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Abstract Single-sample face recognition is one of the most
challenging problems in face recognition. We propose a novel
algorithm to address this problem based on a sparse represen-
tation based classification (SRC) framework. The new algo-
rithm is robust to image misalignment and pixel corruption,
and is able to reduce required gallery images to one sample
per class. To compensate for the missing illumination infor-
mation traditionally provided by multiple gallery images, a
sparse illumination learning and transfer (SILT) technique
is introduced. The illumination in SILT is learned by fitting
illumination examples of auxiliary face images from one or
more additional subjects with a sparsely-used illumination
dictionary. By enforcing a sparse representation of the query
image in the illumination dictionary, the SILT can effectively
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recover and transfer the illumination and pose information
from the alignment stage to the recognition stage. Our exten-
sive experiments have demonstrated that the new algorithms
significantly outperform the state of the art in the single-
sample regime and with less restrictions. In particular, the
single-sample face alignment accuracy is comparable to that
of the well-known Deformable SRC algorithm using multi-
ple gallery images per class. Furthermore, the face recogni-
tion accuracy exceeds those of the SRC and Extended SRC
algorithms using hand labeled alignment initialization.

Keywords Single-sample face recognition · Illumination
dictionary learning · Sparse illumination transfer · Face
alignment · Robust face recognition

1 Introduction

Face recognition is one of the classical problems in com-
puter vision. Given a natural image that may contain a
human face, it has been known that the appearance of the
face image can be easily affected by many image nuisances,
including background illumination, pose, and facial corrup-
tion/disguise such as makeup, beard, and glasses. There-
fore, to develop a robust face recognition system whose
performance can be comparable to or even exceed that of
human vision, the computer system needs to address at
least the following three closely related problems: First, it
needs to effectively model the change of illumination on the
human face. Second, it needs to align the pose of the face.
Third, it needs to tolerance the corruption of facial features
that leads to potential gross pixel error against the gallery
images.

In the literature, many well-known solutions have been
studied to tackle these problems (Hager and Belhumeur
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1998; Zhao et al. 2003; Ho et al. 2003; Ganesh et al.
2011), although a complete review of the field is outside the
scope of this paper. More recently, a new face recognition
framework called sparse-representation based classification
(SRC) was proposed (Wright et al. 2009), which can success-
fully address most of the above problems. The framework is
built on a subspace illumination model characterizing the
distribution of a corruption-free face image sample (stacked
in vector form) under a fixed pose, one subspace model per
subject class (Belhumeur et al. 1997; Basri and Jacobs 2003).
When an unknown query image is jointly represented by all
the subspace models, only a small subset of these subspace
coefficients need to be nonzero, which would primarily corre-
spond to the subspace model of the true subject. Therefore,
by optimizing the sparsity of such an overcomplete linear
representation, the dominant nonzero coefficients indicate
the identity of the query image. In the case of image corrup-
tion, since the corruption typically only affects a sparse set
of pixel values, one can concurrently optimize a sparse error
term in the image space to compensate for the corrupted pixel
values.

In practice, a face image may appear at any image loca-
tion with random background. Therefore, a face detection
and registration step is typically first used to detect the face
image. Most of the methods in face detection would learn
a class of local image features/patches that are sensitive to
the appearance of key facial features (Yan et al. 2003; Viola
and Jones 2004; Liang et al. 2008). Using either an active
shape model (Cootes et al. 1995) or an active appearance
model (Cootes et al. 1998), the location of the face can be
detected even when the expression of the face is not neutral
or some facial features are occluded (Saragih et al. 2009; Gu
and Kanade 2008). However, using these face registration
algorithms alone is not sufficient to align a query image to
gallery images in SRC. The main reasons are two-fold: First,
except for some fast detectors such as Viola-Jones (Viola and
Jones 2004), more sophisticated detectors are expensive to
run and require learning prior distribution of the shape model
from meticulously hand-labeled gallery images. More impor-
tantly, these detectors would register the pixel values of the
query image with respect to the average shape model learned
from all the gallery images, but they typically cannot align
the pixel values of the query image to the gallery images for
the purpose of recognition, as required in SRC.

Following the sparse representation framework in Wright
et al. (2009), Wagner et al. (2012), we propose a novel algo-
rithm to effectively extend SRC for face alignment and recog-
nition in the small-sample-set scenario. We observe that in
addition to the aforementioned image nuisances, one of the
outstanding challenges in face recognition is indeed the small
sample set problem. For instance, in many biometric, sur-
veillance, and Internet applications, there may be only a few
gallery examples that are collected for a subject of interest,

and the subject may not be able to undergo a comprehensive
image collection session in a laboratory.1

Unfortunately, most of the existing SRC-based alignment
and recognition algorithms would fail in such scenarios. For
starters, the original SRC algorithm (Wright et al. 2009)
assumes a plurality of gallery samples from each class must
sufficiently span its illumination subspace. The algorithm
performs poorly in the single sample regime, as we will later
shown in our experiment. In Wagner et al. (2012), in order to
guarantee that the gallery images contain sufficient illumina-
tion patterns, the test subjects must further go through a non-
trivial passport-style image collection process in a dark room
in order to be entered into the gallery database. More recently,
another development in the SRC framework is simultaneous
face alignment and recognition methods (Yan et al. 2010;
Huang et al. 2008; Yang et al. 2012). Nevertheless, these
methods did not go beyond the basic assumption used in
SRC and other prior art that the face illumination model is
measured by multiple gallery samples for each class. Further-
more, as shown in Wagner et al. (2012), robust face align-
ment and recognition can be solved separately as a two-step
process, as long as the recovered image transformation can
be carried over from the alignment stage to the recognition
stage. Therefore, simultaneous face alignment and recogni-
tion could make the already expensive sparse optimization
problem even more difficult to solve.

1.1 Contributions

Single-sample face alignment and recognition represents an
important step towards practical face recognition solutions
using images collected in the wild or on the Internet. We
contend that the problem can be solved quite effectively by
an elegant algorithm. The key observation is that one sample
per class mainly deprives the algorithm of an illumination
subspace model for individual classes. We show that an illu-
mination dictionary can be learned from additional subject
classes to compensate for the lack of the illumination infor-
mation in the gallery set.

Due to the fact that the variations of human faces are usu-
ally smaller than illumination changes of the same face, we
propose a dictionary learning method to decompose the face
images as vectors into two components: a low-rank matrix
encodes the subject identities while a sparsely-used matrix
(or dictionary) represents the possible illumination varia-
tions. The auxiliary illumination images can be selected out-
side the set of gallery subjects. Since most of the informa-

1 In this paper, we use Viola-Jones face detector to initialize the face
image location. As a result, we do not consider scenarios where the
face may contain a large 3D transformation or large expression change.
These more severe conditions can be addressed in the face detection
stage using more sophisticated face models as we previously mentioned.
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tion associated with the subject identities is contained in the
rank-constrained matrix, the sparsely-used illumination dic-
tionary is expected to be subject-invariant. Finally, we show
that the other image nuisances, including pose variation and
image corruption, can be readily corrected by a single gallery
image of arbitrary illumination condition combined with the
illumination dictionary. The algorithm also does not need to
know the information of any possible facial corruption for
the algorithm to be robust. The new method is called sparse
illumination learning and transfer (SILT). Similarly, the illu-
mination dictionary defined in the method will be referred to
as the SILT dictionary.

