhou 2002), and (10) E(PC)2A
(Chen et al. 2004b). Besides the above mentioned baseline
methods, we also designed the following two baseline meth-
ods: (11) Patch based SRC (PSRC). Similar to PCRC, we use
SRC for each patch and majority voting is used for the final
label prediction. (12) Fisherfaces (Belhumeur et al. 1997).
We learn the projection matrix from the generic set, and apply
the learnt projection matrix to the evaluation data. For a fair
comparison, the same features are used for both global image
representation based methods and patch-based methods.

5.2 Evaluation on Different Datasets

5.2.1 Evaluation with the AR Dataset

The AR dataset (Martinez and Benavente 1998) contains
over 4,000 frontal faces which are taken from 126 sub-
jects (70 men and 56 women) in two different sessions, and
these images contain variances in occlusion (sunglasses and
scarves), expression (neutral expression, smile, angry, and
scream), and illumination. Some images contain both occlu-
sion and illumination variances. Following the work of ESRC
(Deng et al. 2012), 20 subjects from session 1 are used as the
generic dataset for learning the intra-class variance dictio-
naries, and the rest of 80 subjects, also from session 1, are
used for evaluation in our experiments. The size of the intra-
class variance dictionaries for all the patches is fixed to be
120. The frontal faces taken under normal lighting condi-
tions and neutral expressions are used as the gallery images,
and all the rest of 12 images for each subject are used as the
probe images. We list the performance of different methods

2 To learn the variation dictionary with SVDL, all subjects in the generic
set should have images for a given type of variation. For LFW, the
number of the variation type is unknown, and it is also impossible to find
the images with the same type of variation. Therefore it is impossible
to learn the dictionary with SVDL on this dataset. It is worth noting
that to make SVDL applicable to LFW dataset, Yang et al. (2013) used
the data from CMU-MultiPIE dataset as the generic set to learn the
dictionary, but such setting is different from ours. For fair comparison,
the performance of SVDL under such setting is not included in our
paper. For the Extended Yale B and CMU-PIE datasets, some persons
in the generic set don’t have images for some type of variations. If we
remove these persons, it would be unfair to compare SVDL with our
method and other baseline methods which use the generic set. Therefore
we only include the results of SVDL on the AR dataset.

Table 1 Performance comparison between different methods on the
AR dataset (%)

Method Subset 1 Subset 2 Subset 3 Subset 4

(PC)2A 60.83 81.25 35.00 15.94

E(PC)2A 60.00 81.25 35.00 15.94

FLDA-Block 69.17 53.33 51.25 37.50

FLDA-SVD 66.25 77.92 55.00 27.50

AGL 74.17 77.50 48.13 38.75

Fisherfaces 71.25 73.33 48.75 38.44

CRC 75.83 80.00 50.62 20.31

PCRC 92.92 91.25 96.88 85.94

SRC 77.08 80.42 50.62 21.56

PSRC 94.17 90.83 96.88 87.50

ESRC 96.67 80.83 84.38 68.44

SVDL 98.33 85.83 88.12 75.56

Ours 99.58 95.83 98.75 93.13

Images in subset 1–4 correspond to changes in illumination, expression,
disguise, and illumination+disguise, respectively

in Table 1. Results show that our method outperforms other
image representation methods that are specially designed for
SSPP, including PCRC, PSRC, and ESRC, and it achieves
the best performance under all the cases.

Specifically, for the variance in illumination (subset 1),
ESRC, PSRC, SVDL, and PCRC have already achieved rel-
atively good performance. But our method still outperforms
these methods. For the variances in expression and occlusion
(subset 2–4), the global image representation based ESRC
performs very poorly, but the patch-based PCRC and PSRC
perform relatively well. The reason may be that the infor-
mative regions for face recognition like the eyes and lips
are affected by expression and occlusion. Therefore global
image representation is severely handicapped when these
regions vary; but the patch-based method can overcome the
side effect of variances in these regions. Therefore, PCRC
and PSRC achieve better performance than ESRC. But com-
pared with PCRC and PSRC, our method overcomes the
effect of those non-discriminative patches like the forehead
and the cheeks, and it further improves face recognition accu-
racy. For example, for the images in subset 4 which contain
variances in both illumination and occlusion, the recognition
accuracy of ESRC, PSRC, SVDL, and PCRC is 68.44, 87.50,
76.56, and 85.94 %, respectively, but our regularized patch-
based representation achieves a rate of 93.13 %. Therefore the
improvement of our method over the existing work is very
significant in the presence of the variances in expression and
occlusion. These results demonstrate the effectiveness of our
regularized patch-based face representation for SSPP face
recognition.

