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a b s t r a c t

Building a good graph to represent data structure is important in many computer vision and machine
learning tasks such as recognition and clustering. This paper proposes a novel method to learn an
undirected graph from a mixture of nonlinear manifolds via Locality-Preserving Low-Rank Representa-
tion (L2R2), which extents the original LRR model from linear subspaces to nonlinear manifolds. By

sentation to be nonzero only in a local neighborhood of the data point, and thus preserves the intrinsic
geometric structure of the manifolds. Its numerical solution results in a constrained convex optimization
problem with linear constraints. We further apply a linearized alternating direction method to solve the
problem. We have conducted extensive experiments to benchmark its performance against six state-of-
the-art algorithms. Using nonlinear manifold clustering and semi-supervised classification on images as
examples, the proposed method significantly outperforms the existing methods, and is also robust to
moderate data noise and outliers.

& 2015 Published by Elsevier B.V.
1. Introduction

Graph-based methods have attracted a lot of attention over the
last decade in the field of computer vision and machine learning.
Various graph-based algorithms have been successfully applied in
diverse scenarios, such as image segmentation [1–3], semi-
supervised learning [4], and dimensionality reduction [5,6]. Their
core idea is to learn a discriminative graph to characterize the
relationship among the data samples. However, how to learn a
good graph to accurately capture the underlying structure from
the observed data is still a challenging problem. In this paper, we
propose a novel method to address the graph construction pro-
blem for nonlinear manifolds based on some emerging tools in
low-rank representation and sparse optimization.

Conceptually, a good graph should reveal the true intrinsic
complexity or dimensionality of the data points (say through
local linear relations), and also capture certain global structures
of the data as a whole (i.e. multiple clusters, subspaces, or
manifolds). Traditional methods, such as k-nearest neighbors and
Locally Linear Embedding (LLE) [7,8], mainly rely on pair-wise
Euclidean distances to build a graph by a family of overlapping
local patches. Since pair-wise distances only characterize the
local geometry of these patches by linearly reconstructing each
data point from its neighbors, these graphs can only capture local
structures, and are very sensitive to local data noise and errors as
well. Moreover, traditional methods only work well for a single
manifold, and often fail when data points arise from multiple
manifolds.

Most recently, in order to capture the global structure of the
data, several methods [9–13] have been proposed to construct a
sparse and block-diagonal graph with new mathematical tools
(such as sparse representation [14] and Low-Rank Representation
[12]) from high-dimensional statistics and covex optimization.
Different from traditional methods, these methods represent each
datum as a linear combination of all the remaining samples (such
as in [9,10]) or all the whole data (such as in [11–13]). Here, we call
them Representation-based methods. By solving a high-dimensional
convex optimization problem, these methods automatically select
the most informative neighbors for each datum, and

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.10.119
http://dx.doi.org/10.1016/j.neucom.2015.10.119
http://dx.doi.org/10.1016/j.neucom.2015.10.119
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.10.119&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.10.119&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.10.119&domain=pdf
http://dx.doi.org/10.1016/j.neucom.2015.10.119


L. Zhuang et al. / Neurocomputing 175 (2016) 715–722716
simultaneously obtain the graph adjacency structure and graph
weights in nearly a parameter-free way. Benefitting from the new
mathematical tools, these methods are able to generate a block-
diagonal graph, and are robust to data noise. However, the block-
diagonal structures obtained by these methods are often fragile,
because they hold the hypothesis that the manifold can be
embedded linearly or almost linearly in the ambient space.
Unfortunately, in real applications, this hypothesis may not be
always true. It has been proven that many high-dimensional data
usually exhibit significant nonlinear structure, where these
representation-based methods often fail to deliver satisfactory
performance. As a result, the block-diagonal structures cannot be
enforced strictly in this case.

