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Abstract— This paper aims at constructing a good graph to
discover the intrinsic data structures under a semisupervised
learning setting. First, we propose to build a nonnegative
low-rank and sparse (referred to as NNLRS) graph for the
given data representation. In particular, the weights of edges
in the graph are obtained by seeking a nonnegative low-rank
and sparse reconstruction coefficients matrix that represents
each data sample as a linear combination of others. The
so-obtained NNLRS-graph captures both the global mixture
of subspaces structure (by the low-rankness) and the locally
linear structure (by the sparseness) of the data, hence it is
both generative and discriminative. Second, as good features
are extremely important for constructing a good graph, we
propose to learn the data embedding matrix and construct the
graph simultaneously within one framework, which is termed
as NNLRS with embedded features (referred to as NNLRS-EF).
Extensive NNLRS experiments on three publicly available data
sets demonstrate that the proposed method outperforms the state-
of-the-art graph construction method by a large margin for both
semisupervised classification and discriminative analysis, which
verifies the effectiveness of our proposed method.

Index Terms— Graph Construction, low-rank and sparse
representation, semi-supervised learning, data embedding.

I. INTRODUCTION

IN MANY big data related applications, e.g., image based
object recognition, one often lacks sufficient labeled train-

ing data which are costly and time-prohibitive to be obtained,
while a large number of unlabeled data are widely available,
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e.g., from the Internet. Semi-supervised learning (SSL) can
utilize both labeled samples and richer yet unlabeled samples.
Therefore it has received considerable attention in both com-
puter vision and machine learning communities [2] recently.
Among current SSL methods, graph based SSL is particularly
appealing due to its successes in practice as well as its
computational efficiency.

A fundamental problem in graph based SSL is to reconstruct
a graph to characterize the underlying data structures among
the observed data. In graph based SSL methods, labeled and
unlabeled samples are the nodes in a graph, and the edges
among these nodes are weighted by the affinity between the
corresponding pairs of samples. Then the label information
of the labeled samples can be efficiently and effectively
propagated to the unlabeled data over the graph. Most learning
methods formalize the propagation process through a regu-
larized function on the graph. Despite many forms are used
in the literature, the regularizers mainly try to accommodate
the so-called cluster assumption [3], [4], i.e., points in the
same low-dimensional smooth structure (such as a cluster,
a subspace, or a manifold) are likely to share the same label.
Since one normally does not have (or care about) an explicit
parametric model for the underlying manifolds, many methods
approximate them by constructing an undirected graph from
the observed data points. Consequently, properly constructing
a graph that can well capture the essential data structures is
critical for all graph based SSL methods [5]–[8].

Lots of efforts have been made to exploit the ways of
constructing a good graph for SSL [9]–[12]. According to
Wright [9], an informative graph should have three charac-
teristics: high discriminating power, low sparsity and adaptive
neighborhood. Guided by these rules, lots of sparse repre-
sentation (SR) based graph construction methods have been
proposed [13]–[16]. However, these SR based methods usually
do not characterize the global structure of data. To overcome
this drawback, Liu et al. propose a low-rank representa-
tion (LRR) to compute the weights in an undirected graph
(referred to as LRR-graph hereafter) that represent the affini-
ties among all the data samples [17], [18]. But LRR usually
results in a dense graph, and the negative values in
LRR are not physically meaningful for constructing an affinity
graph.

By understanding the characteristics of an informative
graph and both the advantages and disadvantages of previous
works, in this paper we propose to harness both sparsity and
low-rankness of high-dimensional data to construct an
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informative graph. In addition, we explicitly enforce the
representation to be non-negative so that coefficients of the
representation can be directly converted to graph weights.
Such a graph is called nonnegative low-rank and sparse
graph (NNLRS-graph). Specifically, each data point is rep-
resented by a linear combination of other points, and the
coefficients are nonnegative and sparse. Nonnegativity ensures
that every data point is in the convex hull of its neighbors,
and sparsity ensures that the involved neighbors are as few
as possible. In addition to the nonnegative sparsity constraint,
we enforce the matrix constructed by the coefficient vectors
of all data points to be low-rank to make data vectors on the
same subspace be clustered into the same cluster. Moreover,
previous works [19]–[22] have shown that by projecting the
data into the feature domains, the embedded data will greatly
facilitate the subsequent sparse representation and low-rank
representation, and improve the classification accuracy. Fox
example, Yang et al. [21] proposed a new semi-supervised
kernel low-rank presentation graph (SKLRG) by combining a
low-rank representation with kernel trick. By exploring a low-
rank structure in the projected domain, SKLRG can capture
the global structure of complex data and achieve more robust
subspace segmentation. In another work, Yang et al. [22]
also sought a sparse presentation in the manifold domain,
so that the local geometric information of the data can be
better captured. Therefore, finding a good data embedding
strategy is also very important for a sparse representation and
a low-rank representation. However, these previous works do
data embedding [19]–[22] and the subsequent sparse represen-
tation or the low-rank presentation separately. Therefore, the
learnt features may not optimize the subsequent representation.
Realizing that a good data representation is important for
the good performance of graph construction and the possible
improvement space in [19]–[22], we propose to simultaneously
learn the data embedding matrix and construct the graph,
which further improves the performance of semi-supervised
classification.

The contributions of this paper can be summarized as
follows:

• We propose to learn an NNLRS-graph for SSL. The
sparsity property captures the local low-dimensional
linear structures of the data. The low-rank characteristic
guarantees that the NNLRS-graph can better capture the
global cluster or subspace structures of the data than
SR based graphs [15], [16]. Thus the robustness of
NNLRS-graph to noise and outliers can be
enhanced.

• We propose to simultaneously learn the data embedding
and graph. Such a strategy learns a better data repre-
sentation, which is more suitable for constructing an
NNLRS-graph, and consequently enhances the perfor-
mance of semi-supervised classification.

Extensive experiments on three popular datasets demonstrate
that the NNLRS-graph can significantly improve the
performance of SSL in most cases.

This article extends its preliminary work [1] in terms
of both technique and performance evaluation. Firstly,
we extend our NNLRS framework by simultaneously

learning the data embedding and the NNLRS-graph, which
enhances the robustness of NNLRS-graph for data analysis.
Secondly, we conduct more experiments to evaluate the
proposed algorithms. Thirdly, more details about our methods
are provided and the effects of different parameters are also
empirically evaluated in the paper.