Compared with SSPP when only a single variance (subset
1–3) is present, multiple variances (subset 4) decrease the
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Table 2 Performance comparison between different methods on the
Extended Yale B dataset (%)

Method S1 S2 S3

(PC)2A 37.38 39.24 39.24

E(PC)2A 37.04 38.89 38.89

FLDA-Block 61.58 60.41 60.41

FLDA-SVD 43.33 41.53 41.53

AGL 58.26 60.23 58.59

Fisherfaces 56.93 62.08 59.61

CRC 45.06 47.44 47.44

PCRC 74.57 71.87 71.87

SRC 42.04 41.45 41.45

PSRC 69.38 69.22 69.22

ESRC 68.00 70.90 69.58
Ours 84.52 86.68 84.92

Table 3 Performance comparison between different methods on the
CMU-PIE dataset (%)

Method C27 C05 C07 C09 C29

(PC)2A 26.09 22.49 19.64 24.05 20.75

E(PC)2A 25.87 22.24 19.64 23.78 20.75

FLDA-Block 64.67 23.21 24.19 34.03 25.95

FLDA-SVD 37.33 18.75 23.59 28.04 17.71

AGL 69.23 40.43 44.39 48.61 48.87

Fisherfaces 66.14 46.56 42.97 48.61 49.05

CRC 51.98 26.96 35.77 42.36 30.38

PCRC 76.58 44.69 57.18 59.20 41.15

SRC 51.46 29.08 35.16 42.01 31.25

PSRC 76.45 41.84 57.35 60.50 41.84

ESRC 81.83 67.35 62.4 70.23 65.28

Ours 88.79 67.82 70.67 76.74 67.45

performance. The possible reason for such a phenomenon is
that that for faces with multiple variances, the intra-class vari-
ance dictionaries are more complex. But due to the restriction
in the size of the generic set, we cannot have enough sam-
ples to learn all the possible variances, therefore restricting
the performance of the SSPP face recognition.

Moreover, Table 1 also shows that patch based representa-
tion achieves better performance than global image represen-
tation for both SRC and CRC, which validates the necessity
of patch-based representation in SSPP. It is need to men-
tion that though the Fisherfaces learns a projection matrix by
minimizing the intra-class variance and maximizing the inter-
class variance, but the projection is learnt from the generic
set in which the subjects doesn’t overlap with the subjects in
the evaluation set. Therefore the learnt matrix probably won’t
make the subjects in the evaluation set separable very well.
In contrast to our designed Fisherfaces baseline, AGL (Su et

Table 4 Performance comparison between different methods on the
LFW dataset (%)

Method S1 S2

(PC)2A 8.36 ± 0.81 8.36 ± 0.81

E(PC)2A 8.40 ± 1.41 8.40 ± 1.41

FLDA-Block 4.47 ± 0.87 4.47 ± 0.87

FLDA-SVD 6.99 ± 1.15 6.99 ± 1.15

AGL 13.33 ± 2.26 14.31 ± 0.86

Fisherfaces 12.69 ± 1.34 11.89 ± 2.16

CRC 14.57 ± 1.78 14.57 ± 1.78

PCRC 26.62 ± 1.60 26.62 ± 1.60

SRC 7.40 ± 1.35 7.40 ± 1.35

PSRC 28.26 ± 3.43 28.26 ± 3.43

ESRC 24.89 ± 1.87 26.54 ± 1.16

Ours 30.25 ± 1.54 31.39 ± 1.74

al. 2010) approximates the intra-class variance for the sub-
jects in the evaluation set by leveraging the generic set, which
makes it learn a better FLD projection matrix to increase the
separability for subjects in the evaluation dataset. Therefore
AGL usually achieves better performance than the designed
Fisherfaces baseline on AR, and similar phenomenons can
also be observed on Extended Yale B, CMU-PIE and LFW
in Tables 2, 3, and 4, respectively.