Preliminary results of this work were first reported in our
conference paper (Zhuang et al. 2013). To the best of our
knowledge, the paper (Zhuang et al. 2013) was the first to pro-
pose a solution to perform small-sample-set facial alignment
and recognition via a sparse illumination transfer. However,
the construction of the illumination dictionary in Zhuang et
al. (2013) was largely ad hoc via a simple concatenation of the
auxiliary illumination samples. It was suggested in Zhuang
et al. (2013) that a sparse illumination representation can be
found to compensate for the missing illumination model in
single gallery images. In this paper, we propose a new illu-
mination dictionary model to specifically learn the dictio-
nary from the auxiliary images. We also study efficient opti-
mization algorithms to solve the dictionary learning problem
numerically. Finally, more comprehensive experiments are
conducted, especially on the case when the number of avail-
able illumination learning subjects grows from one to many.
In the largest scale, we employ all the 38 available subjects
in the Extended YaleB database (Lee et al. 2005) as the aux-
iliary illumination samples. The new results show improved
recognition results than those in Zhuang et al. (2013).

In terms of the algorithm complexity, learning the SILT
dictionary contains two successive procedures; one is princi-
pal component analysis (PCA)-like solution while the other
involves solving a sequence of linear programs. The learn-
ing algorithm is almost parameter-free, only dependent on
the dictionary size. Applying the SILT dictionary in the
alignment and recognition stages potentially can significantly
improve the speed of SRC-type algorithms, because a sparse
optimization solver such as those in Yang et al. (2013) is now
faced with much smaller linear systems that only involves a
single sample per class plus a small learned illumination dic-
tionary.

This paper bears resemblance to the work called Extended
SRC (Deng et al. 2012), whereby an intraclass variant dic-
tionary was similarly added to be a part of the SRC objective
function for recognition. Our work differs from Deng et al.
(2012) in that the proposed SILT dictionary is automatically
learned from a selection of independent subject(s), whereas
in Deng et al. (2012), the dictionary is simply hand-crafted.
Yet, the subject classes used to learn the SILT dictionary is

also impartial to the gallery classes. Furthermore, by transfer-
ring both the pose and illumination from the alignment stage
to the recognition stage, our algorithm can handle insufficient
illumination and misalignment at the same time, and allows
for the single reference images to have arbitrary illumination
conditions. Finally, our algorithm is also robust to moderate
amounts of image pixel corruption, even though we do not
need to include any image corruption examples in the SILT
dictionary, while in Deng et al. (2012) the intraclass variant
dictionary uses both normal and corrupted face samples. We
also compare our performance with Deng et al. (2012) in
Sect. 5.

More recently, the problem of single-sample face recogni-
tion was considered in another work (Yang et al. 2013), called
sparse variation dictionary learning (SVDL). The work pro-
posed an alternative method to learn a sparse variation dic-
tionary that amends the SRC framework with single samples.
The main difference between the two dictionary learning
algorithms is that in SVDL, both the illumination learning
images and the gallery images are involved in the dictionary
learning algorithm. The authors argued that jointly consid-
ering the illumination samples and the gallery samples helps
to generate a very compact, adaptive dictionary that exploits
the correlation between the illumination learning set and the
gallery set. While in this paper, the learning of the SILT
dictionary is independent of the gallery set and the align-
ment and recognition tasks. Therefore, the learned dictionary
can be estimated off-line and without costing any computa-
tional penalty when the gallery images are presented. Fur-
thermore, the SILT framework addresses both face alignment
and recognition problems, and is capable of transferring both
the illumination and pose information from the alignment
stage to the recognition stage. In contrast, SVDL in Yang
et al. (2013) only concerns face recognition with a frontal
position, and its complexity would grow substantially when
its adaptive dictionary needs to be re-computed under vary-
ing poses of the query image. We will show in Sect. 5 that,
without considering this pose-related computational penalty
for SVDL, the SILT framework outperforms SVDL in both
recognition accuracy and robustness to pixel corruption.

2 Sparse Representation-based Classification

In this section, we first briefly review the SRC framework.
Assume a face image b ∈ R

d in grayscale can be writ-
ten in vector form by stacking its pixels. Given L sub-
ject classes, assume ni well-aligned gallery images Ai =
[ai,1, ai,2, . . . , ai,ni ] ∈ R

d×ni of the same dimension as b
are sampled for the i-th class under the frontal position and
various illumination conditions. These gallery images are fur-
ther aligned in terms of the coordinates of some salient facial
features, e.g., eye corners and/or mouth corners. For brevity,
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the gallery images under such conditions are said to be in the
neutral position. Furthermore, we do not explicitly model
the variation of facial expression in this paper. Based on the
illumination subspace assumption, if b belongs to the i-th
class, then b lies in the low-dimensional subspace spanned
by the gallery images in Ai , namely,

b = Ai xi . (1)

When the query image b is captured in practice, it may
contain an unknown 3D pose that is different from the neutral
position. In image registration literature (Lucas and Kanade
1981; Hager and Belhumeur 1998; Wagner et al. 2012), the
effect of the 3D pose can be modeled as an image transforma-
tion τ ∈ T , where T is a finite-dimensional group of trans-
formations, such as translation, similarity transform, affine
transform, and homography. The goal of face alignment is to
recover the transformation τ , such that the unwarped query
image b0 in the neutral position remains in the same illumi-
nation subspace: b0

.= b ◦ τ = Ai xi .
In robust face alignment, the issue is often further exac-

erbated by the cascade of complex illumination patterns and
moderate image pixel corruption and occlusion. In the SRC
framework (Wright et al. 2009; Wagner et al. 2012), the com-
bined effect of image misalignment and sparse corruption is
modeled by

τ̂i = arg min
xi ,e,τi

‖e‖1 subj. to b ◦ τi = Ai xi + e, (2)

where the alignment is achieved on a per-class basis for each
Ai , and e ∈ R

d is the sparse alignment error. After lineariz-
ing the potentially nonlinear image transformation function
τ , (2) can be solved iteratively by a standard �1-minimization
solver. In Wagner et al. (2012), it was shown that the align-
ment based on (2) can tolerate translation shift up to 20%
of the between-eye distance and up to 30◦ in-plane rotation,
which is typically sufficient to compensate moderate mis-
alignment caused by a good face detector.