The rest of this paper is organized as follows. In Section II,
we briefly review the works related to graph construction
in SSL. In Section III, we detail the construction of
NNLRS-graph, and in Section IV, we extend NNLRS
by simultaneously learning the data embedding and
NNLRS-graph. We present experiments and analysis
in Section V. Finally, we conclude our paper in Section VI.

II. RELATED WORK

Euclidean distance based methods: Conceptually, a good
graph should reveal the intrinsic complexity or dimensionality
of data (say through local linear relationship) and also capture
certain global structures of data as a whole (i.e., multiple clus-
ters, subspaces, or manifolds). Traditional methods (such as
k-nearest neighbors and Locally Linear Reconstruction [11])
mainly rely on pair-wise Euclidean distances and construct a
graph by a family of overlapped local patches. The so-obtained
graph only captures the local structures and cannot capture the
global structures of the whole data (i.e. the clusters). Moreover,
these methods cannot produce data-adaptive neighborhoods
because of using fixed global parameters to determinate the
graph structure and their weights. Finally, these methods are
sensitive to local data noise and errors.

Sparse representation based methods: As pointed out in [9],
sparsity is an important characteristic for an informative
graph. Therefore, lots of researchers propose to improve
the robustness of graph by enforcing sparsity. Specifically,
Yan and Wang [13], Cheng et al. [14] proposed to construct
an �1-graph via sparse representation (SR) [19] by solving
an �1 optimization problem. An �1-graph over a data set is
derived by encoding each sample as a sparse representation of
the remaining samples, and automatically selecting the most
informative neighbors for each sample. The neighborhood
relationship and graph weights of an �1-graph are simultane-
ously obtained during the �1 optimization in a parameter-free
way. Different from traditional methods, an �1-graph explores
higher order relationships among more data points, hence is
more powerful and discriminative. Benefitting from SR, the
�1-graph is sparse, data-adaptive and robust to data noise.
Following �1-graph, other graphs have also been proposed
based on SR in recent years [15], [16]. However, all these
SR based graphs find the sparsest representation of each sam-
ple individually, lacking global constraints on their solutions.
So these methods may be ineffective in capturing the global
structures of data. This drawback may reduce the performance
when the data are grossly corrupted. When not enough “clean
data” are available, SR based methods may not be robust to
noise and outliers [17].

Low-rank representation based methods: To capture the
global structure of data, Liu et al. proposed a low-rank
representation (LRR) for data representation and use it to
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construct the affinities of an undirected graph (hereafter called
LRR-graph) [17], [18], [21], [23]. An LRR-graph jointly
obtains the representation of all data under a global low-rank
constraint, thus is better at capturing the global data structures
(such as multiple clusters and subspaces). It has been proven
that, under mild conditions, LRR can correctly preserve the
membership of samples that belong to the same subspace.
However, compared to the �1-graph, LRR often results in a
dense graph (see Figure 2), which is undesirable for graph-
based SSL [9]. Moreover, as the coefficients can be negative,
LRR allows the data to “cancel out each other” by subtraction,
which lacks physical interpretation for most visual data.
In fact, non-negativity is more consistent with the biological
modeling of visual data [24], [25], and often leads to better
performance for data representation [25], [26] and graph
construction [15].

III. NONNEGATIVE LOW-RANK AND

SPARSE GRAPHS

A. Nonnegative Low-Rank and Sparse Representation

Let X = [x1, x2, · · · , xn] ∈ R
d×n be a matrix whose

columns are n data samples drawn from independent sub-
spaces.1 Then each column can be represented by a linear
combination of bases in dictionary A = [a1, a2, · · · , am]:

X = AZ , (1)

where Z = [z1, z2, · · · , zn] is the coefficient matrix with each
zi being the representation of xi . The dictionary A is often
overcomplete. Hence there can be infinitely many feasible
solutions to problem (1). To address this issue, we impose the
most sparsity and lowest rank criteria, as well as a nonnegative
constraint. That is, we seek a representation Z by solving the
following optimization problem

min
Z

rank(Z) + β‖Z‖0, s.t. X = AZ , Z ≥ 0, (2)

where β > 0 is a parameter to trade off between low-rankness
and sparsity. As observed in [17], the low-rankness criterion
is better at capturing the global structure of data X , while
the sparsity criterion can capture the local structure of each
data vector. The optimal solution Z∗ is called the nonnegative
“lowest-rank and sparsest” representation (NNLRSR) of data
X with respect to the dictionary A. Each column z∗

i in
Z∗ reveals the relationship between xi and the bases in
dictionary.

However, solving problem (2) is NP-hard. As a common
practice (see [27]) we may solve the following relaxed convex
program instead

min
Z

‖Z‖∗ + β‖Z‖1, s.t. X = AZ , Z ≥ 0, (3)

where ‖ ·‖∗ is the nuclear norm of a matrix [28], i.e., the sum
of the singular values of the matrix, and ‖ · ‖1 is the �1-norm
of a matrix, i.e., the sum of the absolute value of all entries
in the matrix.

1The subspaces S1, · · · , Sk are independent if and only if
∑k

i=1 Si =
⊕k

i=1 Si , where
⊕

is the direct sum.

In real applications, the data are often noisy and even
grossly corrupted. So we have to add a noise term E to (1).
If a fraction of the data vectors are grossly corrupted, we may
reformulate problem (3) as

min
Z ,E

‖Z‖∗ + β‖Z‖1 + λ‖E‖2,1,

s.t. X = AZ + E, Z ≥ 0, (4)

where ‖E‖2,1 = ∑n
j=1

√∑m
i=1([E]i j )2 is called the

�2,1-norm [29], and the parameter λ > 0 is used to balance
the effect of noise, which is set empirically. The �2,1-norm
encourages the columns of E to be zero, which assumes
that the corruptions are “sample-specific,” i.e., some data
vectors are corrupted and the others are clean. For small
Gaussian noise, we can relax the equality constraint in
problem (2) as did in [30]. Namely, the Frobenious norm
‖E‖F is used instead. In this paper, we focus on the
�2,1-norm.

B. LADMAP for Solving NNLRSR

The NNLRSR problem (4) could be solved by the pop-
ular alternating direction method (ADM) [17]. However,
ADM requires introducing two auxiliary variables when solv-
ing (4) and expensive matrix inversions are required in
each iteration. So we adopt a recently developed method
called the linearized alternating direction method with adaptive
penalty (LADMAP) [31] to solve (4).