5.2.2 Evaluation with the Extended Yale B Dataset

The Extended Yale B dataset (Georghiades et al. 2001) con-
tains 38 categories, and 2,414 frontal-face images with severe
changes in illumination. For each subject, we use the frontal
face whose light source direction with respect to the camera
axis is at 0◦ azimuth (‘A+000’) and at 0◦ elevation (‘E+00’) as
the gallery image, and we use the images with other lighting
conditions as probe images. We try three different settings
on this dataset. (i) Setting S1. We take 15 subjects as the
generic dataset to learn the intra-class variance dictionaries
and use the rest of 23 subjects for evaluation. (ii) Setting S2.
We take 20 subjects as the generic dataset to learn the intra-
class variance dictionaries and use the remaining 18 subjects
for evaluation. (iii) Setting S3: We take 15 subjects as the
generic dataset, and use 18 subjects for evaluation. In S3,
the generic dataset is the same as that in S1, and the evalua-
tion set is the same as that in S2. The size of the intra-class
variance dictionaries in S1–S3 are all fixed to be 240. The
performance of different methods under different settings is
listed in Table 2. We can see that our method achieves the
best performance in all of the cases.3

3 (PC)2A, E(PC)2A, FLDA-Block, FLDA-SVD, CRC, PCRC, PSRC,
and SRC don’t use the generic dataset, so the performance of these
methods under S2 and S3 is the same.
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Compared with the illumination conditions in the AR
dataset, the illumination on the Extended Yale B is more
severe and more complex, and sometimes entire faces are
almost totally covered by shadow (please refer to Fig. 3),
therefore the performance of PCRC and PSRC is also very
poor, let alone the global representation based ESRC which
is not robust to faces with many severely corrupted regions.
Compared with the PCRC which achieves the best perfor-
mance of all the existing work, the improvement of our
method is more than 10 % in all the cases. Moreover, the
comparison between S2 and S3 shows that more subjects in
the generic dataset helps in learning better intra-class vari-
ance dictionaries, and thus boosts the performance of SSPP,
which is consistent with the observations in ESRC (Deng et
al. 2012).

5.2.3 Evaluation with the CMU-PIE Dataset

The CMU pose, illumination, and expression (CMU-PIE)
dataset (Sim et al. 2002) contains 41,368 images of 68 sub-
jects. For each subject, the images are taken under 13 different
poses, four different illumination conditions, and four differ-
ent expressions. We use 20 subjects as the generic dataset
to learn the intra-class variance dictionaries, and use all the
remaining 48 subjects for evaluation. For each subject, we
use the face images taken with the frontal pose (C27), neu-
tral expression, and normal lighting condition as the gallery
images, and we use the remaining images with the poses
C27, C29, C07, C05, C09 as probe images. We learn differ-
ent intra-class variance dictionaries for different poses, with
the size for the intra-class variance dictionary under all the
poses fixed to be 240. The performance of different meth-
ods on this dataset is given in Table 3, and our method again
achieves the best performance under all the cases. Compared
with the frontal face pose (C27), we notice that as the pose
changes, the performance of SSPP drops significantly.

In this dataset, each image usually contains multiple vari-
ances. Therefore it is more challenging than both AR and
Extended Yale B. Interestingly we find that for the frontal
pose (C27), faces looking up (C07), and faces looking down
(C09), the improvement of our method over ESRC is usu-
ally around 7 %, but for the faces looking left (C29) and
looking right (C05), the improvement of our method over
ESRC is not that significant. The reason may be that we
assume that all the images are well aligned, and we collect
the patches of probe images by following the same coordi-
nates with the gallery images. But for faces looking left and
looking right, usually some parts of the face, like the cheek,
are occluded (Fig. 3). These occluded parts cause the mis-
alignment issue, therefore affecting the performance of our
regularized patch-based representation. These occluded parts
explain the better performance of C07 (looking up) and C09

(looking down) compared to C05 (looking right) and C29
(looking left).