Once the optimal transformation τi is recovered for each
class i , the transformation is carried over to the recognition
algorithm, where the gallery images in each Ai are trans-
formed by τ−1

i to align with the query image b. Finally,
a global sparse representation x with respect to the trans-
formed gallery images is sought by solving the following
sparse optimization problem:

x∗ = arg minx,e ‖x‖1 + ‖e‖1

subj. to b =
[

A1 ◦ τ−1
1 , . . . , AL ◦ τ−1

L

]
x + e.

(3)

One can further show that when the correlation of the face
samples in A is sufficiently tight in the high-dimensional
image space, solving (3) via �1-minimization guarantees to

recover both the sparse coefficients x and very dense ran-
domly signed error e (Wright and Ma 2010).

3 Sparse Illumination Learning and Transfer

In this section, we propose a novel face alignment algorithm
that is effective even when a very small number of train-
ing images are provided per class, called sparse illumination
learning and transfer (SILT). In the extreme case, we specif-
ically consider the single-sample face alignment problem
where only one training image ai of arbitrary illumination is
available from class i . The same algorithm easily extends to
the case when multiple training images are provided. In Sect.
4.2, we will show how to integrate the estimation of SILT in
robust single-sample face recognition. In Sect. 5, we further
show in our experiment that SILT is also complementary and
useful in other existing face recognition methods as an image
pre-processing step.

3.1 Illumination Dictionary Learning

To mitigate the scarcity of the training images, something
has to give to recover the missing illumination model under
which the image appearance of a human face can be affected.
Motivated by the idea of transfer learning (Do and Ng 2005;
Quattoni et al. 2008; Lampert et al. 2009), we stipulate that
one can obtain the illumination information for both align-
ment and recognition from a set of additional subject classes,
called the illumination dictionary. The auxiliary face images
for learning the illumination dictionary have the same frontal
pose as the gallery images, and can be collected offline and
different from the query classes A = [A1, . . . , AL ]. In other
words, no matter how scarce the gallery images are, one can
always obtain a potentially large set of auxiliary face images
from other unrelated subjects who may have similar face
shapes as the query subjects and may provide sufficient illu-
mination examples.

Suppose that we are given face images of sufficient illumi-
nation patterns for additional p subjects D = [D1, . . . , Dp]
∈ R

d×(np), and assume without loss of generality that each
subject contains n face images, i.e., Di ∈ R

d×n for subject
i , and each image has the same dimension as the gallery
images.

Our hope is that D can be expressed by a superposition of
a rank-constrained matrix and a sparsely-used matrix:

D = V ⊗ 1T + C S, (4)

where V ∈ R
d×p is a matrix where each column vector

represents a subject class from 1 to p, 1 ∈ R
n , C ∈ R

d×k is
a learned illumination dictionary, and S ∈ R

k×np is a sparse
matrix. Here, ⊗ denotes the Kronecker product, and hence
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the first term V ⊗ 1T ∈ R
d×(np) in (4) is clearly low rank.

We also assume that k ≤ min{d, np} for C to prevent model
over-fitting.

One can better understand the roles of the different matri-
ces in (4) as follows: V ⊗1T describes the inter-class variation
associated with the p different subject identifies, C describes
the common intra-class variation associated with the illumi-
nation change, and S operates like a sparse representation
of illumination patterns that compensate the singular subject
images in V . Considering other possible face variations, we
may further add a small error term E ∈ R

d×np in (4) as

D = V ⊗ 1T + C S + E . (5)

To encourage sparsity of S and minimum fitting error E ,
we formulate the illumination dictionary learning problem
as an optimization problem

min
V,C,S,E

‖S‖0 + ‖E‖F subj. to D = V ⊗ 1T + C S + E, (6)

where ‖ · ‖0 denotes the matrix �0-norm and ‖ · ‖F is the
Frobenius norm. Note that in the SRC framework such as (2)
and (3), the image corruption has been traditionally estimated
by minimizing a sparse error term ‖E‖0. The reason we can
model a dense error term using ‖E‖F is that the selection
of the auxiliary illumination examples is conducted manu-
ally and offline. Therefore, it is reasonable to assume that
the face images in D do not contain significant facial dis-
guise and pixel corruption. This assumption also simplifies
the complexity of the optimization problem in (6).

3.2 Numerical Implementation

Solving (6) is a challenging problem, mainly because it has a
non-convex objective function and a non-convex, non-linear
constraint. In optimization, the standard procedure to relax
the non-convex objective function is to find a good con-
vex surrogate. However, the second problem about how to
handle the non-convex, non-linear constraint is less under-
stood. Although the well-known alternating direction method
(Gabay and Mercier 1976; Tseng 1991; Boyd et al. 2011) can
be applied, the solution may not converge to the global opti-
mum.

In the following, we will reformulate the constraint in
(6) and propose a successive optimization algorithm. The
algorithm can be shown numerically to recover V, C, S, E
exactly if S is sufficiently sparse.

First, we reformulate the constraint of (6) as follows:

D = (V − C F)︸ ︷︷ ︸
V

⊗1T + CW︸︷︷︸
C

W −1(S + F ⊗ 1T )︸ ︷︷ ︸
H

+E, (7)

where F ∈ R
k×p measures the possible ambiguity between

the first two terms of the right hand side, and W ∈ R
k×k is a

non-singular transformation such that C
T

C = I , where I is
the identity matrix of proper dimension.

From (7), we have

S = W H − F ⊗ 1T . (8)

Hence, problem (6) can be written as:

min
rank(W )=k

F

⎡
⎢⎢⎣‖W H − F ⊗ 1T ‖0 +

⎛
⎜⎜⎝ min

D=V ⊗1T +C H+E

C
T

C=I

‖E‖F

⎞
⎟⎟⎠

⎤
⎥⎥⎦ .

(9)

The new formulation in (9) allows us to apply a successive
optimization strategy. In this case, successive optimization
exploits the successive structure of (9) to recursively approx-
imate problem (6). Although it is a heuristic, but it can have
promising performance in practice.

More specifically, we approximate problem (9) by decou-
pling it into two successively processed stages:

{V
∗
, C

∗
, H∗,E∗} = arg min ‖E‖F

subj. to D = V ⊗ 1T + C H + E, C
T

C = I,
(10)

{W ∗,F∗} = arg min ‖W H∗ − F ⊗ 1T ‖0

subj. to rank(W ) = k. (11)

Suppose that {V
∗
, C

∗
, H∗, E∗, W ∗, F∗} are found, then the

solutions of the other variables in problem (6) are given by

C∗ = C
∗
(W ∗)−1, (12a)

V ∗ = V
∗ + C∗F∗, (12b)

S∗ = W ∗ H∗ − F∗ ⊗ 1T . (12c)

In what follows, we describe how to solve problem (10)
and (11).