We first introduce an auxiliary variable H in order to make
the objective function separable:

min
Z ,H,E

‖Z‖∗ + β‖H‖1 + λ‖E‖2,1,

s.t. X = AZ + E, Z = H, H ≥ 0. (5)

The augmented Lagrangian function of problem (5) is

L(Z , H, E, Y1, Y2, μ)

= ‖Z‖∗ + β‖H‖1 + λ‖E‖2,1

+ 〈Y1, X − AZ − E〉 + 〈Y2, Z − H 〉
+ μ

2

(
‖X − AZ − E‖2

F + ‖Z − H‖2
F

)

= ‖Z‖∗ + β‖H‖1 + λ‖E‖2,1

+ q(Z , H, E, Y1, Y2, μ) − 1

2μ

(
‖Y1‖2

F + ‖Y2‖2
F

)
, (6)

where

q(Z , H, E, Y1, Y2, μ)

= μ

2

(
‖X − AZ − E + Y1/μ‖2

F + ‖Z − H + Y2/μ‖2
F

)

(7)

LADMAP is to update the variables Z , H and E alternately, by
minimizing L with other variables fixed, where the quadratic
term q is replaced by its first order approximation at the
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previous iterate and a proximal term is then added [31]. With
some algebra, the updating schemes are as follows.

Zk+1 = arg min
Z

‖Z‖∗

+ 〈∇Z q(Zk, Hk, Ek, Y1,k, Y2,k , μk), Z − Zk〉
+ η1μk

2
‖Z − Zk‖2

F

= arg min
Z

‖Z‖∗ + η1μk

2
‖Z − Zk

+ [−AT (X − AZk − Ek + Y1,k/μk)

+ (Zk − Hk + Y2,k/μk)]/η1‖2
F

= �(η1μk )−1(Zk + [AT (X − AZk − Ek + Y1,k/μk))

− (Zk − Hk + Y2,k/μk)]/η1),

Hk+1 = arg min
H≥0

β‖H‖1 + μk

2
‖Zk+1 − H + Y2,k/μk‖2

F

= max(Sβμ−1
k

(Zk+1 + Y2,k/μk), 0),

Ek+1 = arg min
E

λ‖E‖2,1

+ μk

2
‖X − AZk+1 − E + Y1,k/μk‖2

F

= �λμ−1
k

(X − AZk+1 + Y1,k/μk), (8)

where ∇Z q is the partial differential of q with respect to
Z , �, S and � are the singular value thresholding [28],
shrinkage and the l2,1 minimization operator [17], respec-
tively, and η1 = ‖A‖2

2. The complete algorithm is outlined
in Algorithm 1.

C. Nonnegative Low-Rank and Sparse Graph Construction

Given a data matrix X , we may use the data themselves as
the dictionary, i.e., A in subsections III-A and III-B is simply
chosen as X itself. With the optimal coefficient matrix Z∗,
we may construct a weighted undirected graph G = (V , E)
associated with a weight matrix W = {wi j }, where
V = {vi }n

i=1 is the vertex set, each node vi corresponding
to a data point xi , and E = {ei j } is the edge set, each
edge ei j associating nodes vi and v j with a weight wi j . As the
vertex set V is given, the problem of graph construction is to
determine the graph weight matrix W .

Since each data point is represented by other samples,
a column z∗

i of Z∗ naturally characterizes how other samples
contribute to the reconstruction of xi . Such information is
useful for recovering the clustering relation among samples.
The sparse constraint ensures that each sample is associated
with only a few samples, so that the graph derived from Z∗ is
naturally sparse. The low-rank constraint guarantees that the
coefficients of samples coming from the same subspace are
highly correlated and fall into the same cluster, so that Z∗ can
capture the global structure (i.e. clusters) of the whole data.
Note here that, since each sample can be used to represent
itself, there always exist feasible solutions even when the data
sampling is insufficient, which is different from SR.

Algorithm 1 Efficient LADMAP Algorithm for NNLRSR

After obtaining Z∗, we can derive the graph adjacency
structure and graph weight matrix from it. In practice, due to
data noise the coefficient vector z∗

i of point xi is often dense
with small values. As we are only interested in the global
structure of the data, we can normalize the reconstruction
coefficients of each sample (i.e. z∗

i = z∗
i /‖z∗

i ‖2) and make
those coefficients under a given threshold zeros. After that,
we can obtain a sparse Ẑ∗ and define the graph weight
matrix W as

W = (Ẑ∗ + (Ẑ∗)T )/2. (9)

The method for constructing an NNLRS-graph is summarized
in Algorithm 2.

D. Complexity Analysis

The computational cost of constructing NNLRS-graph
in Algorithm 2 is mainly determined by Step 2, while the
major computation of Algorithm 1 is to update the variables
as (8). For ease of analysis, let rA be the lowest rank for
A we can find with our algorithm, and k denote the number
of iterations. Without loss of generality, we assume the sizes
of both A and X are d × n (d < n) in the following.
In each iteration, SVT is applied to update the low-rank matrix
whose total complexity is O(rAn2) when we use partial SVD.
Then, we employ soft thresholding to update the sparse error
matrix whose complexity is O(dn). And the complexity of
�2,1 minimization operator is O(d2n). So, the total cost of
Algorithm 1 is O(krAn2 + kd2n). Since rA ≤ min(d, n), the
complexity of constructing NNLRS-graph is at most O(kdn2).
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Algorithm 2 Nonnegative Low-Rank and Sparse Graph
Construction

When the number of data samples is large, it will be time
consuming.

IV. JOINTLY LEARNING DATA REPRESENTATION

AND NNLRS-GRAPH

The quality of data representation will greatly affect the
quality of graph. The data representation which is robust to the
data variance improves the robustness of the graph, and subse-
quently improves the performance of SSL. To improve the data
representation, lots of endeavors have been made [32], [33].
For face data, the commonly used data representation are
EigenFaces [34], LaplacianFaces [35], FisherFaces [36], and
RandomFaces [19]. As shown in [19], these representation
strategies greatly improve the data representation quality, and
improve the classification accuracy. However, the data embed-
ding and the subsequent sparse representation are conducted
separately in [19], and a data embedding method in the
previous step may not be the most suitable for the subsequent
sparse representation.