5.2.4 Evaluation with the LFW Dataset

The Labeled Faces in the Wild (LFW) dataset (Huang et al.
2007) contains images of 5,749 individuals taken under an
unconstrained setting.4 LFW-a is a subset of the LFW dataset,
and the images in LFW-a have been aligned with a commer-
cial software tool (Wolf et al. 2009). The faces acquired under
the unconstrained setting and inaccurate alignment make the
LFW data extremely challenging for face verification,5 let
alone face recognition in the SSPP setting. However, our goal
here is not to design a full fledged face recognition system.
Rather, we want to compare under the same alignment and
feature conditions, which representation and classification
methods are more appropriate. Following the work of Zhu et
al. (2012), we use the LFW-a for evaluation. On this dataset,
we conduct experiments under two different settings. (i) Set-
ting S1: Following the work of Zhu et al. (2012), we only use
the persons with no less than 10 photos as evaluation data
and generic set. There are 158 persons under such setting,
among which 78 subjects are used as the generic dataset for
learning the intra-class variance dictionaries, and 80 subjects
are used for evaluation. The size of the intra-class variance
dictionaries is fixed to 390 under such setting, which is the
half of the size of the intra-class variance dictionary used in
ESRC. (ii) Setting S2: Besides the 78 subjects used in the
S1, we also add the 1,522 subjects (4,840 images) which
contains 2–9 images per person to the generic set. There-
fore the total subjects in the generic set is 1,600 under S2.
As the manually designed intra-class variance dictionary is
very large (around 5 k), we fix the size of learnt intra-class
variance dictionary to be 500. The evaluation data in S2 are
the same as that in S1. To learn the intra-class variance dic-
tionaries in S1 and S2, we use the mean face of each person
as the reference image in the generic dataset. The reason
of using the mean face as the reference image in the generic
dataset is that the variances of the face in this dataset are very
significant, and misalignment also frequently appears. Mean-
while we observed qualitatively that the mean face looks like
the frontal face. Following the work of Zhu et al. (2012),
we also randomly choose one image as the gallery image
for each subject, and use nine images as the probe images
for evaluation. The performance of different methods based
on 10 independent experiments on this dataset is listed in
Table 4.

4 The LFW dataset is usually used for the face verification problem.
5 In order to obtain better face verification and recognition systems for
such datasets, typically one needs to use more sophisticated alignment
methods for more complicated face shape models.
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The results show that our method achieves the best per-
formance, and it outperforms PSRC which achieves the best
performance of all the existing work, by about 2 and 3 %
under S1 and S2, respectively. Please note that the SSPP face
recognition on the LFW dataset is extremely challenging
because of the variances in illumination, pose, expression,
and occlusion, as well as the grossly simplified alignment
used (Fig. 3). Moreover, the gallery image used for evalua-
tion for each person is randomly selected, and it is usually
a nonfrontal face with lots of intra-class variances for each
subject. Therefore the performance of all the methods on this
dataset is very poor. As aforementioned, we notice that the
mean face looks like a frontal face, and may overcome the
variances in pose, expression, illumination and occlusion.
Thus we manage to use the mean face of nine images from
each subject as the gallery image, and use one image which is
not overlapped with the images for generating the mean face
for evaluation. The accuracy of our method is 58.62±3.33 %
under S1. Therefore a good gallery image is very important
for SSPP face recognition. Further, by comparing with the
performance of AGL, ESRC, and our RPR under S1 and S2,
we can see that a larger generic set helps improve the recogni-
tion accuracy because a larger generic set helps characterize
more possible intra-class variances.

Compared with the performance of our method on other
datasets, the poorer performance on LFW also suggests that
good alignment is indispensable for good performance of the
SSPP recognition task. Nevertheless, our experiments clearly
show that the regularized part based representation should
still hold advantages over other methods even if a more com-
plicated deformation model is used for more careful face
alignment.

5.2.5 Evaluation on C27 (CMU-PIE) with the Intra-class
Variance Dictionary Learnt from Extended Yale B

We also conduct experiments by using heterogenous data
for generic set and evaluation set. Specifically, we use the
whole Extended Yale B dataset to learn the intra-class vari-
ance dictionary, and evaluate the learnt intra-class variance
dictionary with C27 from CMU-PIE which is a collection
of frontal faces with different illumination and expression.
The intra-class variance dictionary is fixed to be 500 in this
experiment. It is worth noting that the evaluation data here
are the same with that used in previous experiments. We list
the performance of different methods under such setting in
Table 5. It can be seen that our method still achieves the best
performance, which proves its effectiveness for SSPP face
recognition. In spite of more subjects (38 subjects vs. 20 sub-
jects) and images are used as generic set under such setting,
it can be observed that that the accuracy under such setting is
worse than that by using the intra-class variance dictionary
learnt from C27. The reason may be that the Extended Yale B

Table 5 Performance comparison on C27 CMU-PIE with different
generic sets (%)

Source of generic set Fisherfaces AGL ESRC Ours

Extended Yale B (38 subjects) 54.03 50.98 71.23 86.57

C27 (20 subjects) 66.14 69.23 81.83 88.79

dataset doesn’t contain the variance in expression, therefore
the dictionary learnt under such setting can only compen-
sate the illumination on C27 dataset. In real applications, we
should construct a large generic dataset which covers all pos-
sible variances. Such a large generic dataset would be a great
help for all the methods based on the generic dataset.