3.2.1 Solving Problem (10)

Problem (10) is a difficult non-convex problem. Fortunately
we can prove that it has a closed-form solution, as stated in
the following theorem:

Theorem 1 Suppose that D = [D1, D2, ..., Dp] where Di

is the training set associated with subject i , and assume each
subject has n images. Problem (10) has the following closed-
form solution:
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V
∗ = [ 1

n D11, 1
n D21, . . . , 1

n Dp1 ],
C

∗ = [ q1(UU T ), q2(UU T ), . . . , qk(UU T ) ],
H∗ = (C

∗
)T (D − V

∗ ⊗ 1T ),

E∗ = D − V
∗ ⊗ 1T − C

∗
H∗.

(13)

where U = D − V
∗ ⊗ 1T and qi (Z) is the eigenvector

associated with the i th principal eigenvalue of the square
matrix Z.

The proof of Theorem 1 is given in Appendix. To better
understand the closed-form solution, we can see that each
column of V

∗
represents the mean vector of a training set Di .

Therefore, U represents a normalized data matrix when the
mean vectors are removed from D. Since the column vectors
of C are the first k orthonomal basis vectors that maximizes
the inter-class variance, it can be thought of as a variant of
principal component analysis (PCA).

3.2.2 Solving Problem (11)

We now turn our attention to problem (11), which is more
difficult than (10). The problem is very similar to a conven-
tional sparse dictionary learning problem, where the goal is to
learn a basis that most compactly represents the face images
D. While many heuristics have been proposed before (e.g.,
see Aharon et al. (2006) and the references therein), because
of its combinatorial nature, this problem is difficult to solve
efficiently.

Our solution of (11) is largely inspired by a recent paper
(Spielman et al. 2012), which shows that the inverse problem
can be well-defined, and there exist efficient and provably
correct algorithms to solve the inverse problem. The only
difference lies in that our problem has an additional unknown
matrix F here. Hence, we propose to solve problem (11) by
solving the following linear programs sequentially; that is,
for i from 1 to k, we solve

{ŵi , f̂ i } = arg min
w∈Rk , f ∈Rp

‖wT H∗ − f T ⊗ 1T ‖1,

subj. to wT P⊥
Ŵi−1

r = 1, (14)

where ŵ
T
i and f̂

T
i denote the estimates of the i th row vec-

tor of W and F , respectively, Ŵi−1 = [ŵ1, ..., ŵi−1] ∈
R

k×(i−1) denotes a matrix comprising previously found solu-
tions, P⊥

Ŵi−1
is the orthogonal complement projector of Ŵi−1,

and r ∈ R
k is an analysis filter. Note that the constraint in

(14) is to ensure P⊥
Ŵi−1

w 	= 0, ∀ i , and so the rank of the

final solution W ∗ is equal to k.
The intuition behind (14) is to use a sequence of

�1-minimization (or linear programs) to approximate the
non-convex �0 minimization problem (11). While the prob-
lem addressed in Spielman et al. (2012) slightly differs from
(14), their theoretical results may suggest us how to choose
the analysis filter r. Applying their results to our problem,
we select r to be a column of H∗ and choose the solution to
be the one that results in minimum cardinality.

The details of the successive optimization for problem
(6) are summarized in Algorithm 1. Here, [·]i denotes the
i th column of a matrix. Note that the proposed method only
has the number of atoms k to tune. Therefore, it generates
consistent results for a given dataset and k.

Algorithm 1: Successive optimization for (6).
input : Data matrix D, and number of atoms k.
initialize Ŵ = 0 and F̂ = 0.
compute V

∗
, C

∗
, H∗, and E∗ by (13).

for i = 1, ..., k do
for j = 1, ..., np do

choose r = [H∗] j .

compute {ŵi j , f̂ i j } by (14).
end
compute � ∈ arg min j ‖ŵT

i j H∗ − f̂
T
i j ⊗ 1T ‖0.

update (ŵi , f̂ i ) = (ŵi�, f̂ i�).
update [Ŵ ]i = ŵi and [F̂]i = f̂ i .

end
update (W ∗, F∗) = (Ŵ T , F̂T ).
compute C∗, V ∗, S∗ by (12).
output: solution (V ∗, C∗, S∗, E∗).

Example 1 To illustrate the illumination dictionary model
in (5), we conduct a simple experiment on Extended YaleB
database (Lee et al. 2005). Only the frontal images of the 38
subjects in the database are included. Figure 1 illustrates the
learned identity vectors of the first 10 subjects in V and the
first 10 atoms in the illumination dictionary C .

In the next section, we will propose an extension of the
SRC framework using SILT, which is aimed at addressing
both alignment and recognition with small gallery samples.
In particular, among the estimates from Algorithm 1, only
the illumination dictionary C will be used in the subsequent
sparse illumination transfer process. We should emphasize
here that in the literature, there are several other algorithms

Fig. 1 Top: First 10 columns of
V unstacked as subject identity
images. Bottom: First 10
columns of C unstacked as
illumination images
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Fig. 2 Single-sample
alignment results on Multi-PIE.
The solid red boxes are the
initial face locations provided
by a face detector. The dash
green boxes show the alignment
results. The subject image on the
right has 30 % of the face pixels
corrupted by random noise

that deal with illumination transfer functions, such as the
quotient image (Shashua and Riklin-Raviv 2001; Peers et
al. 2007) and edge-preserving filters (Chen et al. 2011).
The focus of this paper is to learn an illumination dic-
tionary for single-sample alignment and recognition in the
SRC framework. The approach of adding an auxiliary dic-
tionary to help recognition was also considered in Deng et
al. (2012); Yang et al. (2013). However, most of these illu-
mination transfer methods are only for recognition but not
alignment.

4 Robust Single-Sample Face Alignment
and Recognition using SILT

4.1 Robust Single-Sample Alignment

Without loss of generality, we assume each gallery class
only contains one sample Ai = ai . It is important to note
that in our problem setting, each ai can be sampled from
an arbitrary lighting condition, and we do not assume the
gallery images to share the same illumination pattern. In
the alignment stage, given a query image b, we estimate an
image transformation τi applied in the 2-D image coordi-
nates of b to align it with ai . Clearly, if one were to directly
apply the standard SRC solution (2), the so-defined align-
ment error e = b◦τi − ai xi may not be sparse. More specifi-
cally, the different illumination conditions between b and ai

may introduce a dense alignment error even when the two
images are perfectly aligned. Although an alignment error
can still be minimized with respect to an �1-norm or �2-
norm penalty, the algorithm would lose its robustness when
concurrently handling sparse image corruption and facial dis-
guise.

The SILT algorithm mitigates the problem by using the
sparsely-used illumination dictionary C to compensate the
illumination difference between b and ai . More specifically,
SILT alignment solves the following problem:

(τ̂i , x̂i , ŷi ) = arg minτi ,xi , yi ,e ‖ yi‖1 + λ‖e‖1

subj. to b ◦ τi = ai xi + C yi + e.
(15)

In (15), λ > 0 is a parameter that balances the weight of yi
and e, which can be chosen empirically. C is the SILT dictio-
nary learned in Algorithm 1. Finally, the objective function
(15) can be solved efficiently using �1-minimization tech-
niques such as those discussed in Wagner et al. (2012); Yang
et al. (2013). Figure 2 shows two examples of the SILT align-
ment results.