Other than doing the data embedding and learning the
NNLRS graph separately, we propose to learn the data
representation and graph simultaneously to make the learnt
data representation more suitable for the construction of
NNLRS-graph. We first denote the data projection matrix
as P . Similar to [37], we want the projected data to preserve
the data information as much as possible. So we aim at
minimizing ‖X − PT P X‖2

F . By plugging the learning of P
into the NNLRS-graph construction framework, we arrive at
the following formulation:

min
Z ,E,P

‖Z‖∗ + β‖Z‖1 + λ‖E‖2,1 + γ ‖X − PT P X‖2
F ,

s.t. P X = P X Z + E, Z ≥ 0, (10)

where γ is a parameter to balance the reconstruction error,
which is set empirically (γ is fixed to 0.5 in our experiments).
For simplification, we term this formulation as NNLRS with
embedded feature (referred to as NNLRS-EF). However, the
objective function of NNLRS-EF is not convex. Therefore it
is inappropriate to optimize all the variables in problem (10)
simultaneously. Following the commonly used strategy in
dictionary learning [38], [39], we alternatively update the
unknown variables. Specifically, we first optimize the above
objective w.r.t. Z and E by fixing P , then we update P and E
while fixing Z .

When P is fixed, (10) reduces to

min
Z ,E

‖Z‖∗ + β‖Z‖1 + λ‖E‖2,1

s.t. P X = P X Z + E, Z ≥ 0, (11)

We use LADMAP to solve for Z and E . By introducing
an auxiliary variable H , we obtain the following augmented
Lagrangian function:

L̃(Z , H, E, Y1, Y2, μ)

= ‖Z‖∗ + β‖H‖1 + λ‖E‖2,1

+ 〈Y1, P X − P X Z − E〉 + 〈Y2, Z − H 〉
+ μ

2

(
‖P X − P X Z − E‖2

F + ‖Z − H‖2
F

)

= ‖Z‖∗ + β‖H‖1 + λ‖E‖2,1

+ q̃1(Z , H, E, Y1, Y2, μ) − 1

2μ

(
‖Y1‖2

F + ‖Y2‖2
F

)
,

(12)

where

q̃1(Z , H, E, Y1, Y2, μ)

= μ

2

(
‖P X − P X Z − E + Y1/μ‖2

F + ‖Z − H + Y2/μ‖2
F

)

(13)

Then we can apply Algorithm 1 to (11) by simply replacing
X and A in Algorithm 1 with P X .

After updating Z and E , we only fix Z . So (10) reduces to
the following problem

min
E,P

λ‖E‖2,1 + γ ‖X − PT P X‖2
F ,

s.t. P X = P X Z + E, Z ≥ 0. (14)

We can solve the above problem with inexact ALM. The
augmented Lagrange function is

L̃(P, E, μ)

= λ‖E‖2,1 + γ ‖X − PT P X‖2
F

+ μ

2
‖P X − P X Z − E‖2

F + 〈Y1, P X − P X Z − E〉.
(15)
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Algorithm 3 Efficient Inexact ALM Algorithm for
Problem (14)

Algorithm 4 Optimization Algorithm for NNLRS-EF (10)

By minimizing L̃(P, E, μ) with other variables fixed, we can
update the variables E and P alternately as follows.2

Ek+1 = arg min
E

λ‖E‖2,1

+ μk

2
‖Pk X − Pk X Z − E + Y1,k/μk‖2

F

= �λμ−1
k

(Pk X − Pk X Z + Y1,k/μk),

Pk+1 = arg min
P

γ ‖X − PT P X‖2
F

+ μk

2
‖P X − P X Z − Ek+1 + Y1,k/μk‖2

F . (16)

We alternatively solve problem (11) and problem (14)
until convergence. The whole process of the optimization of
NNLRS-EF is summarized in Algorithm 4. After getting the
optimal solution Z∗, we use the same strategy as that of
NNLRS-graph to construct a graph.

V. EXPERIMENTS

In this section, we evaluate the performance of our proposed
methods on publicly available databases, and compare them

2we solve the subproblem for P with the L-BFGS [37] algorithm. The codes
can be found at http://www.di.ens.fr/~mschmidt/Software/minFunc.html

with currently popular graphs under the same SSL setting.
Two typical SSL tasks are considered, semi-supervised
classification and semi-supervised dimensionality reduction.
All algorithms are implemented with Matlab 2010. All exper-
iments are run 50 times (unless otherwise stated) on a
server with an Intel Xeon5680 8-Core 3.50GHz processor and
16GB memory.

A. Experiment Setup

Databases: We test our proposed methods on three public
databases3 for evaluation: YaleB, PIE, and USPS. YaleB and
PIE are face databases and USPS is a hand-written digit
database. We choose them because NNLRS-graph and its
extension aim at extracting a linear subspace structure of
data. So we have to select databases that roughly have linear
subspace structures. It is worth pointing out that these datasets
are commonly used in the SSL literature. Existing methods
have achieved rather decent results on these data sets. So sur-
passing them on these three data sets is very challenging and
convincing enough to justify the advantages of our method.

• The YaleB Database: This face database has 38 individ-
uals, each subject having about 64 near frontal images
under different illuminations. We simply use the cropped
images of first 15 individuals, and resize them to
32 × 32 pixels.

• The PIE Database: This face database contains
41368 images of 68 subjects with different poses, illu-
mination and expressions. We select the first 15 subjects
and only use their images in five near frontal poses
(C05, C07, C09, C27, C29) and under different illumina-
tions and expressions. Each image is manually cropped
and normalized to a size of 32 × 32 pixels.

• The USPS Database: This handwritten digit database
contains 9298 handwritten digit images in total, each
having 16 × 16 pixels. We only use the images of digits
1, 2, 3 and 4 as four classes, each having 1269, 926, 824
and 852 samples, respectively. So there are 3874 images
in total.

Fig. 1 shows the sample images of the three databases.
As suggested by [19], we normalize the samples so that they
have a unit �2 norm.

Comparison Methods: We compare our proposed graph
construction methods with the following baseline methods:

• kNN-Graph: We adopt Euclidean distance as the similar-
ity measure, and use a Gaussian kernel to re-weight the
edges. The Gaussian kernel parameter σ is set to 1. There
are two configurations for constructing graphs, denoted as
kNN0 and kNN1, where the numbers of nearest neighbors
are set to 5 and 8, respectively.

• LLE-Graph [4]: Following the lines of [4], we construct
two LLE-graphs, denoted as LLE0 and LLE1, where the
numbers of nearest neighbors are 8 and 10, respectively.
Since the weights W of LLE-graph may be negative
and asymmetric, similar to [14] we symmetrize them by
W = (|W | + |W T |)/2.