5.3 Evaluation of Intra-class Variance Dictionary Learning
Formulation

5.3.1 Parameter Evaluation

For simplification and computational efficiency, we select the
parameters in the formulation of learning intra-class variance
dictionary based on the ESRC. We plot the performance of
ESRC with different parameters in Eq. (7) in Fig. 4. We
can see for all the parameters tested in our experiments, the
performance of ESRC based on the learnt dictionary is usu-
ally better than that based on the manually designed dictio-
nary. Therefore the proposed formulation is robust to these
hyper-parameters in the dictionary learning formulation. For
simplification, we fix η0 = 10−5 and ν = 10−2 for all the
datasets.

5.3.2 Recognition Accuracy and Computational Efficiency

The biggest motivation for learning the intra-class variance
dictionaries is that the manually designed dictionaries are
usually very large and thus bring about expensive computa-
tional costs for the prediction of the faces to be recognized.
To further demonstrate the effect of learnt dictionaries in
our regularized patch-based face representation, we list the
recognition accuracy as well as the computational cost of our
face recognition method based on manually designed dictio-
naries and learnt dictionaries in Table 6.6 We can see that
our learnt dictionaries improve both the efficiency and the
accuracy. Especially on the AR dataset, compared with the
manually designed dictionaries whose size is 240, our learnt
dictionaries whose size is 120, can speed up the prediction
time by almost three times, meanwhile improving the recog-

6 We run the Matlab implementation of these methods on a Windows
Server (64bit) with a 2.13GHz CPU and 16GB RAM.

123



Int J Comput Vis

10
−5

10
−4

10
−3

10
−2

85

90

95

η
0

ac
cu

ra
cy

 (
%

)

The effect of η
0
 on the AR (disguise) dataset (ESRC, ν=10−2)

learnt dictionary
manually designed dictionary

10
−3

10
−2

85

90

95

ν

ac
cu

ra
cy

 (
%

)

The effect of ν on AR (disguise) dataset (ESRC,η
0
=10−5)

learnt dictionary
manually designed dictionary

Fig. 4 The effect of different parameters on dictionary learning. For all the parameters we used, the performance based on the learnt dictionary is
similar or better compared with that based on the manually designed dictionary. Moreover, our dictionary learning method is robust to η0 and ν

Table 6 Performance
comparison between the learnt
dictionaries and the manually
designed dictionaries on the AR
and CMU-PIE dataset

Dictionary type AR CMU-PIE

Illumination Expression Disguise Disguise+illumination C07 C09

Accuracy (%)

Designed 99.58 95.41 98.75 92.81 67.27 75.00

Learnt 99.58 95.83 98.75 93.13 70.67 76.73

Cost (s)

Designed 21.89 22.42 24.01 19.76 39.59 19.37

Learnt 7.46 7.87 8.12 7.00 14.84 14.84

nition accuracy. For a larger generic dataset, the improvement
in speed is more significant.7

5.3.3 Dictionary Size

In Fig. 5 we also experimentally evaluate the effect of the
size of intra-class variance dictionary on the performance
of our method on the AR dataset. We can see that the
recognition accuracy of our method increases with the size
of the intra-class variance dictionary and becomes stable
when the dictionary reaches a certain size, but the computa-
tional cost increases steadily with the size of intra-class vari-
ance dictionary. In real applications, we choose the proper
size of intra-class variance dictionary based on the trade-
off between the accuracy and the computational cost. We
also visualize the learnt intra-class variance dictionary on
the AR dataset in Fig. 6. We can see that the learnt dictionary

7 For the CMU-PIE dataset, the manually designed dictionaries are
very large for other poses (C27, C05, C29), therefore the prediction
is extremely very expensive, and we cannot finish it on our machine
in one day. Therefore we didn’t report the performance based on the
manually designed or learnt dictionaries under those poses. This fact
further proves the importance and necessity in learning the intra-class
variance dictionaries.

covers the possible variances in illumination, occlusion, and
expression.