In fact, studies on manifold learning have shown that, to deal
with data sampled from nonlinear manifolds [15–17], one has to
exploit the local geometrical structure of manifold, or use a non-
linear mapping to “flatten” the data (such as kernel methods
[18,19]). In order to preserve the local geometrical structure
embedded in high-dimensional space, some graph regularizers are
readily imposed on the linear combination representation of the
data. For example, Zheng et al. proposed a method called Low-
Rank Representation with Local Constraint (LRRLC) [15] by incor-
porating the so-called local consistency assumption into the original
Low-Rank Representation (LRR) model, with the hope that if two
samples are close in the intrinsic geometry of the data distribu-
tion, they will have a large similarity coefficient. LRRLC introduced
a weighted sparsity term (i.e. graph regularization term) with
data-dependent weights into the original LRR model. The weights
changed with the distance between samples. However, the graph
regularization term could not guarantee that close samples would
have large similarity coefficient. It only enforced the coefficients
between faraway points to be small. Essentially, the LRRLC model
only used the relationship among points to re-weight the linear
representation.

Our goal is to preserve both the global structure and the local
structure in our constructed graph. To capture the global struc-
ture, the linear representation Z should be block diagonal, which
means that the coefficient Zij should be zero if data point xi and xj
are not in the same cluster.1 Since the local consistency
assumption only encourages the coefficients between close
samples to be nonzero, it will not necessarily lead to being block
diagonal. On the contrary, the LRRLC model often fails to accu-
rately represent the geometric structure of manifolds because of
two drawbacks. First, LRRLC directly uses affine subspaces to find
neighborhoods of points, and thus are likely to select faraway
points as neighbors. This may cause a coefficient between two
faraway points to be nonzero, even if they belong to different
manifolds or are well separated by other points on the same
manifold. Second, LRRLC uses the non-negativity constraint to
define neighborhood for every point. When a point is on a
boundary, this constraint may choose points from other mani-
fold/subspace as its neighbors, or the boundary point will be
isolated. These two drawbacks often violate the block diag-
onalization of its solution in the LRRLC model. As a result, the
LRRLC model often obtains a dense graph that negatively affects
its performance.

1.1. Contributions

Inspired by the above insights, we propose to extend the LRR
model to construct an informative graph called Locality-Preserving
Low-Rank Representation Graph (L2R2-graph). Specially, given a set
1 Note that it is a misconception for Z to be block diagonal that Zij should be
nonzero if xi and xj are in the same cluster.
of data points, we represent each data point as a linear combina-
tion of all the other points. For each point, we determine its
neighbors according to the pair-wise distance. By restricting the
coefficient Zij for non-neighbors to be zero and imposing the affine
constraint, we approximate the nonlinear manifold by a collection
of affine subspaces. Since we require that data vector on the same
affine subspace can be clustered in the same cluster, we require
that the coefficient vectors of all data points collectively form a
low-rank matrix. By imposing the low-rank constraint, the
L2R2-graph can better capture the global cluster or subspace
structures of the whole data, and is more robust to noise and
outliers.

It is worthwhile to highlight several advantages of L2R2-graph
over the existing works:

1. Compared with traditional methods, since L2R2-graph imposes
the low-rank constraint, it can better capture the global struc-
ture. Moreover, as shown in later experiments, though
L2R2-graph uses pair-wise distance to define the graph adjacent
structure, it is insensitive to the global parameters, while
traditional methods are more sensitive to the global parameters.

2. Compared with other representation-based methods based on
the hypothesis of linear subspaces, L2R2-graph explicitly con-
siders the local structure of manifolds, and preserve it during
graph construction. Such local structure preservation makes the
learned L2R2-graph more sparse than these representation-
based methods.

3. Compared with LRRLC-graph [15], L2R2-graph can better pre-
serve the geometric structure of manifolds. In LRRLC-graph, the
local structure is used to re-weight the linear combination
coefficients, which compromises the block diagonality assump-
tion of the representation. While in L2R2-graph, the local
structure is used to define the neighborhood of each point.
Since restricting the coefficient Zij for non-neighbors to be zero
may not affect the block diagonality of the representation Z, the
resulting Z could still be block diagonal in ideal cases.