3Available at http://www.zjucadcg.cn/dengcai/Data/
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Fig. 1. Sample images used in our experiments.

• �1-Graph [14]: Following the lines of [14], we construct
the �1-graph. Since the graph weights W of �1-graph is
asymmetric, we also symmetrize it as suggested in [14].

• SPG [15]: In essence, the SPG problem is a lasso problem
with the nonnegativity constraint, without considering
corruption errors. Here we use an existing toolbox4 to
solve the lasso problem, and construct the SPG graph
following the lines of [15].

• LRR-Graph: Following [17], we construct the
LLR-graph, and symmetrize it as we do for
�1-graph. The parameters of LRR are the same as
those in [17].

• NNLRS-Graph: Similar to other graph construction meth-
ods, for our NNLRS-graph and its extension, we empir-
ically tune the regularization parameters according to
different data sets, so as to achieve the best performance.
Without loss of generality, we fix the reduced dimension-
ality to 100 in all our experiments.

B. Semi-Supervised Classification

In this subsection, we carry out the classification
experiments on the above databases using the existing graph
based SSL frameworks. We select two popular methods,
Gaussian Harmonic Function (GHF) [6] and Local and Global
Consistency (LGC) [7] to compare the effectiveness of differ-
ent graphs. Let Y = [Yl Yu]T ∈ R

|V |×c be a label matrix,
where Yi j = 1 if sample xi is associated with label j for
j ∈ {1, 2, · · · , c} and Yi j = 0 otherwise. Both GHF and LGC
realize the label propagation by learning a classification
function F = [Fl Fu]T ∈ R

|V |×c. They utilize the graph
and the known labels to recover the continuous classification
function by optimizing different predefined energy functions.
GHF combines Gaussian random fields and harmonic function
for optimizing the following cost on a weighted graph to
recover the classification function F :

min
F∈R|V |×c

tr(FT LW F), s.t. 
uu Fu = 0, Fl = Yl , (17)

where LW = D − W is the graph Laplacian, in which
D is a diagonal matrix with Dii = ∑

j Wi j . 
uu is the
lower right |Vu| × |Vu | submatrix of LW . Instead of clamping

4http://sparselab.stanford.edu/

the classification function on labeled nodes by setting hard
constraints Fl = Yl , LGC introduces an elastic fitness term as
follows:

min
F∈R|V |×c

tr{FT L̃W F + μ(F − Y )T (F − Y )}, (18)

where μ ∈ [0,+∞) trades off between the local fitting and the
global smoothness of the function F , and L̃W is the normalized
graph Laplacian L̃W = D−1/2 LW D−1/2. In our experiments,
we simply fix μ = 0.99.

We combine different graphs with these two
SSL frameworks, and quantitatively evaluate their performance
by following the approaches in [9] and [13]–[15]. For the
YaleB and PIE databases, we randomly select 50 images
from each subject as our data sets in each run. Among
these 50 images, images are randomly labeled. For
the USPS database, we randomly select 200 images
for each category, and randomly label them. Different
from [13] and [15], the percentage of labeled samples ranges
from 10% to 60%, instead of ranging from 50% to 80%.
This is because the goal of SSL is to reduce the number of
labeled images. So we are more interested in the performance
of SSL methods with low labeling percentages. Moreover,
in order to understand the robustness of our proposed methods,
we also show the statistical variation of the classification
error under different percentage of labeled samples. The final
results are reported in Tables I and II, respectively. From
these results, we can observe that:

1) In most cases, NNLRS-graph and its extension
(i.e. NNLRS-EF) consistently achieve the lowest clas-
sification error rates compared to the other graphs,
even at low labeling percentages. In many cases, the
improvements are rather significant – cutting the error
rates by multiple folds! This suggests that NNLRS-graph
and its extension are more informative and thus more
suitable for semi-supervised classification.

2) Compared with NNLRS-graph, NNLRS-EF also has a
significant improvements in most cases. This demon-
strates that a good data representation can markedly
improve the performance of graph construction methods.
This is because good representation is robust to data
noise and helps to reveal the relationship among data
points.

3) Though LRR always results in dense graphs, the perfor-
mance of LRR-graph based SSL methods is not always
inferior to that of �1-graph based SSL methods. On the
contrary, LRR-graph performs as well as �1-graph in
many cases. As illustrated in Fig. 2, the weights W of
LRR-graph on the YaleB database is denser than that
of �1-graph. However, LRR-graph outperforms �1-graph
in all cases. This proves that the low-rankness property
of high-dimensional data is as important as the sparsity
property for graph construction.

4) Finally, according to the statistical variation of the clas-
sification error, we can see that both NNLRS-graph and
NNLRS-EF are robust under different labeling percent-
ages. In most cases, with the growth of labeled samples,
the statistical variation will decrease.
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TABLE I

CLASSIFICATION ERROR RATES (%) OF VARIOUS GRAPHS COMBINED WITH THE GHF LABEL PROPAGATION METHOD UNDER DIFFERENT

PERCENTAGES OF LABELED SAMPLES (SHOWN IN THE PARENTHESIS AFTER THE DATASET NAMES). THE BOLD NUMBERS

ARE THE LOWEST ERROR RATES UNDER DIFFERENT SAMPLING PERCENTAGES. THE NUMBERS WITH ± ARE THE

VARIATIONS OF THE CLASSIFICATION ERROR IN OUR EXPERIMENTS

TABLE II

CLASSIFICATION ERROR RATES (%) OF VARIOUS GRAPHS COMBINED WITH THE LGC LABEL PROPAGATION METHOD UNDER DIFFERENT

PERCENTAGES OF LABELED SAMPLES (SHOWN IN THE PARENTHESIS AFTER THE DATASET NAMES). THE BOLD NUMBERS

ARE THE LOWEST ERROR RATES UNDER DIFFERENT SAMPLING PERCENTAGES. THE NUMBERS WITH ± ARE THE

VARIATIONS OF THE CLASSIFICATION ERROR IN OUR EXPERIMENTS

Fig. 2. Visualization of different graph weights W on the YaleB face database.
(a) LRR-graph Weights. (b) �1-graph Weights.