5.3.4 Different Dictionary Learning Strategies

For the case of using the intensity of raw pixels as feature,
besides learning the intra-class variance dictionary for the
global image representation first and divide it into patches
which are used as the intra-class variance dictionaries, we
can also learn the patch-specific dictionaries one by one. We
show the performance of these two different dictionary learn-
ing strategies on the AR and CMU-PIE datasets in Fig. 7. It
can be seen that the performance of these two methods is
comparable on AR, but the performance based on the dictio-
nary learnt from the global image representation is better on
CMU-PIE, especially for pose C05 (looking right) and C29
(looking left). We conjecture the reason for such observa-
tion may be that learning intra-class dictionary based on the
global image representation makes the learnt intra-class vari-
ance dictionaries be regularized by the structure of the face,
thus they are more meaningful and more helpful in character-
izing the possible intra-class variances for SSPP face recog-
nition. It is also worth noting that there are many patches in
all as the patches are overlapped, which makes the computa-
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Fig. 5 The effect of intra-class variance dictionary size on the perfor-
mance of our method. The recognition accuracy increases with the size
of the dictionary first and gradually becomes stable when the dictionary

reaches some size, but the computational cost increases steadily with
the increase of the size of the dictionary

Fig. 6 An illustration of learnt intra-class variance dictionaries on the AR, Extended Yale B, and CMU-PIE datasets, respectively. We can see that
the learnt dictionaries characterize the variances in illumination, occlusion and expression

Fig. 7 The comparison between different dictionary learning strategies on AR and CMU-PIE. Images in subset 1–4 correspond to the changes in
illumination, expression, disguise, and illumination+disguise, respectively

tional cost of learning patch-specific dictionary more expen-
sive than that of learning the intra-class variance dictionary
for the whole image. Therefore for the intensity based fea-
tures, we learn the intra-class variance dictionary based on
the global image representation and divide it into patches. But
for other feature based patch characterization, like the fea-
tures in Sect. 5.5, we have to learn patch-specific intra-class
variance dictionaries for patches at different coordinates,
separately.

5.4 Evaluation of Regularized Patch-Based Image
Representation

5.4.1 Parameter Evaluation

We experimentally evaluate the effect of λ and γ on our
regularized patch-based image representation on the AR
dataset in Fig. 8. Here we increase λ from 0.001 to 0.05,
and increase γ from 0.005 to 0.1. We can see that the

123



Int J Comput Vis

10
−2

10
−1

85

90

95

100

γ

ac
cu

ra
cy

 (
%

)

The effect of γ on the AR (disguise) dataset (λ=10−3)

our method
ESRC

10
−3

10
−2

85

90

95

100

λ

ac
cu

ra
cy

 (
%

)

The effect of λ on the AR (disguise) dataset (γ=0.05)

our method
ESRC

Fig. 8 The effect of different parameters in our formulation for face recognition. The performance of our method is relatively robust to λ and γ

performance of our patch-based ESRC is relatively sta-
ble for the changes of these two parameters. Moreover,
for all the parameters we tested, our method always out-
performs the ESRC. Hence we fix λ = 0.001 and γ =
0.05.

5.4.2 Different Regularizers on the Reconstruction
Coefficients

To further demonstrate the effectiveness of our method, we
also design some other baselines with different constraints on
the reconstruction coefficients in Eq. (3). (i) We extend PCRC
of Zhu et al. (2012) to the case of using the intra-class variance
dictionaries by replacing the sparsity constraint and group
sparsity constraint in the RPR formulation [Eq. (4)] with the
squared �2 norm. We denote this method as extended PCRC
(EPCRC); (ii) We propose to conduct ESRC of Deng et al.
(2012) on patch level by replacing the group sparsity con-
straint in the RPR formulation with the sparsity constraint,
and denote such method as extended PSRC (EPSRC). (iii)
We set λ = 0 in the RPR formulation, which means we
only enforce the small reconstruction error and the group
sparsity of the reconstruction coefficients corresponding to
the gallery patches. (iv) We set γ = 0 in the RPR formula-
tion, which means we only enforce the small reconstruction
error and the sparsity of the reconstruction coefficients cor-
responding to the intra-class variance dictionaries. (5) We
switch off the constrains on the reconstruction coefficients
(λ = γ = 0) in the RPR formulation and minimize the recon-
struction error only. The comparisons between our method
and these baselines on different subsets of the AR dataset
are listed in Table 7. Some interesting phenomenons can be
observed in Table 7.