We conduct extensive experiments on simulation data and
public databases for two typical tasks, namely nonlinear manifolds
clustering and semi-supervised classification. The experimental
results clearly demonstrate that the L2R2-graph can significantly
improve the learning performance, and is more informative and
discriminative than other graphs constructed by conventional
methods.

The remainder of this paper is organized as follows. In Section 2,
we give the details of how to construct a locality-preserving low-
rank graph. Our experiments and analysis are presented in Section 3.
Finally, Section 4 concludes our paper.
2. Graph building via locality-preserving low-rank
representation

2.1. Low-rank representation: an overview

Low-Rank Representation (LRR) was proposed to segment data
drawn from a union of multiple linear (or affine) subspaces. Given
a set of sufficiently dense data vectors X ¼ ½x1; x2;…; xn�ARd�n

(each column is a sample) drawn from a union of k subspaces, LRR
seeks the lowest-rank representation that represent all the vectors
as the linear combination of the data themselves, and solves the
following convex optimization problem:

min
Z;E

‖Z‖nþλ‖E‖2;1;

s:t: X ¼ XZþE; ð1Þ
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where Z ¼ ½z1; z2;…; zn� is the coefficient matrix with each zi being
the coefficient vector of xi based on the data matrix X and ‖ � ‖n is
the nuclear norm, i.e., sum of singular values. The optimal solution
Zn of the above problem is called the “lowest-rank representation”

of data X. ‖E‖2;1 ¼
Pn

j ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i ¼ 1 ðeijÞ2

q
is called the ℓ2;1-norm,

where eij is the (i,j)-th element of matrix E. It is used to model the
corruption error. Finally, the parameter λ40 is used to balance the
two terms, which could be chosen according to the properties of
the two norms, or tuned empirically.

As shown in [20,12], Zn is block-diagonal when data are clean
and sampled from independent subspaces. LRR better captures the
global structure of the data, and is more effective for robust sub-
space segmentation from corrupted data. After solving problem
(1), we can define the affinity matrix W of an undirected graph by
W ¼ ðjZn j þ jZnT j Þ=2. Therefore, the undirected graph (called the
LRR-graph) also captures the global structure of the whole data. It
could be integrated into any spectral clustering algorithm (such as
Normalized Cuts [21]) to segment the linear (or affine) subspaces.
In the next subsection, we will generalize the LRR model to con-
struct an undirected graph to approximate nonlinear manifolds.

2.2. Locality-preserving low-rank representation

In this section, we propose a novel approach to construct a
graph, called Locality-preserving Low Rank Representation (L2R2).
The key idea is based on the well-known observation that a
nonlinear manifold can be approximated by a collection of piece-
wise affine subspaces. Therefore, the neighborhood of each data
point can be fit by an affine subspace model. This task is essentially
an LRR problem. However, we need to further constrain that in the
low-rank coefficients zi of xi, those coefficients that correspond to
the sufficiently faraway data points in X (e.g., in terms of Euclidian
distance or K-nearest neighbors) from xi should be zero, because
the overall distribution of the samples on the manifold is non-
linear and therefore faraway points should not belong to the affine
subspace.
1
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Fig. 1. Visualize the sparsity pattern of the coefficients matrices from USPS database ob
obtained by LRR method. (b) is the sparsity pattern of the coefficients obtained by L2R
number of nearest neighbor is set to 10.
Since we require the samples on the same affine subspace to be
clustered in one cluster, the collection of all coefficient vectors Z
¼ ½z1; z2;⋯; zn� should remain a low-rank matrix just as in LRR.
Therefore, the L2R2 model solves the following problem:

min
Z;E

‖Z‖nþλ‖E‖2;1;

s:t: X ¼ XZþE;

ZT1¼ 1;

Zij ¼ 0; ði; jÞAΩ; ð2Þ

where 1 is an all-one vector, Ω is a set of edges between the
samples in X that define an adjacency graph, and Ω is the com-
plement of Ω, whereby ði; jÞAΩ indicates that xi and xj are not
neighbors. In this paper, we use the K-nearest neighbor method to
determine the graph adjacency structure, where K is user speci-
fied. It turns out that using L2R2 for clustering nonlinear manifolds
is quite stable with respect to a reasonable choice of K. More
discussion about this issue are presented in Section 3.1.