C. Semi-Supervised Discriminant Analysis
To further examine the effectiveness of NNLRS-graph,

we use NNLRS-graph for semi-supervised dimensionality

reduction (SSDR), and take semi-supervised discriminant
analysis (SDA) [40] for instance. We use SDA to do
face recognition on the face databases of YaleB and PIE.
SDA aims to find a projection which respects the dis-
criminant structure inferred from the labeled data points,
as well as the intrinsic geometric structure inferred from
both labeled and unlabeled data points. We combine SDA
with different graphs to learn the subspace, and employ
the nearest neighbor classifier. We run the algorithms mul-
tiple times with randomly selected data sets. In each run,
30 images from each subject are randomly selected as training
images, while the rest images as test images. Among these
30 training images, some images are randomly labeled. Note
here that different from the above transductive classifica-
tion, the test set is not available in the subspace learning
stage. Table III tabulates the recognition error rates for dif-
ferent graphs under different labeling percentages. We can
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TABLE III

RECOGNITION ERROR RATES (%) OF VARIOUS GRAPHS FOR SEMI-SUPERVISED DISCRIMINATIVE

ANALYSIS UNDER DIFFERENT PERCENTAGES OF LABELED SAMPLES

Fig. 3. Classification error rate on the YaleB face database and the PIE face
database, using the LGC label propagation method under different percentages
of labeled samples. (a) Classification error rate on the YaleB face database.
(b) Classification error rate on the PIE face database.

see that NNLRS-graph almost consistently outperforms other
graphs.

D. Parameters Sensitivity of NNLRS-Graph

In this subsection, we examine the parameter sensitiv-
ity of NNLRS-graph, which includes two main parameters,
β and λ. β is to balance the sparsity and the low-rankness,

while λ is to deal with the gross corruption errors in data.
Large β means that we emphasize the sparsity property more
than the low-rankness property. We vary the parameters and
evaluate the classification performance of NNLRS-graph based
SDA on the PIE face database. Since the percentage of gross
corruption errors in data should be fixed, we set λ = 10
empirically5 and only vary β. Because here we test many
parametric settings, like the above experiments here we only
average the rates over 5 random trials. The results are shown
in Table IV. From this table, we can see that the performance
of NNLRS-graph based SDA decreases when β > 1. If we
ignore the sparsity property (i.e., β = 0), the performance
also decreases. This means that both sparsity property and
low-rankness property are important for graph construction.
An informative graph should reveal the global structure of
the whole data and be as sparse as possible. In all of our
experiments above, we always set β = 0.2.

E. Joint Learning vs. Independent Learning

In this subsection, we further examine the effectiveness of
joint feature learning. As our feature learning method is mostly
related to PCA, we propose to compare our method with the
following baseline. We first reduce the dimensionality of the
data with PCA. Then we use the embedded data by apply-
ing PCA. For fair comparison, we also keep the dimensionality
of the data to be 100, which is exactly the same as that of our
NNLRS-EF. For simplicity, we denote such baseline method
as PCA+NNLRS. We show the performance of NNLRS,
PCA+NNLRS, and NNLRS-EF in semi-supervised learning
in Fig. 3. In all the experiments, we keep the same setting.
From this figure, we can have the following observations:

• The performance of NNLSR with embedded data as
features (PCA+NNLRS and NNLRS-EF) is better than
that of NNLRS with raw pixels. This observation demon-
strates the necessity of data embedding for data structure
discovery.

• The performance of NNLRS-EF is better than
PCA+NNLRS which does PCA and learns the
NNLRS separately. Such an observation proves that joint
learning can learn more proper data representation for the

5In the above experiments, we did not tune λ either.
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TABLE IV

RECOGNITION ERROR RATES (%) OF NNLRS-GRAPH FOR SEMI-SUPERVISED DISCRIMINATIVE ANALYSIS

ON THE PIE FACE DATABASE UNDER DIFFERENT PERCENTAGES OF

LABELED SAMPLES. λ IS FIXED AT 10

subsequent data structure discovery, which demonstrates
the effectiveness of our NNLRS-EF framework.

VI. CONCLUSION

This paper proposes a novel informative graph,
i.e., nonnegative low-rank and sparse graph (NNLRS-graph),
for graph-based semi-supervised learning. NNLRS-graph
mainly leverages two important properties of high-dimensional
data, sparsity and low-rankness, both of which capture the
structure of the whole data. Furthermore, as good features are
robust to data noise and thus help to reveal the relationship
among data points, we propose to simultaneously learn
the data embedding and construct the graph within one
framework, which is termed as NNLRS-EF. Extensive
experiments on both classification and dimensionality
reduction show that, NNLRS-graph and NNLRS-EF are
better at capturing the globally linear structure of data, and
thus are more informative and more suitable than other graphs
for graph-based semi-supervised learning. Also, experiments
show that joint feature learning does significantly improve
the performance of NNLRS-graph.

However, though our proposed methods have obtained
impressive performance, they have high computational com-
plexity, which mainly comes from the optimization proce-
dure. Therefore, our methods currently are only suitable to
applications with small scale data. To apply current models
to large scale data, one can develop new paralleled version
of our methods and(or) use GPU to accelerate the meth-
ods. Moreover, current methods are mainly based on linear
model, while data in real application always lies in nonlinear
manifolds. So, one can improve the proposed methods by
incorporating the geometric structure of nonlinear manifolds.
Finally, we currently figure out qualitatively the settings which
our methods can cope with. Rigorous quantitative analysis will
give more insight and help to improve our model. We will
follow some existing work, such as [41], to develop theoretical
analysis of our methods in our future work.

REFERENCES

[1] L. Zhuang, H. Gao, Z. Lin, Y. Ma, X. Zhang, and N. Yu, “Non-negative
low rank and sparse graph for semi-supervised learning,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2012, pp. 2328–2335.

[2] X. Zhu, “Semi-supervised learning literature survey,” Dept. Comput.
Sci., Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1530,
2005.

[3] K. Chen and S. Wang, “Semi-supervised learning via regularized boost-
ing working on multiple semi-supervised assumptions,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 33, no. 1, pp. 129–143, Jan. 2011.

[4] J. Wang, F. Wang, C. Zhang, H. C. Shen, and L. Quan, “Linear
neighborhood propagation and its applications,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 31, no. 9, pp. 1600–1615, Sep. 2009.

[5] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization:
A geometric framework for learning from labeled and unlabeled exam-
ples,” J. Mach. Learn. Res., vol. 7, pp. 2399–2434, Nov. 2006.