4.2 Robust Single-Sample Recognition

Next, we propose a novel face recognition algorithm that
extends the SRC framework to the single-sample case. Sim-
ilar to the above alignment algorithm, the algorithm also
applies trivially when multiple gallery samples are available
per class.

In the previous SRC framework (3), once the transfor-
mation τi is recovered for each class Ai , the transformation
is carried over to the recognition stage, where the gallery
images in Ai are transformed by τ−1

i to align with the query
image b. In the single-sample case, the sparse representation
model in (3) will not be satisfied due to two reasons. First, as
the A matrix only contains one sample per class, even when
b is a valid query image with no gross image corruption or
facial disguise, the equality constraint b = Ax typically will
not hold true. As a result, it becomes difficult to classify b
based on the sparse coefficients of x as suggested in SRC.
Second, as the illumination condition of b may not be fully
expressed by the linear combination Ax, it causes the error
e = b − Ax to be dense, mostly to compensate the differ-
ence in their illumination conditions. The problem reduces
the effectiveness of SRC to compensate gross image corrup-
tion by minimizing the sparsity of e.

In the SILT framework, we have seen in (15) that if an
auxiliary illumination dictionary C is provided, it can be used
to compensate the missing illumination information in single
gallery images ai . Therefore, in the recognition stage, one
may consider transfer both the illumination information C ŷi
and alignment τ̂i to compensate each ai :

ãi = (ai x̂i + C ŷi ) ◦ τ̂−1
i . (16)
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Fig. 3 Warping a cropped auxiliary image by τ−1
i may result in copy-

ing some pixel values that are out of bound. The values of these out-of-
bound pixels are not available in (16). In this example, the pixel with the
coordinates (i ′1, j ′1) after transformation τ−1

i remains within the original
bounding box in green color, but (i ′2, j ′2) is outside the original bound-
ing box. Pixel coordinates such as (i2, j2) should be removed from the
support set Ω

The collection of all the warped gallery images is defined as
Ã = [ã1, ã2, . . . , ãL ].

Unfortunately, a careful examination of this proposal (16)
reveals a rather subtle issue that prevents us to directly apply
the warped gallery images Ã in the recognition stage. The
problem lies in the fact that the illumination dictionary C is
learned from the auxiliary face images with the frontal posi-
tion that are typically cropped and normalized. As a result,
the atoms of the dictionary C cannot be simply warped by
an image transformation τ−1

i . An exact solution to update
the pose of the illumination dictionary C would require the
algorithm to first warp the auxiliary images themselves in
D, and then retrain the illumination dictionary C

τ−1
i

for each
transformation τi . Clearly, this task is prohibitively expen-
sive.2

In addition, applying (16) that warps auxiliary images and
gallery images to the query image sometimes can be unde-
sirable in practice. Figure 3 illustrates the problem. In many
cases, the auxiliary and gallery images are provided only
within a cropped face region. Therefore, any pixel outside
the original bounding box may not have a valid value. In
some other cases, even when those pixels are available, still
the original pixels within the training bounding box are typi-
cally well chosen to best represent the appearance of the face.
As a result, using pixel values outside the bounding box may
negatively affect the accuracy of the recognition.

In this paper, we propose a more efficient solution to
address the problem. The key idea is to constrain the sparse
representation-based classification on a subset of pixels

2 In our previous work (Zhuang et al. 2013), this simple extension was in
fact used as the solution to transfer both the alignment and illumination
information from the alignment stage to the recognition stage. However,
the assumption was valid because the illumination dictionary used in
Zhuang et al. (2013) was constructed by concatenating the auxiliary
images themselves, namely, D in this paper. Therefore, the problem of
warping a learned dictionary was mitigated.

whose pixel values remain valid after the alignment com-
pensation (16).

Without loss of generality, we assume each auxiliary
image in D is of dimension w × h, i.e., d = wh. In the
SILT recognition step, given an estimated transformation
from the alignment stage τ−1

i for the gallery image ai , we
apply the transformation τ−1

i on each pixel within the face
image (i, j) ∈ [1, w] × [1, h]. Define the support set for the
transformation τ−1

i :

Ωi
.= {(i, j)|τ−1

i (i, j) ∈ [1, w] × [1, h]}. (17)

Given all the collection of all the transformations τ1, τ2,

. . . , τL , we define the total support set Ω as the intersection

Ω =
L⋂

i=1

Ωi , (18)

that is, each element in Ω corresponds to a valid pixel in
the auxiliary images and C after the transformations τ−1

i are
applied for all i = 1, . . . , L . The projection of an image in
vector form b onto a support set Ω is denoted as PΩ(b) ∈
R

|Ω|.
The effect of applying a mask defined by a support set

Ω is illustrated in Fig. 4. Initially, the input query images
in the first column and the gallery images of the same sub-
jects have very different illumination conditions and poses.
In the third column, an illumination transfer pattern is esti-
mated for each gallery image. For example, in the second
subject example, the left side of b is brighter than that of a.
This is reflected by having a brighter illumination pattern in
its C ŷ. Finally, the gallery images are further warped based
on the estimated poses τ−1, and the masks of their support
sets Ω are applied to both the warped gallery images PΩ(ã)

and the query images PΩ(b)). We can see that, compared
to the input image pairs (a, b), the processed image pairs in
the SILT algorithm (PΩ(ã),PΩ(b)) have closer illumination
conditions and similar poses.

The remaining SILT algorithm involves solving a sparse
representation x in the presence of a possible sparse error e
constrained on the support set Ω , namely,

(x∗, e∗) = arg minx,e ‖x‖1 + λ‖e‖1

subj. to PΩ(b) = PΩ( Ã)x + e,
(19)

where the operation PΩ( Ã) applies pixel selection on each
column of Ã based on the support set Ω . Similar to the previ-
ous formulations, the parameter λ is chosen empirically via
cross validation.

Using the sparse representation x in (19), the final decision
rule to classify b can be simplified from the original SRC
algorithm in Wright et al. (2009) where the reconstruction
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Fig. 4 Examples of warping a
gallery image ã and applying a
mask Ω on both the query
image b and the warped gallery
image ã. a Query images b. b
Gallery images a. c Illumination
transfer information C ŷ. d
Warped gallery images ã under
a mask Ω . e Applying the same
masks Ω on b

Fig. 5 Illustration of SILT
recognition. Left: Query image
b with unknown pose and
illumination. Right: Sparse
representation x with the correct
gallery image ai superimposed
and sparse error e. The effect of
pose alignment between b and
all the 250 gallery images is
illustrated by the mask Ω shown
in e

residual was used. In SILT, since there is only one sample per
each subject class in A, the class with the largest coefficient
magnitude in x is the estimated class of the query image b.
We note that this simplified strategy does not compromise the
generality of the SILT method, as one can still estimate the
objective function of the reconstruction residual when each
class contains one or more gallery images. Figure 5 shows
an example of the SILT recognition and its estimated sparse
representation.