As we can see from (2), although L2R2 seeks the lowest-rank
representation among all the data points, it preserves the local
geometric structure in its solution by enforcing Zij ¼ 0; ði; jÞAΩ. So
we call the optimal solution Zn of (2) as “Locality-Preserving Low-
Rank Representation.” Preserving locality brings an important
benefit for L2R2, namely the final solution Zn is guaranteed to be
sparse (Zn

ija0 only if xi and xj are neighbors). In Fig. 1, we show
the sparsity pattern of the obtained coefficients matrices from
USPS database. As we can see, the coefficients matrix obtained by
L2R2 model is sparser than that obtained by the original LRR
model. According to [22], low sparsity is one of the basic char-
acteristics of an informative graph. Therefore, L2R2 is more suitable
for constructing an informative graph.

2.3. Solving L2R2 via ADMM

In this section, we detail an efficient convex optimization
algorithm to solve the L2R2 problem (2). Note here that (2) is a
convex optimization problem with linear constraints with respect
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tained by LRR model and L2R2 model. (a) is the sparsity pattern of the coefficients
2 model. Both LRR model and L2R2 model share the same parameter λ¼ 0:1. The
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to Z and E. Therefore, it can be written in the standard form as

min
P
Ω
ðZÞ ¼ 0;E

‖Z‖nþλ‖E‖2;1

s:t:; AðZÞþBðEÞ ¼ c; ð3Þ
where PΩ ðZÞ is a projection operator that maps elements zij of Z in
a vector form when ði; jÞAΩ;0 is an all-zero vector. It is easy to
verify that the linear mapping operators A(Z) and B(E) take the
following form:

AðZÞ ¼ vecðXZÞ
ZT1

� �
; BðEÞ ¼ vecðEÞ

0

� �
; ð4Þ

where vecð�Þ is the vectorization operator that stacks the columns
of a matrix into a vector. The c vector takes the form:

c¼ vecðXÞ
1

� �
: ð5Þ

We recognize the main difficulty in optimizing (3) is three folds:
first, the objective function f ðZ; EÞ6‖Z‖nþλ‖E‖2;1 contains two
convex but nonsmooth functions, i.e., the nuclear norm of Z and the
ℓ2;1-norm of E. Second, the domain of matrix Z is constrained by the
condition that PΩ ðZÞ ¼ 0. Third, Z and E have to simultaneously
satisfy the equality constraint hðZ; EÞ6AðZÞþ BðEÞ�c¼ 0.

In convex optimization, a popular approach to handle these
challenges is known as the alternating direction method of multi-
pliers (ADMMs) method. ADMM has been developed to address
large-scale distributed optimization problems [23]. More recently,
it has been successfully applied to sparse optimization problems
such as basis pursuit [24,25] and Robust PCA [26], which are
intimately related to the problem in this paper. Therefore, we
choose ADMM to solve the L2R2 problem.

First, we observe that in the constrained convex optimization
problem (3), the most expensive computation is the evaluation of
the nuclear norm ‖Z‖n, which is equal to the ℓ1-norm of all the
singular values of Z. Therefore, we first introduce a new matrix J
and an equality constraint J¼Z, such that the minimization of ‖J
‖n and the evaluation of the constraint hðZ; EÞ ¼ 0 can be sepa-
rated. Hence, we convert (3) to the following equivalent pro-
blem:

min
P
Ω
ðZÞ ¼ 0;E;J

‖J‖nþλ‖E‖2;1

s:t:; hðZ; EÞ ¼ 0; J ¼ Z: ð6Þ
Second, we derive the augmented Lagrangian function LμðZ; E;

JÞ of (6) over the real space and ignore the constraint PΩ ðZÞ ¼ 0.

