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ABSTRACT

Co-saliency detection, which refers to the discovery of com-
mon salient foreground regions in a group of relevant images,
has attracted increasing attention due to its widespread ap-
plications in many vision tasks. Existing methods assemble
features from multiple views toward a comprehensive rep-
resentation, however overlook the efficacy disparity among
various features in detecting co-saliency. This paper proposes
a novel feature-adaptive semi-supervised (FASS) framework
for co-saliency detection, which seamlessly integrates multi-
view feature learning, graph structure optimization and co-
saliency prediction in a unified solution. In particular, the
FASS exploits the efficacy disparity of multi-view features
at both view and element levels by a joint formulation of
view-wise feature weighting and element-wise feature selec-
tion, leading to an effective representation robust to feature
noise and redundancy as well as adaptive to the task at hand.
It predicts co-saliency map by optimizing co-saliency label
prorogation over a graph of both labeled and unlabeled image
regions. The graph structure is optimized jointly with feature
learning and co-saliency prediction to precisely characterize
underlying correlation among regions. The FASS is thus able
to produce satisfactory co-saliency map based on the effective
exploration of multi-view features as well as inter-region cor-
relation. Extensive experiments on three benchmark datasets,
i.e., iCoseg, Cosal2015 and MSRC, have demonstrated that
the proposed FASS outperforms the state-of-the-art methods.

CCS CONCEPTS

• Computing methodologies → Interest point and
salient region detections;
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Figure 1: Illustration of the image groups and co-
saliency maps of “ladybird” and “red-clothed ath-
letes”, respectively. While low-level color feature is
effective for detecting co-saliency corresponding to,
high-level semantic cue is more useful for co-saliency
detection of “ladybird”.
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1 INTRODUCTION

The rapid advancements of image acquisition devices have
increased the volume of digital image collections significantly.
These big image collections occupy huge amounts of storage
space and require huge computational resources for processing.
There is an intense demand to selectively store, deliver and

Session: FF-4 MM’18, October 22-26, 2018, Seoul, Republic of Korea

959

https://doi.org/10.1145/3240508.3240648
https://doi.org/10.1145/3240508.3240648


process region-of-interest rather than original images in many
applications. Co-saliency detection, which imitates human
vision system to detect common salient foregrounds (CFs)
within relevant images, has attracted increasing attention in
recent years [8, 9, 11, 26, 27].

In the past decades, many researches focus on discovering
effective image representation for co-saliency detection. Con-
ventional methods primarily use low-level features, such as
color, texture or SIFT descriptors, to represent image region-
s [3–5, 7, 15, 16, 25], assuming that the co-salient objects
within relevant images share certain low-level visual consisten-
cy. Recently, high-level semantic features have been exploited
in co-saliency detection [26, 31, 32]. The high-level features
provide semantic cues and are relatively robust to the varia-
tions in viewpoints, shapes, and luminance etc. To explore the
complementarity among features from multiple views, some
approaches have been developed to assemble multi-view fea-
tures towards a comprehensive representation [10, 22, 33, 34].
However, they treat various features equally important and
overlook their capacity disparity in discovering co-saliency.
Actually, as shown in Figure 1, various features possess dif-
ferent abilities in representing CFs and distinguishing CFs
from background and such ability changes with the tasks at
hand.

Traditional co-saliency detection methods mainly search for
CFs within an image group based on some human-designed co-
saliency priors in unsupervised bottom-up and fusion-based
manners [2–4, 6, 7, 15, 16, 26, 30]. However, human-designed
priors are typically subjective and not generalizable to various
cases of co-saliency, resulting in unsatisfactory performance.
Recently, a few of preliminary supervised co-saliency de-
tection has been proposed to learn co-saliency maps using
pixel-level ground truth based on either traditional learning
model [10] or deep neural networks [29]. However, it is highly
time-assuming and labor-intensive to manually annotate co-
salient CFs within images with pixel-level masks. As a result,
supervised learning methods usually suffer from the lack of
sufficient labeled samples.