Before we move on to examine the performance of the
new recognition algorithm (19), one may question the effi-
cacy of enforcing a sparse representation in the constraint
(19). The question may arise because in the original SRC
framework, the data matrix A = [A1, . . . , AL ] is a collection
of highly correlated image samples that span the L illumina-
tion subspaces. Therefore, it makes sense to enforce a sparse
representation as also validated by several followup studies
(Wright and Ma 2010; Elhamifar and Vidal 2012; Zhang et

al. 2012). However, in single-sample recognition, only one
sample ai is provided per class. Therefore, one would think
that the best recognition performance can only be achieved
by the nearest-neighbor algorithm.

There are at least two arguments to justify the use of sparse
representation in (19). One one hand, as discussed in Wright
et al. (2009), in the case where e and C y represent a small
error and the nearest-neighbor solution corresponds to a one-
sparse binary vector x0 = [· · · , 0, 1, 0 · · · ]T in the formu-
lation (19), then solving (19) via �1-minimization can also
recover the sparsest solution, namely, x∗ ≈ x0. On the other
hand, in the case where C y represents a large illumination
change and e represents additional gross image corruption,
as long as the elements of A in (19) remain tightly correlated
in the image space, the �1-minimization algorithm can com-
pensate the dense error in the query image b (Wright and Ma
2010). This is a unique advantage over nearest-neighbor type
algorithms.
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5 Experiment

In this section, we present a comprehensive experiment to
demonstrate the performance of our illumination learning,
face alignment, and recognition algorithms.

The illumination dictionary is constructed from Extended
YaleB database (Lee et al. 2005). The Extended YaleB con-
tains 21888 face image of 38 subjects under 9 poses and
64 illumination conditions. For every subject in a particular
pose, an image with ambient (background) illumination was
also captured. In this paper, only the frontal images of the 38
subjects are used as the auxiliary images.

For the gallery and query subjects, we choose images from
a much larger CMU Multi-PIE database (Gross et al. 2008).
Except for Sect. 5.4, 166 shared subject classes from Ses-
sion 1 and Session 2 are selected for testing. In Session 1,
we randomly select one frontal image per class with arbi-
trary illumination as the gallery image. Then we randomly
select two different frontal images from Session 1 or Ses-
sion 2 for testing. The outer eye corners of both training
and query images are manually marked as the ground truth
for registration. All the training face images are manually
cropped into 60 × 60 pixels based on the locations of eyes
out-corner points, and the distance between the two outer
eye corners is normalized to be 50 pixels for each person.
We again emphasize that our experimental setting is more
practical than those used in some other publications, as we
allow the training images to have arbitrary illumination and
not necessarily just the ambient illumination.

We compare our algorithms with several state-of-the-art
face alignment and recognition algorithms under the SRC
framework. To conduct a fair comparison, it is important
to separate those algorithms that were originally proposed
to handle only the recognition problem versus those that
can handle both face alignment and recognition. The orig-
inal SRC algorithm (Wright et al. 2009), the Extended SRC
(ESRC) (Deng et al. 2012), and SVDL (Yang et al. 2013)
belong to the first case, while Deformable SRC (DSRC)
(Wagner et al. 2012), misalignment robust representation
(MRR) (Yang et al. 2012), and SILT proposed in this paper
belong to the second case.

Finally, as the SILT algorithm relies on an auxiliary illumi-
nation dictionary C , another variability we need to investigate
further is how the choice of C may affect the performance of
SILT. Our investigation on this issue will be divided in three
steps. First, in Sect. 5.1, we validate in an ideal, noise-free
simulation that the proposed dictionary learning algorithm
can successfully recover the subject identity matrix V and the
illumination dictionary C in (6). We further utilize Extended
YaleB database to construct an illumination dictionary from
the real face images. Second, in Sect. 5.4, we will compare
the recognition rates of SILT using different illumination dic-
tionaries. The experiment further shows the SILT framework

significantly outperforms DSRC and MRR in single-sample
face recognition with misalignment and pixel corruption.
Finally, in Sect. 5.5, we again use Extended YaleB database
to illustrate how the variation in the atom size and the train-
ing subjects of the auxiliary data affects the performance of
the SILT algorithm.

5.1 Learning Illumination Dictionaries

In this experiment, we validate the performance of the illu-
mination dictionary learning algorithm in Algorithm 1. First,
we use noise-free synthetic data to evaluate the success rate
for the algorithm to recover a subject-identity matrix V and
a sparsely-used dictionary C as in (4). Specifically, the ele-
ments in the V ∈ R

d×p and C ∈ R
d×k matrices are generated

from independent and identically distributed (i.i.d.) Gaussian
distributions. The columns of the sparse coefficient matrix
S ∈ R

k×np are assumed to be t-sparse, where each column
has exactly t non-zero coefficients, where n

.= k loge k is
the number of samples from each class and varies with the
atom size k. These synthesized ground-truth matrices then
generate the data matrices D1, D2, . . . , Dp ∈ R

d×n .
In the experiment, we set d = 100, p = 5, and let k

vary between 10 and 50 and t between 1 and 10. In addition,
to resolve the potential ambiguity in the permutation of the
estimated dictionary atoms, we adopt the following relative
error metric to a performance index:

φ(Z∗, Z) = min
�,�

‖Z∗�� − Z‖F/‖Z‖F (20)

where � is a permutation matrix, and � is a diagonal scaling
matrix.

Figure 6 shows the simulation result. The average relative
error (20) for both V and C is reported in grayscale, where
the white blocks indicate zero error, and the darker blocks
indicate larger relative error. We can clearly see that when
the dictionary size k is sufficiently large and when the sparsity
t sufficiently small, Algorithm 1 perfectly recovers the two
matrices. The algorithm only fails when k = 10, t < 3 and
k = 20, t = 10. Furthermore, the phase transition from failed
recovery settings to perfect recovery settings is quite sharp.

Next, we apply Algorithm 1 to learn the illumination dic-
tionary C from Extended YaleB database. For the experi-
mental purpose in the subsequent sections, we construct two
dictionaries with very different settings:

1. Ad-Hoc Dictionary: We choose the very first subject in
Extended YaleB database with 65 aligned frontal images
(1 ambient + 64 illuminations). The dictionary C is
directly constructed by subtracting the ambient image
from the other 64 illumination images, and no addi-
tional learning algorithm is involved. This dictionary is
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Fig. 6 Mean relative errors
over 5 trials, with varying
support t and basis size k for a
V and b C estimated by
Algorithm 1

(a) (b)

Fig. 7 Illustration of the first
10 atoms of the illumination
dictionary C . Top: Ad-Hoc
Dictionary constructed from the
first subject of Extended YaleB
database. Bottom: Yale
Dictionary learned from all the
38 subjects

identical to the one used in our previous work (Zhuang
et al. 2013).