LμðZ; E; JÞ ¼ J J Jnþ JEJ2;1þoY1;X�XZ�E4þoY2;1
T �1TZ4

þoY3; Z� J4þμ
2

‖X�XZ�E‖2F þ‖1T �1TZ‖2F þ‖Z� J‖2F
� �

;

ð7Þ
where Y1, Y2, and Y3 are the matrices of the Lagrange multipliers
that correspond to the three equality constraints in (6), respectively.

Third, according to ADMM, the updates of the variables Z, E and
J go as follows by minimizing over the augmented Lagrangian
function LμðZ; E; JÞ alternately. More specifically, assuming Ek, Zk,
and Yi

k are fixed,

Jkþ1 ¼min
J

J J JnþoYk
3; Z

k� J4þμk

2
‖Zk� J‖2F : ð8Þ

Next, assuming that Jkþ1, Zk, and Yi
k are fixed,

Ekþ1 ¼min
E

‖E‖2;1þoYk
1;X�XZk�E4þμk

2
‖X�XZk�E‖2F : ð9Þ

Each of the above subproblems has a closed-form proximal func-
tion solution as detailed in [27,12].

In this paper, we need to derive a new update rule for the low-
rank representation Z subject to the locality constraint PΩ ðZÞ ¼ 0.
More specifically, we solve the following problem:

min
P
Ω ðZÞ ¼ 0

oYk
1;X�XZ�Ekþ14þμk

2
‖X�XZ�Ekþ1‖2F þoYk

2;1
T

�1TZ4þμk

2
‖1T �1TZ‖2F þoYk

3; Z� Jkþ14þμk

2
‖Z� Jkþ1‖2F :

It is equivalent to:

min
P
Ω ðZÞ ¼ 0

1
2
‖X�XZ�Ekþ1þ 1

μk
Yk
1‖

2
F þ

1
2
‖1T �1TZþ 1

μk
Yk
2‖

2
F þ

1
2
‖Z� Jkþ1þ 1

μk
Yk
3‖

2
F :

We linearize the above equation with respect to Z at Zk:

min
P
Ω ðZÞ ¼ 0

o�XT X�XZk�Ekþ1þ 1
μk

Yk
1

� �
�1 1T �1TZkþ 1

μk
Yk
2

� �

þ Zk� Jkþ1þ 1
μk

Yk
3

� �
; Z�Zk4þη

2
‖Z�Zk‖2F ;

where η¼ ‖X‖22þ‖1T‖22þ1.
Let

Hk ¼ �XT X�XZk�Ekþ1þ 1
μk

Yk
1

� �
�1 1T �1TZkþ 1

μk
Yk
2

� �

þ Zk� Jkþ1þ 1
μk

Yk
3

� �
:

Then we have

min
P
Ω
ðZÞ ¼ 0

oHk; Z�Zk4þη
2
‖Z�Zk‖2F ; ð10Þ

and

min
P
Ω
ðZÞ ¼ 0

‖Z�Zkþ1
η
Hk‖2F ¼ PΩ Zk�1

η
Hk

� �
: ð11Þ

Finally, assuming that Ekþ1; Zkþ1, and Jkþ1 are fixed. The update
rules for Y1, Y2, and Y3 follow a simple dual ascend step [28]:

Ykþ1
1 ¼ Yk

1þμkðX�XZkþ1�Ekþ1Þ;
Ykþ1
2 ¼ Yk

2þμkð1T �1TZkþ1Þ;
Ykþ1
3 ¼ Yk

3þμkðZkþ1� Jkþ1Þ:

2.4. Constructing L2R2-graph

Given a data matrix X, let G¼ ðV ; EÞ be a graph associated with a
weight matrix W ¼ fwijg, where V ¼ fxigni ¼ 1 is the vertex set, and
E¼ feijg is the edge set, each edge eij associating nodes vi and vj
with a weight wij. The problem of graph construction is to deter-
mine the graph weight matrix W. In this paper, we are primarily
concerned about the estimation of an undirected graph with
nonnegative weight coefficients.