[6] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using
Gaussian fields and harmonic functions,” in Proc. 20th Int. Conf. Mach.
Learn. (ICML), vol. 20. Aug. 2003, pp. 912–919.

[7] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning
with local and global consistency,” in Advances in Neural Information
Processing Systems 16. Cambridge, MA, USA: MIT Press, Dec. 2003,
pp. 595–602.

[8] A. Azran, “The rendezvous algorithm: Multiclass semi-supervised learn-
ing with Markov random walks,” in Proc. 24th Int. Conf. Mach.
Learn. (ICML), Jun. 2007, pp. 49–56.

[9] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan, “Sparse
representation for computer vision and pattern recognition,” Proc. IEEE,
vol. 98, no. 6, pp. 1031–1044, Jun. 2010.

[10] S. I. Daitch, J. A. Kelner, and D. A. Spielman, “Fitting a graph to vector
data,” in Proc. 26th Annu. Int. Conf. Mach. Learn. (ICML), Jun. 2009,
pp. 201–208.

[11] T. Jebara, J. Wang, and S.-F. Chang, “Graph construction and b-matching
for semi-supervised learning,” in Proc. 26th Annu. Int. Conf. Mach.
Learn. (ICML), Jun. 2009, pp. 441–448.

[12] P. P. Talukdar and K. Crammer, “New regularized algorithms for trans-
ductive learning,” in Proc. Eur. Conf. Mach. Learn. Knowl. Discovery
Databases, Sep. 2009, pp. 442–457.

[13] S. Yan and H. Wang, “Semi-supervised learning by sparse represen-
tation,” in Proc. SIAM Int. Conf. Data Mining (SDM), Jun. 2009,
pp. 792–801.

[14] B. Cheng, J. Yang, S. Yan, Y. Fu, and T. S. Huang, “Learning with
�1-graph for image analysis,” IEEE Trans. Image Process., vol. 19, no. 4,
pp. 858–866, Apr. 2010.

[15] R. He, W.-S. Zheng, B.-G. Hu, and X.-W. Kong, “Nonnegative sparse
coding for discriminative semi-supervised learning,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2011, pp. 2849–2856.

[16] J. Tang, R. Hong, S. Yan, T.-S. Chua, G.-J. Qi, and R. Jain, “Image
annotation by kNN-sparse graph-based label propagation over noisily
tagged Web images,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 2,
Feb. 2011, Art. ID 14.

[17] G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmentation by low-rank
representation,” in Proc. 27th Int. Conf. Mach. Learn. (ICML), Jun. 2010,
pp. 663–670.

[18] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery
of subspace structures by low-rank representation,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 1, pp. 171–184, Jan. 2013.

[19] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[20] S. Gao, I. W. Tsang, and L.-T. Chia, “Sparse representation with
kernels,” IEEE Trans. Image Process., vol. 22, no. 2, pp. 423–434,
Feb. 2013.

[21] S. Yang, Z. Feng, Y. Ren, H. Liu, and L. Jiao, “Semi-supervised
classification via kernel low-rank representation graph,” Knowl.-Based
Syst., vol. 69, pp. 150–158, Oct. 2014.

[22] S. Yang, P. Jin, B. Li, L. Yang, W. Xu, and L. Jiao, “Semisupervised
dual-geometric subspace projection for dimensionality reduction of
hyperspectral image data,” IEEE Trans. Geosci. Remote Sens., vol. 52,
no. 6, pp. 3587–3593, Jun. 2014.



ZHUANG et al.: CONSTRUCTING A NONNEGATIVE LOW-RANK AND SPARSE GRAPH 3727

[23] L. Zhuang, H. Gao, J. Luo, and Z. Lin, “Regularized semi-supervised
latent Dirichlet allocation for visual concept learning,” Neurocomputing,
vol. 119, pp. 26–32, Nov. 2013.

[24] P. O. Hoyer, “Modeling receptive fields with non-negative sparse cod-
ing,” Neurocomputing, vols. 52–54, pp. 547–552, Jun. 2003.

[25] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791,
Oct. 1999.

[26] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix fac-
torization,” in Advances in Neural Information Processing Systems 13.
Cambridge, MA, USA: MIT Press, 2001, pp. 556–562.

[27] E. J. Candés, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” J. ACM, vol. 58, no. 3, May 2011, Art. ID 11.

[28] J.-F. Cai, E. J. Candés, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM J. Optim., vol. 20, no. 4,
pp. 1956–1982, Mar. 2010.

[29] J. Liu, S. Ji, and J. Ye, “Multi-task feature learning via efficient
l2,1-norm minimization,” in Proc. 25th Conf. Uncertainty Artif. Intell.,
2009, pp. 339–348.

[30] E. J. Candès and Y. Plan, “Matrix completion with noise,” Proc. IEEE,
vol. 98, no. 6, pp. 925–936, Jun. 2010.

[31] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction method
with adaptive penalty for low-rank representation,” in Advances in
Neural Information Processing Systems 24. Red Hook, NY, USA: Curran
Associates, Dec. 2011, pp. 612–620.

[32] I. Jolliffe, Principal Component Analysis. New York, NY, USA: Wiley,
2005.

[33] X. He and P. Niyogi, “Locality preserving projections,” in Advances in
Neural Information Processing Systems 16, vol. 16. Cambridge, MA,
USA: MIT Press, Dec. 2003, pp. 234–241.

[34] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cognit.
Neurosci., vol. 3, no. 1, pp. 71–86, 1991.

[35] X. He, H.-J. Zhang, P. Niyogi, S. Yan, and Y. Hu, “Face recognition
using Laplacianfaces,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 3, pp. 328–340, Mar. 2005.

[36] P. N. Belhumeur, J. P. Hespanha, and D. Kriegman, “Eigenfaces vs.
Fisherfaces: Recognition using class specific linear projection,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711–720, Jul. 1997.

[37] Q. V. Le, A. Karpenko, J. Ngiam, and A. Y. Ng, “ICA with reconstruc-
tion cost for efficient overcomplete feature learning,” in Proc. NIPS,
2011, pp. 1017–1025.

[38] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding
algorithms,” in Advances in Neural Information Processing Systems 20,
vol. 19. Cambridge, MA, USA: MIT Press, Dec. 2007, p. 801.

[39] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736–3745, Dec. 2006.

[40] D. Cai, X. He, and J. Han, “Semi-supervised discriminant analysis,” in
Proc. IEEE 11th Int. Conf. Comput. Vis. (ICCV), Oct. 2007, pp. 1–7.