2. Yale Dictionary: We employ all the 38 subjects in
Extended YaleB database to learn an illumination dic-
tionary using Algorithm 1.

Some atoms from the above two dictionaries are shown as
Fig. 7. The atom size of Yale Dictionary in this illustration
is fixed at 80. In Sect. 5.4 and 5.5, we will compare the
performance of different dictionaries.

5.2 Simulation on 2D Alignment

In this experiment, we demonstrate the performance of the
SILT alignment algorithm (15). The performance is mea-
sured using simulated 2D deformation on the face image,
including translation, rotation and scaling. Without loss of
generality, we will only use Yale Dictionary as our illumina-
tion dictionary. The added deformation is introduced to the
query images based on the ground truth coordinates of eye
corners. The translation ranges from [-12, 12] pixels with a
step size of 2 pixels.

Similar to Wagner et al. 2012, we use the estimated align-
ment error ‖e‖1 as an indicator of success. More specif-
ically, let e0 be the alignment error obtained by aligning
a query image from the manually labeled position to the
training images. We consider the alignment successful if
|‖e‖1 − ‖e0‖1| ≤ 0.01‖e0‖1.

We compare our method with DSRC and MRR. As DSRC
and MRR would require to have multiple reference images
per class, to provide a fair comparison, we evaluate both algo-
rithms under two settings: Firstly, seven reference images are

provided per class to DSRC.3 We denote this case as DSRC-
7. Secondly, one randomly chosen image per class as the
same setting as in the SILT algorithm. We denote this case
as DSRC-1 and MRR-1, respectively.

We draw the following observations from the alignment
results shown in Fig. 8:

1. SILT works well under a broad range of 2D deformation,
particularly when the translation in x or y direction is
less than 20% of the eye distance (10 pixels) and when
the in-plane rotation is less than 30 degrees.

2. Clearly, SILT outperforms both DSRC-1 and MRR-1
when the same setting is used, namely, one sample per
class. The obvious reason is that DSRC and MRR were
not designed to handle the single-sample alignment sce-
nario.

3. The accuracy of SILT and DSRC-7 is generally compa-
rable across the board in all the simulations. However,
since DSRC-7 has access to seven gallery images of dif-
ferent illumination conditions, the result shows the power
of using the new illumination dictionary in (15), where
SILT only works with a single gallery image.

5.3 Single-Sample Recognition

In this subsection, we evaluate the SILT recognition algo-
rithm based on single reference images of the 166 subject
classes shared in Multi-PIE Sessions 1 and 2. We compare
its performance with SRC (Wright et al. 2009), ESRC (Deng
et al. 2012), DSRC (Wagner et al. 2012), MRR (Yang et al.

3 The training are illuminations {0,1,7,13,14,16,18} in Multi-PIE Ses-
sion 1.
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Fig. 8 Success rate of face alignment under four types of 2D deformation: x-translation, y-translation, rotation, and scaling. The amount of
translation is expressed in pixels, and the in-plane rotation is expressed in degrees

Table 1 Single-sample recognition accuracy via manual alignment.
The atom size is fixed to 80

Method Session 1 (%) Session 2 (%)

SRCM 88.0 53.6

ESRCM 89.6 56.6

SILT + SRCM 92.8 59.0

SILT + ESRCM 93.2 59.3

SVDLM 70.3 41.6

2012), and SVDL (Yang et al. 2013). The illumination dic-
tionary used in these experiments is Yale Dictionary.

First, we note that the new SILT framework and the exist-
ing sparse representation algorithms are not mutually exclu-
sive. In particular, the illumination transfer (16) can be easily
adopted by the other algorithms to improve the illumination
condition of the training images, especially in the single-
sample setting. In the first experiment, we demonstrate the
improvement of SRC and ESRC with the illumination trans-
fer. Since both algorithms do not address the alignment prob-
lem, manual labels of the face location are assumed to be the
aligned face location. The comparison is presented in Table 1.

Since the gallery images are selected from Session 1, there
is no surprise that the average recognition rate of Session 1 is

significantly higher than that of Session 2. The comparison
further shows that adding the illumination transfer informa-
tion to the existing SRC and ESRC algorithms meaningfully
improves their performance by 3% – 5%.

In Table 1, the performance of the SVDL algorithm is
also shown.4 Interestingly, in our setting of single-sample
recognition, SVDL performs worse than SRC and ESRC. A
possible explanation is that the SVDL algorithm expects all
the gallery images to have the same uniform lighting con-
dition, while in this paper, the illumination condition of the
gallery images is randomly selected. Our experimental set-
ting is more challenging but more similar to the single-sample
face recognition problem in practice. Furthermore, one can
consider combining the SILT framework and the illumina-
tion dictionary of SVDL. This variation will be considered
in Sect. 5.4.

Second, we compare DSRC, MRR, and SILT in the full
pipeline of alignment plus recognition shown in Table 2. The
initial positions of the face images are automatically detected
by Viola-Jones detector.

Compared with the past reported results of DSRC and
MRR, their recognition accuracy decreases significantly

4 The implementation of SVDL was provided by their authors at: http://
www4.comp.polyu.edu.hk/~cslzhang/code/SVDL.zip.
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Table 2 Single-sample alignment + recognition accuracy

Method Session 1 (%) Session 2 (%)

DSRC 36.1 35.7

MRR 46.2 34.6

SILT 76.7 61.6

when only one training image is available per class. It demon-
strates that these algorithm were not designed to perform well
in the single-sample regime. In both Session 1 and Session
2, SILT outperforms both algorithms by more the 30%. It is
more interesting to compare the recognition rates of differ-
ent algorithms on Session 2 in Table 1 and Table 2. SILT that
relies on an auxiliary illumination dictionary to automatically
alignment the query images achieves 61.6%, which is even
higher than the ESRC rate of 59.3% with manual alignment.

5.4 Robustness under Random Corruption

In this subsection, we further compare the robustness of the
SILT recognition algorithm to random pixel corruption. We
compare the overall recognition rate of SILT with DSRC, and
MRR, the two most relevant algorithms. For the SILT algo-
rithm, in addition to using the two previous illumination dic-
tionaries, namely, Ad-Hoc and Yale, we also demonstrate the
performance using the SVDL dictionary (Yang et al. 2013).

To benchmark the recognition under different corruption
percentage, it is important that the query images and the
gallery images have close facial appearance, otherwise differ-
ent facial features would also contribute to facial corruption
or disguise, such as glasses, beard, or different hair styles.
To limit this variability, in this experiment, we select both
query and gallery images from Multi-PIE Session 1, although
the images should never overlap. We use all the subjects in
Session 1. For each subject, we randomly select one frontal
image with arbitrary illumination for testing. Various levels
of image corruption from 10% to 40% are randomly gener-
ated in the face region. Similar to the previous experiments,
the face regions are detected by Viola-Jones detector. The
performance is shown in Table 3.