After solving the problem (2), we may obtain the optimal
coefficient matrix Zn. Since each data point is represented by its
neighborhood, Zn naturally characterizes how other samples con-
tribute to the reconstruction of xi. Such information is useful for
recovering the clustering relation among samples. The low-rank
constraint guarantees that the coefficients of the samples coming
from the same affine subspace are highly correlated and fall into
the same cluster, so that Zn can capture the global structure (i.e.
the clusters) of the whole data. Moreover, since Zn is automatically
sparse, the graph derived from Zn is naturally sparse. After
obtaining Zn, we can derive the graph weight matrix W as:

W ¼ ðjZn j þ jZn j T Þ=2: ð12Þ
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The method for constructing an L2R2-graph is summarized in
Algorithm 1.2

Algorithm 1. Graph construction via L2R2.
Inp

Ste
1

2

2

altern
refer
ut: Data matrix X ¼ ½x1; x2;…; xn�ARd�n, balance parameter
λ, and k-nearest neighbors parameter K.
ps:
: Normalize all the samples x̂ i ¼ xi=Jxi J2 to obtain

X̂ ¼ fx̂1; x̂2;…; x̂ng.
: Find neighbors in X using K-nearest neighbor method, and
assign adjacency graph Ω.
: Solve the following problem according to Section 2.3:
Fig. 2. An example of 800 points sampled in R2 and embedded in 100-D space with
3

ðZn; EnÞ ¼ arg min
Z;E

JZ JnþλJEJ1

s:t: X̂ ¼ X̂ZþE;1T ¼ 1TZ;

Zij ¼ 0; ði; jÞAΩ
added noise and corruption.
: Construct the graph weight matrix W by
4

W ¼ jZn j þ jZnT j
2

:

tput: The weight matrix W of L2R2-graph.
ou

3. Experiments

In this section, we demonstrate the performance of L2R2-graph,
and compare it with several state-of-the-art graph learning algo-
rithms, which include both traditional graphs (kNN-graph, LLE-
graph) and optimization-based graphs (ℓ1-graph [9], LRR-graph
[12], NNLRS-graph [11], and LRRLC-graph [15]). For kNN-graph, we
adopt Euclidean distance as our similarity measure, and use a
Gaussian kernel to re-weight the edges. The Gaussian kernel
parameter σ is set to 1. For a fair comparison, we share the same
graph adjacency structure Ω among kNN-graph, LLE-graph and
L2R2-graph. The algorithms are benchmarked in two applications,
namely manifold clustering on synthetic data and semi-supervised
classification on image data.

3.1. Manifold clustering on synthetic data

In this subsection, we consider the manifold clustering appli-
cation via standard spectral clustering on W. The experiment is
conducted on a series of synthetic data sets with added Gaussian
noise and data corruption.

First, we evenly sample 800 noise-free points in total from 4
half-circle manifolds (a.k.a. moon manifolds). Then the sample
points are embedded into a 100-dimensional space and occupy the
first two dimensions. Finally, we add Gaussian noise with mean
0 and variance 0.01 in all the 100-D coordinates, and further
randomly select 10% of the samples in X to corrupt with much
higher Gaussian noise with zero mean and variance 0:7nJxJ2. One
example of the noisy data is shown in Fig. 2.

We apply all the aforementioned graph-learning methods on the
synthetic data set, and use Normalized Cuts [21] to generate the
final segmentation. Examples of the clustering results are shown in
Fig. 3. As clustering methods cannot predict the class label of each
cluster, we use a postprocess step to assign each cluster a label:
given ground truth classification results, the label of a cluster is the
The ADMM implementation can be further accelerated via a linearized
ating direction method with adaptive penalty (LADMAP) method. For brevity,
to [26].
index of the ground truth class that contributes the maximum
number of samples to the cluster. And then we can obtain the
segmentation accuracy by computing the percentage of correctly
classified data vectors. The segmentation accuracy is shown in Fig. 4.