Firstly, it can be easily seen that the performance of formu-
lations without the constraints on the reconstruction coeffi-

Table 7 Performance comparison with different constraints on the
reconstruction coefficients on the AR dataset (%)

Method Subset 1 Subset 2 Subset 3 Subset 4

λ = 0 95.83 81.25 66.87 54.69

γ = 0 89.17 85.00 87.50 73.75

λ = γ = 0 94.67 76.67 85.00 69.37

EPCRC 74.58 74.58 81.87 62.81

EPSRC 98.75 94.16 98.75 91.35

Ours 99.58 95.83 98.75 93.13

Images in subset 1–4 correspond to the changes in illumination, expres-
sion, disguise, and illumination+disguise, respectively

cients corresponding either gallery patch dictionary, intra-
class variance dictionaries, or both dictionaries, is worse
than that of RPR with proper regularizers. This proves the
crucialness of regularizing the reconstruction coefficients.
Moreover, we also notice that only adding the constrains
on coefficients corresponding to one dictionary may result
even worse performance than that without any regularizers.
Specifically, compared with the recognition accuracy by only
minimizing the reconstruction error (λ = γ = 0), if only
the coefficients corresponding to patches of gallery is reg-
ularized with group sparsity, the performance improves for
the illumination and expression cases. This observation hints
that group sparsity is crucial for the recognition where face
contains locally corrupted regions or nondiscriminat regions,
like are blocked by sun-glasses. If only the coefficients cor-
responding to the intra-class variance dictionary are regu-
larized, the performance improves for the face recognition
containing occlusions and expressions. The reason for this
may be that these variances of different persons are very
similar on AR. For example, the occlusions comes from sun-
glasses and scarf, and expressions only contain three types.
Therefore these variances can be relatively easily character-
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Fig. 9 The performance results using patches with different size

ized by the intra-class variance dictionary with the sparsity
constraint.

Secondly, interestingly we find that with the intra-class
variance dictionary, the �2 norm regularized EPCRC per-
forms even worse than that without the intra-class vari-
ance dictionary (PCRC). It seems our observation contra-
dict with the perseveration in Zhang and Feng (2011) work
that both �1 norm and �2 norm achieve good performance
for face recognition. However, actually both results are valid
because the dictionary setting in these two papers are dif-
ferent paper. In Zhang and Feng (2011), the atoms in the
dictionary are all the training faces. In our setting, only
a small fraction of bases in the dictionary are the train-
ing faces, and most bases characterize the possible intra-
class variances which are irrelevant to the gallery images.
Densely combining these irrelevant bases and only a small
fraction of bases of gallery images for the recognition of
test sample would mislead the recognition. Similar phenom-
enon is also observed and analyzed in the work of Deng et
al. (2013). Such observation validates the effectiveness of
sparse representation for the SSPP with intra-class variance
dictionary.

Thirdly, EPSRC achieves the same accuracy for the dis-
guise case with our RPR, but RPR achieves better perfor-
mance than EPSRC for illumination, expression, and faces
containing variance in both illumination and disguise on
the AR dataset. The reason for this observation is that the
AR dataset is a well-controlled face recognition dataset, and
for the disguise case, either the sun-glasses or the scarf
blocks the face. These blocked region can be well over-
come by the intra-class variance dictionary. The unblocked
faces regions are still discriminative enough for face recogni-
tion. For the case of expression and illumination, the recog-
nition can be mislead by those patches that are not very
class-specific. With the help of group sparsity, the recog-
nition of those patches can be boosted. To further verify
our assumption, we compare EPSRC and our RPR on the
CMU-PIE dataset where each face usually contains multi-
ple variances. For the cases of C05 and C29 (looking left
and right), the performance of EPSRC is 62.63 and 63.54 %,
which is lower than our method by 5.19 and 3.91 %, respec-
tively. These comparisons verifies the effectiveness of group
sparsity regularizer on the face recognition with complex
variances.
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The AR dataset

The Extended Yale B dataset

Fig. 10 An illustration of the 8 × 8 patches on the AR and Extended
Yale B datasets. These patches usually fall over the semantically mean-
ingful parts of the faces

5.4.3 Patch Size

We also experimentally evaluate the effect of patch sizes on
the face recognition accuracy. We list the performance of
using patches with different sizes on AR dataset, Extended
Yale B (setting S3), CMU-PIE (C29), and LFW in Fig. 9. We
can see that the performance is the best when the patch size
is 8 on AR and Extended Yale B and the possible reason for
this is that the 8 × 8 patches usually cover the semantically
meaningful part of the face on these two datasets (Fig. 10),
like the eyes, the nose, the lips, and these these patches are
the most informative parts of the face. But on CMU-PIE and
LFW, the optimal patch size is different. It is worth noting
that the optimal patch size is determined by the way of align-
ing and cropping faces and the size of the cropped faces. As
shown in Fig. 3, as the face are aligned and cropped in dif-
ferent methods on these datasets, though the image size are
the same, the optimal patch size are still different on these
datasets.