Motivated by the above observations, we propose a novel
feature-adaptive semi-supervised (FASS) framework for co-
saliency detection. The FASS seamlessly integrates multi-view
feature learning, graph structure optimization and co-saliency
detection in a unified semi-supervised solution. In particular,
the FASS exploits the efficacy disparity of multi-view features
at both view and element levels and formulates a joint learn-
ing of view-wise feature weighting and element-wise feature
selection. In this way, FASS is able to concentrate more on
features from the important views and filter out redundant
and noisy elements within original features. The resultant
representation is effective and adaptive to the tasks at hand.
FASS explores the abundant unlabeled images to boost co-
saliency detection in a semi-supervised manner. It predicts
co-saliency map by optimizing co-saliency label prorogation
over a graph of both labeled and unlabeled image regions.
The graph structure is optimized jointly with feature learning
and co-saliency prediction to precisely characterize underly-
ing correlation among regions. By the joint exploration of

multi-view feature learning, graph structure optimization and
co-saliency label inferring, FASS is able to generate accurate
co-saliency maps. We have conducted extensive experiments
on three widely used co-saliency detection datasets, i.e., i-
Coseg, Cosal2015 and MSRC datasets. Experimental results
have shown that the proposed FASS framework outperforms
the state-of-the-art methods.

2 RELATED WORK

Co-saliency detection. A wealth of approaches have been
proposed for co-saliency detection in recent years. Existing
methods can be roughly grouped into three main categories:
bottom-up, fusion-based, and supervised learning methods.
The bottom-up methods [4, 7, 15, 16, 26] scored each re-
gion in an image group by using human designed co-saliency
priors. Generally, it consists of image preprocessing, feature
extraction, single prior exploration, and multi-prior com-
bination stages. For example, Faktor et al. [6] utilized a
co-segmentation detection prior that common regions con-
tained by the given image group should be the objects of
interest. Fu et al. [7] proposed a cluster-based co-saliency
detection approach, by using three bottom-up saliency cues,
i.e., the contrast, spatial and correspondence cues. The fi-
nal co-saliency prediction was obtained based on the com-
bination of the explored bottom-up cues. The fusion-based
solution [2, 3, 30] was to aggregate detection results from
multiple methods. For example, Cao et al. [2] proposed to com-
bine multiple co-saliency/saliency maps by a rank constraint
with self-adaptive weights. Cao et al. [3] further proposed a
reconstruction-based fusion approach based on the ensemble
of results from multiple existing saliency detection methods.
Huang et al. [30] fused multi-scale saliency maps, which were
generated based on super-pixels at multiple scales. However,
The fusion-based methods heavily rely on the fused methods
and usually suffer from the imprecise results of the fused
methods.

Recently, supervised co-saliency detection approaches have
been proposed [10, 29, 33, 34]. For example, Zhang et al
[33, 34] proposed a self-paced multiple-instance method to
gradually learn the patterns of co-salient objects from confi-
dent image regions to ambiguous ones. It used the image-level
labels as weak supervision, indicating whether an image con-
tained the to-be-detected co-salient objects. Wei et al. [29]
proposed an end-to-end group-wise deep co-saliency detec-
tion approach by combing single visual feature maps and
the common semantic feature map in an image group. Han
et al. [10] proposed a unified metric learning framework for
improving co-saliency detection. Most supervised methods
often require a large amount of training samples with pixel-
level co-saliency ground truth. However, manual annotation
for pixel-level ground truth is very labor-intensive, resulting
in the lack of training data.

Features for co-saliency. As a basic yet critical factor,
visual features adopted to represent image pixels or regions
significantly affect the performance of co-saliency detection
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Figure 2: Overview of the proposed Feature-Adaptive Semi-Supervised (FASS) framework for co-saliency
detection.

models. Existing works mainly exploited the low-level, high-
level and hypercolumn features for co-saliency detection. Here,
following existing research [10, 33, 34], the high-level features
referred to the representations learned by deep neural net-
works.