We draw the following observations:

1. The state-of-the-art representation-based methods (i.e. ℓ1-
graph, LRR, NNLRS) are inferior to the traditional methods
(kNN and LLE). This should not come as a surprise because they
aim to preserve only global linear structures of the data. When
the data are drawn from nonlinear manifolds, the existing
representation methods often violate the local geometric struc-
ture, and result in poor performance.

2. All methods (kNN, LLE, LRRLC, L2R2) that utilize the local geo-
metric information significantly outperforms representation-
based methods. It shows that exploring the local structure is
very important for graph construction from nonlinear manifolds.

3. Though both L2R2 and LRRLC utilize the local structure, the
segmentation accuracy of L2R2 is more than 12% higher than
that of LRRLC. This shows that L2R2 is more effective in utilizing
the local structure information.

4. Though sharing the same graph adjacency structure, L2R2 mark-
edly outperforms LLE and k-NN. This shows that the global low-
rank constraint is also crucial to construct an informative graph.

Evaluation of parameter sensitivity: There are two parameters in
the L2R2 model: λ and K. The balance parameter λ is to deal with the
gross corruption errors in data. The number of nearest neighbors K
has an important impact to the graph adjacency structure. In this
experiment, we evaluate the change of the segmentation accuracy
using L2R2-graph when the neighborhood parameter K varies. Since
the percentage of gross corruption errors in data is fixed, we set
λ¼ 0:05 empirically. The results are shown in Table 1.

From this table, we can see that the performance of L2R2-graph in
manifold clustering is rather stable when K varies from 5 to 20. When
K reaches 50, the performance eventually decreases. This is due to
the fact that the samples in a 50-point nearest neighborhood do not
fit well in a unique affine subspace anymore. In real applications, we
can set K between 5 and 10 so as to expect each point and its
neighbors to lie on or close to a locally affine patch of the manifold.

3.2. Semi-supervised classification on real data

In this subsection, we choose a popular graph-based semi-
supervised learning method, namely, local and global consistency
(LGC) [4], to benchmark the performance of the different graph-



Fig. 3. Nonlinear manifold clustering results. (a) Representation-based graph methods; (b) traditional graph methods; (c) L2R2-graph. The traditional graph and L2R2-graph
share the same local neighborhood structure.

Fig. 4. Segmentation accuracy on synthetic data.

Table 1

Segmentation accuracy (%) on synthetic data using L2R2-graph with different
nearest neighborhoods number. The parameter λ is fixed to 0.05.

K 5 10 20 50

Acc. (%) 91.6 91.0 91.1 80.3

L. Zhuang et al. / Neurocomputing 175 (2016) 715–722720
learning approaches. LGC is built on an undirected graph, and
utilizes the graph and known labels to recovery a continuous
classification function FARj V j �c by optimizing the following
energy functions:

min
FAR j V j �c

trfFT ~LWFþμðF�YÞÞT ðF�YÞg; ð13Þ

where YARj V j �c is the label matrix, in which Yij ¼ 1 if sample xi is
associated with label j for jAf1;2;…; cg and Yij ¼ 0 otherwise. ~LW is
the normalized graph Laplacian ~LW ¼D�1=2ðD�WÞD�1=2, in which D
is a diagonal matrix with Dij ¼

P
jWij. The weight μA ½0;1Þ balances

the tradeoff between the local fitting and the global smoothness of the
function F. In all experiments, μ is simply fixed to 0.99.

To comprehensively estimate the performance of L2R2-graph,
we conduct our experiments on two well-known public databases
(USPS and COIL20). Sample images from both databases are shown
in Fig. 5. Experimentally, USPS roughly has linear subspace struc-
ture, while COIL20 lies on nonlinear manifolds. So, we choose
these two databases to form our datasets. For USPS database, we
only use the images of digits 1, 2, 3 and 4 as four classes, each
having 1296, 926, 824 and 852 samples, respectively. So, there are
3874 images in total. For COIL20 database, it contains 20 objects.
The images of each objects were taken 5° apart as the object is
rotated on a turntable and each object has 72 images. The size of
each grayscale image is 32� 32 pixels.