[41] Y.-X. Wang, H. Xu, and C. Leng, “Provable subspace clustering:
When LRR meets SSC,” in Advances in Neural Information Processing
Systems 26. Red Hook, NY, USA: Curran Associates, 2013, pp. 64–72.

Liansheng Zhuang (M’11) received the bachelor’s
and Ph.D. degrees from the University of Science
and Technology of China (USTC), China, in 2001
and 2006, respectively. Since 2006, he has served as
a Lecturer with the School of Information Science
and Technology, USTC. From 2012 to 2013, he was
a Visiting Research Scientist with the Department
of Electrical Engineering and Computer Sciences,
University of California, Berkeley. His main research
interesting is in computer vision and machine learn-
ing. He is a member of Association for Computing

Machinery and China Computer Federation.

Shenghua Gao received the B.E. degree from the
University of Science and Technology of China in
2008 (outstanding graduates), and the Ph.D. degree
from Nanyang Technological University,
in 2012. He is currently an Assistant Professor
with ShanghaiTech University, China. From
2012 to 2014, he was a Research Scientist with
the Advanced Digital Sciences Center, Singapore.
His research interests include computer vision
and machine learning, and he is focusing on face
and object recognition. He has authored over

20 papers on object and face recognition related topics in many international
conferences and journals, including the IEEE TRANSACTIONS ON PATTERN

ANALYSIS AND MACHINE INTELLIGENCE, International Journal of
Computer Vision, the IEEE TRANSACTIONS ON IMAGE PROCESSING, the
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,
the IEEE TRANSACTIONS ON MULTIMEDIA, the IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, Computer Vision
and Pattern Recognition, and the European Conference on Computer Vision.
He was a recipient of the Microsoft Research Fellowship in 2010.

Jinhui Tang (M’08–SM’14) received the B.E.
and Ph.D. degrees from the University of Science
and Technology of China (USTC), in 2003 and
2008, respectively. From 2008 to 2010, he was
a Research Fellow with the School of Comput-
ing, National University of Singapore. During that
period, he visited the School of Information and
Computer Science, University of California, Irvine,
in 2010, as a Visiting Research Scientist. From
2011 to 2012, he visited Microsoft Research Asia,
as a Visiting Researcher. He is currently a Pro-

fessor with the School of Computer Science and Engineering, Nanjing
University of Science and Technology. He has authored over 80 jour-
nal and conference papers in these areas. His current research interests
include large-scale multimedia search, social media mining, and com-
puter vision. He is a member of Association for Computing Machinery
and China Computer Federation. He serves as an Editorial Board Mem-
ber of Pattern Analysis and Applications, Multimedia Tools and Applica-
tions, Information Sciences, and Neurocomputing, a Technical Committee
Member of about 30 international conferences, and a Reviewer for about
30 prestigious international journals. He was a co-recipient of the best paper
award from ACM Multimedia in 2007, PCM 2011, and ICIMCS 2011.

Jingjing Wang received the B.S. degree from the
Department of Electronic Engineering and Informa-
tion Science, University of Science and Technology
of China, Hefei, China, in 2010, where he is cur-
rently pursuing the Ph.D. degree in electronic engi-
neering and information science. His main research
interests are machine learning and computer vision.

Zhouchen Lin (M’00–SM’08) received the
Ph.D. degree in applied mathematics from Peking
University, in 2000. He was a Guest Professor
with Shanghai Jiao Tong University, Beijing
Jiaotong University, and Southeast University.
He was also a Guest Researcher with the Institute
of Computing Technology, Chinese Academy of
Sciences. He is currently a Professor with the
Key Laboratory of Machine Perception, School of
Electronics Engineering and Computer Science,
Peking University. He is also a Chair Professor with

Northeast Normal University. His research interests include computer vision,
image processing, machine learning, pattern recognition, and numerical
optimization. He is also an Associate Editor of the IEEE TRANSACTIONS ON

PATTERN ANALYSIS AND MACHINE INTELLIGENCE and the International
Journal of Computer Vision.



3728 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 11, NOVEMBER 2015

Yi Ma (F’13) received the bachelor’s degree in
automation and applied mathematics from Tsinghua
University, Beijing, China, in 1995, and the master’s
degree in electrical engineering and computer sci-
ences in 1997, the second master’s degree in math-
ematics in 2000, and the Ph.D. degree in electrical
engineering and computer sciences in 2000, from the
University of California at Berkeley. From 2000 to
2011, he served as a tenured Associated Professor
of the Department of Electrical and Computer Engi-
neering with the University of Illinois at Urbana–

Champaign, where he holds an Adjunct Professorship. He also serves as a
Research Associate Professor with the Decision and Control Group of the
Coordinated Science Laboratory and the Image Formation and Processing
Group of the Beckman Institute. He was a Visiting Senior Researcher with
Microsoft Research Asia, Beijing, China, in 2006, and a Visiting Professor
with the Department of Electrical Engineering and Computer Sciences,
UC Berkeley, in Spring 2007. From 2009 to 2014, he has served as a
Research Manager with the Visual Computing Group, Microsoft Research
Asia, Beijing, China. He is currently the Executive Dean of the School of
Information Science and Technology with ShanghaiTech University, Shanghai,
China. He has served as an Associate Editor of the IEEE TRANSAC-
TIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE and the
International Journal of Computer Vision. He has also served as the Chief
Guest Editor for special issues for the IEEE PROCEEDINGS and the IEEE
Signal Processing Magazine in 2010 and 2011. He currently serves as the
Associate Editor of the IEEE TRANSACTIONS ON INFORMATION THE-
ORY, the IMA Journal on Information and Inference, and the Society of
Industrial and Applied Mathematics (SIAM) Journal on Imaging Sciences.
He has served as the Area Chair for NIPS 2011, ICCV 2011, and CVPR
2013, and the Program Chair for ICCV 2013, and the General Chair for
ICCV 2015. He is a member of Association for Computing Machinery and
SIAM.

Nenghai Yu received the B.S. degree from the
Nanjing University of Posts and Telecommunica-
tions, in 1987, and the M.E. degree from Tsinghua
University in 1992, and the Ph.D. degree from the
University of Science and Technology of China,
in 2004, where he is currently a Professor. His
research interests include multimedia security, mul-
timedia information retrieval, video processing, and
information hiding.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