Table 3 Recognition rates (%) under various percentage of random
pixel corruption. The atom size is fixed to 80

Corruption 10% 20% 30% 40%

DSRC 32.9 31.7 28.9 24.1

MRR 24.9 14.5 11.7 9.2

SILT(Ad-Hoc) 66.2 59.8 49.6 44.7

SILT(Yale) 73.3 68.7 67.3 49.0

SILT(SVDL) 60.0 56.1 52.3 41.1

The comparison is more illustrative than Table 2. First
of all, all three SILT implementations based on very differ-
ent illumination dictionaries significantly outperform DSRC
and MMR. For instance, with 40% pixel corruption, SILT
still maintains 49% accuracy; with 10% corruption, SILT
outperforms DSRC and MRR by more than 40%.

Second, we note that in the presence of pixel corruption,
the illumination dictionary learned by SVDL does not per-
form as well as Ad-Hoc and Yale dictionaries. It shows that
our proposed dictionary learning method is more suited for
estimating auxiliary illumination dictionaries in the SILT
framework.

5.5 Influence of Atom Size and Subject Number

In this section, we discuss how the efficacy of an SILT dic-
tionary may be affected by the choice of the atom size and
the subject number. More specifically, We learn illumination
dictionaries using Algorithm 1 from Extended YaleB data-
base with varying number of the auxiliary subjects and atom
size of the dictionary. Then, we measure the accuracy of face
recognition under the frameworks of “SILT+ESRCM ” and
“SILT+SRCM ” with manual alignment. The settings is the
same as Sect. 5.3, namely, gallery and query images are cho-
sen from Session 1 of Multi-PIE database. The results are
shown in Table 4 and Table 5.

First, we notice that there is no data point taken at 200
atom size when the subject number is one. This is due to
the fact that each subject in Extended YaleB database only
provides 65 frontal images. When one tries to solve for more
atoms in the corresponding illumination dictionary in (6),
the problem becomes ill-conditioned. This issue can be first
observed by examining the recognition rates for one sub-
ject and atom sizes greater than 60, namely, 80 and 120. In
these two settings, the recognition rates are either identical

Table 4 Recognition rates (%) under the SILT+ESRCM implementa-
tion with manual alignment

atom size 40 60 80 120 200

subject # = 1 89.6 89.2 89.2 89.2 -

subject # = 10 90.0 92.8 92.8 94.0 94.8

subject # = 38 90.8 93.2 93.2 95.2 96.8

Table 5 Recognition rates (%) under the SILT+SRCM implementation
with manual alignment

atom size 40 60 80 120 200

subject # = 1 86.8 88.0 87.2 87.2 -

subject # = 10 87.2 91.2 92.4 90.8 92.8

subject # = 38 91.2 93.2 92.8 94.8 95.6
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or slightly worse than those at atom size 60 in both Table
4 and Table 5. At atom size 200, through visual inspection,
we discover that the illumination patterns in the estimated C
matrices are close to random noise, and do not contain useful
illumination information for the SILT algorithm. Therefore,
their performance is ignored.

Second, when the subject number is higher than one,
increasing the atom size of the illumination dictionary clearly
improves the recognition rate. For example, using all the 38
subjects and the SILT+ESRCM algorithm, the recognition
rate using a 40-atom illumination dictionary is 90.8%. The
rate is raised to 96.8% when the atom size increases to 200.
It is worth emphasizing that this recognition rate represents
one of the best accuracy on Multi-PIE database when only
single gallery images of random illumination are available,
to the best of our knowledge.

Finally, it comes as no surprise that if we fix the size of
the illumination dictionary in each column of Table 4 and
Table 5, including more subjects in the illumination data-
base also improves the recognition. This phenomenon can be
explained by considering the well-known Lambertian model
of the human face. It states that the image appearance of a
face is determined not only by the illumination of the envi-
ronment, but also by the shape of the face and its surface
albedo pertaining to individual subjects. Therefore, having
more subjects would help to generalize the distribution of the
illumination patterns under different face shape and albedo.
Then, the use of sparse representation in the alignment and
recognition algorithms can effectively select a sparse sub-
set of these illumination patterns that are most similar to the
illumination, shape, and albedo condition of the query image.

6 Conclusion and Discussion

In this paper, we have presented a novel face recognition
algorithm specifically designed for single-sample alignment
and recognition. To compensate for the missing illumina-
tion information traditionally provided by multiple gallery
images, we have proposed a novel dictionary learning algo-
rithm to estimate an illumination dictionary from auxiliary
training images. We have further proposed an illumination
transfer technique to transfer the estimate illumination com-
pensation and pose information from the face alignment
stage to the recognition stage. The overall algorithm is called
sparse illumination learning and transfer (SILT). The exten-
sive experiment has validated that not only the standalone
SILT algorithm outperforms the state of the art in single-
sample face recognition by a significant margin, the illumi-
nation learning and transfer technique is also complemen-
tary to many existing algorithms as a pre-processing step to
improve the image condition due to misalignment and pixel
corruption.

Although we have provided some exciting results that rep-
resent a meaningful step forward towards a real-world face
recognition system in this paper, one of the open problems
remains to be how to improve illumination transfer in com-
plex real-world conditions and with minimal training data.
Although the current way of constructing the illumination
dictionary is efficient, the method is not able to separate the
effect of surface albedo, shape, and illumination completely
from face images. Therefore, we believe a more sophisticated
illumination transfer algorithm could lead to better overall
performance.
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Appendix

We proof Theorem 1 in this Appendix. First, eliminating the
variable E of problem (10) with

E = D − V ⊗ 1T − C H, (21)

Problem (10) can then be equivalently written as

min
V ,C,H

‖D − V ⊗ 1T − C H‖2
F , s.t. C

T
C = I. (22)

As a basic result in least squares (Horn and Johnson 1985),
the optimal H can be written as

H∗ = C
T
(D − V ⊗ 1T ), (23)

for any V ∈ R
m×p and any C ∈ R

m×k such that C
T

C = I .
Substituting H∗ into (22) yields

min
V ,C

‖P⊥
C

(D − V ⊗ 1T )‖2
F , s.t. C

T
C = I, (24)

where P⊥
C

= I − CC
T

denotes the orthogonal complement

projector of C . It is also easy to show from (24) that a solution
of V is

[V ∗]i = 1

n
Di 1, i = 1, ..., p. (25)

Note that the solution [V ∗]i presents the mean vector of
the data matrix Di corresponding to subject i . Furthermore,
by letting U = D − V

∗ ⊗ 1T , problem (24) becomes
min

C
T

C=I
trace(U T P⊥

C
U ), and it is equivalent to
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C
∗ = arg max

C
T

C=I
trace(C

T
UU T C). (26)

By Horn and Johnson (1985), an optimal solution C
∗

is
known to be the k principal eigenvector matrix of UU T ;
i.e.,

C
∗ = [ q1(UU T ), q2(UU T ), . . . , qk(UU T ) ]. (27)

Hence, the problem solution (13) simply follows from (21),
(23) (25), and (27). �
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