We combine different graphs with the LGC frameworks, and
quantitatively evaluate their performance by following the
approaches in [9,22,11]. For USPS database, we randomly select
200 images for each category, and randomly label them. The per-
centage of labeled samples ranges from 10% to 60%. The final
results are reported in Tables 2 and 3.

From these two tables, we draw the following conclusions:

1. On the USPS database, NNLRS achieves the best performance
when more than 20% of the samples are labeled, while
L2R2-graph is the second best. With 10% labeling, L2R2-graph
has the best performance. The result shows NNLRS has a slight
edge in modeling linear subspaces, while L2R2 remains effective
only second to NNLRS.

2. On the COIL20 database, L2R2 using five nearest neighbors to
construct the adjacency graph achieves the best performance
across the board. The result shows that L2R2 is most effective in
the case of modeling nonlinear manifolds. In this case,
L2R2(5) significantly outperforms NNLRS.

3. L2R2-graph is significantly superior to LRRLC-graph. This means
that preserving the local structure is more efficient to explore the
local geometric structure than re-weighting the linear coefficients.

4. L2R2-graph also markedly outperforms LLE-graph in all cases.
This one again proves that preserving the global structure is
important to construct an informative graph.
4. Conclusion

This paper proposes a novel informative graph, called Locality-
preserving Low-Rank Representation graph (L2R2-graph), for graph-
based learning methods. L2R2-graph represents each data point with
its neighbors, and approximate the manifolds with piece-wise affine
subspaces. By imposing a low-rank constraint on the coefficient
matrix, L2R2-graph can jointly compute the linear coefficients of all
points, and better capture the global structure of the whole data on
nonlinear manifolds. Meanwhile, by preserving the local structure,
L2R2-graph is automatically guaranteed to be sparse. Our synthetic
and real experiments on both manifold clustering and semi-
supervised classification have showed that L2R2-graph is more infor-
mative and more suitable for learning nonlinear manifold structures
than the existing graph-learning methods.



Table 2
Classification error rates (%) on USPS database under different labeled percentages.

Methods 10% 20% 30% 40% 50% 60%

ℓ1-graph 33.5 26.4 18.9 16.6 11.7 8.89
LRR 3.49 1.83 1.22 0.92 0.61 0.49
NNLRS 2.80 1.62 1.13 0.88 0.59 0.48
LRRLC 3.40 3.06 3.02 2.80 2.68 2.58
kNN(5) 3.13 2.22 1.55 1.20 0.82 0.65
LLE(5) 3.69 2.85 2.41 2.10 1.96 1.92

L2R2(5) 2.42 1.64 1.26 0.92 0.61 0.52

kNN(10) 4.53 4.28 4.01 3.95 3.81 3.69
LLE(10) 4.83 3.84 3.57 3.35 3.30 3.15

L2R2(10) 2.66 1.88 1.38 1.05 0.74 0.66

Table 3
Classification error rates (%) on COIL20 database under different labeled
percentages.

Method 10% 20% 30% 40% 50% 60%

ℓ1-graph 29.0 23.1 17.8 15.8 14.4 12.0
LRR 16.8 13.2 10.7 10.4 9.35 8.41
NNLRS 12.1 9.33 8.78 6.99 6.87 6.10
LRRLC 8.53 6.49 5.24 4.35 4.32 3.58
kNN(5) 12.6 10.9 10.5 10.4 9.40 8.85
LLE(5) 6.49 4.01 2.77 2.12 2.06 1.54

L2R2(5) 4.39 2.07 1.71 1.20 1.15 0.96

kNN(10) 18.2 16.1 15.4 15.1 14.8 14.4
LLE(10) 13.6 11.2 10.0 9.40 8.49 8.34

L2R2(10) 11.3 9.12 7.83 7.34 7.31 5.72

Fig. 5. Sample images in our experiments.
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