5.5 The Effect of Different Features

In addition to the intensity of the pixels (64D), we also
implement RPR based on the following features. It is worth
noting that for the patch-specific dictionaries are learnt for
the following features. (1) Modular PCA (MPCA) (Got-
tumukkal and Asari 2004) (32D), which divides each image
into patches and performs PCA on these patches, (2) Block
LDA (Chen et al. 2004a) (32D), which treats patches from
the same gallery image as instances with the same class
label and performs LDA at patch level, (3) uniform pat-
terns based LBP (Ahonen et al. 2006) (59D), and (4) Gabor
feature (Liu and Wechsler 2002) (20D). We list the per-
formance of these features on the AR dataset in Table 8.
Results show that the intensity feature and MPCA feature
based RPR usually achieve the best performance in terms of
recognition accuracy for patch-based image representation.

Table 8 Performance comparison between different features on the AR
dataset (%)

Feature type Subset 1 Subset 2 Subset 3 Subset 4

Intensity based RPR 99.58 95.83 98.75 93.13

MPCA based RPR 99.17 97.08 98.75 95.31

LDA-Block based RPR 96.67 85.42 94.38 78.13

LBP based RPR 81.67 95.00 97.50 74.38

Gabor based RPR 95.42 95.42 95.00 89.69

Images in subset 1–4 correspond to the changes in illumination, expres-
sion, disguise, and illumination+disguise, respectively. The best perfor-
mance is highlighted with bold font

The possible reason for the good performance of MPCA
feature may be that such patch-based PCA removes some
noises which may harm face recognition. Moreover MPCA
feature is more computational efficient because of its lower
dimensionality.8

5.6 Computational Complexity

The main computational cost of our RPR based SSPP comes
from the two parts: (i) Learning the intra-class variance dic-
tionary in Eq. (7); and (ii) Solving the reconstruction coeffi-
cients in the RPR formulation in Eq. (4) with ALM algorithm.

For learning the intra-class variance dictionary, its compu-
tational cost is O(L Mn2d3) where L is the number of outer
loop in the Algorithm 2, M is the number of atoms in the
intra-class variance dictionary, n is the number of variation
images in the generic set, and d is the dimensionality of the
features.9 Empirically, for the setting S2 on the LFW dataset
where the number of images in the generic dataset is more
than 5 k and the atoms in the intra-class variance dictionary is
500, the dictionary can be learnt within 1 h on a workstation
with four 2.80GHz Intel Xeon CPUs.

For the computational cost of solving the RPR, because
each subproblem of RPR in the Algorithm 1 has a closed-
form solution, we can still solve the RPR efficiently. Specifi-
cally, we list the computational costs of AGL and some SRC
and CRC based methods in Table 9. Compared with ESRC,
though we have more patches, the intra-class variance dictio-
nary is smaller than that in ESRC, which helps improve the
efficiency of our method. Specifically, our method is about
three times slower than ESRC and two times faster than
EPSRC. Our method can be further accelerated with more
elaborately designed implementation.

8 Please also note that all the results are based on the same parameters,
which are designed for intensity features. Fine-tuned parameters for
other features may further improve their performance.
9 The computational cost for updating the sparse coefficients with
feature-sign-search algorithm is less expensive than that of updating
the intra-class variance dictionary.
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Table 9 Time costs of different methods (s)

CRC PCRC SRC PSRC

0.0068 0.067 0.033 0.37

AGL ESRC EPSRC Ours

0.00073 0.43 2.2 1.2

6 Conclusion

In this paper, we propose a regularized patch-based rep-
resentation for the single sample per person face recogni-
tion task. Our formulation harvests the advantages of both
patch-based image representation and global image repre-
sentation. Moreover, we also propose to learn the intra-class
variance dictionary which not only accelerates the face pre-
diction but also improves the recognition accuracy. Experi-
mental results on the AR, Extended Yale B, CMU-PIE, and
LFW datasets demonstrate the effectiveness of our proposed
method.
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