The low-level features [3–5, 7, 15, 16, 25], such as color
histograms, Gabor filters, or SIFT descriptors have wide-
spread applications in co-saliency detection tasks. However,
low-level features were often not robust to the variations in
viewpoints, shapes, and luminance etc. and sometimes were
instable for various cases of co-saliency. Moreover, low-level
features lacked of the abstraction of semantic cues. Recently,
high-level semantic features learned by deep neural networks
have been introduced for co-saliency detection [10, 33, 34].
The deep neural networks were pre-trained on auxilary image
datasets,e.g., ImageNet [12] and in turn used to extract fea-
tures from co-saliency image collections. Generally, neither
low-level nor high-level features can individually handle all
the cases in co-saliency detection. Zhang et al. [33, 34] pro-
posed a hypercolumn representation, which is a combination
of feature maps from different CNN layers, towards capturing
both low-level and and high-level cues. Recently, Han et al.
[10] learned a feature transformation matrix by embedding
a metric learning term into support vector machine(SVM).
The original hypercolumn features were projected to a new
feature space by using the learnt transformation matrix.

3 THE PROPOSED APPROACH

3.1 Overview

Co-saliency detection aims at extracting common salient re-
gions in relevant images. The common salient regions are
not only salient in each individual image but also commonly
appear in a group of relevant images. Hence, “salient” and
“common” are two crucial attributes that together reflect the

definition of co-saliency. It is straightforward to recast co-
saliency detection as a classification task, classifying each
region/super-pixel within images as co-salient or not. Figure
2 illustrates the proposed feature-adaptive semi-supervised
(FASS) framework for co-saliency detection. As aforemen-
tioned, the FASS simultaneously optimizes view-wise feature
weighting, element-wise feature selection, graph structure
as well as co-saliency label prorogation in a unified semi-
supervised solution. These components enhance each other
mutually, together facilitating accurate co-saliency detection.

The FASS starts with constructing a collection of candi-
date salient super-pixels from image groups. It first produces
individual saliency map 𝑇 for each image by using a pre-
trained deep saliency detection model [17]. Other saliency
detection models are also feasible. The final co-saliency result
is not sensitive to the saliency detection model. Then, the
simple linear iterative clustering (SLIC) algorithm is applied
to partition each image within {𝐼𝑚}𝑀𝑚=1 into a set of super-
pixels. We define 𝑇𝑚

𝑘 as the individual saliency value of 𝑘-th
super-pixel from 𝑚-th image. 𝑇𝑚

𝑘 is calculated by average
pooling of the saliency scores of the corresponding pixels in
𝑇 . We set a saliency threshold 𝜃 (𝜃 = 0.3) and select the
super-pixels with saliency score 𝑇𝑚

𝑘 ≥𝜃 to form the collection
𝒱 of candidate salient super-pixels, which are the processing
units for the subsequent modules.

3.2 The FASS Algorithm

In this section, we elaborate the proposed FASS algorithm
including multi-view feature learning, graph structure opti-
mization and co-saliency prediction. We first introduce the
graph to be optimized to characterize the underlying cor-
relation among various super-pixels. Let 𝒢𝑘 = (𝒱, ℰ𝑘,A𝑘)
denote the graph consisting of labeled and unlabeled super-
pixels constructed based on 𝑘-th view feature. A node in 𝒢𝑘

corresponds to a candidate salient super-pixel in 𝒱 and an
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edge 𝑒𝑖𝑗 in ℰ𝑘 = [𝑒𝑖𝑗 ]
𝑘
𝑛×𝑛 represents the affinity between

two related super-pixels. A𝑘 denotes the affinity matrix.
The similarity 𝑎𝑘

𝑖𝑗 between two super-pixels is calculated as

𝑎𝑘
𝑖𝑗 = exp(−

⃦⃦
x̃𝑘
𝑖 − x̃𝑘

𝑗

⃦⃦2
), where x̃𝑘 is the to-be-optimized 𝑘-

th view feature. A𝑘 is initialized using the original feature x𝑘
𝑖

and updated with the optimized feature iteratively. Let L𝑘 de-

note the Laplacian matrix of graph 𝒢𝑘. L𝑘 =

[︂
L𝑘

𝑙𝑙 L𝑘
𝑙𝑢

L𝑘
𝑢𝑙 L𝑘

𝑢𝑢

]︂
,

where 𝑙 and 𝑢 refer to the index of matrix block corresponding
to labeled and unlabeled vertices.

In order to characterize the underlying correlation among
super-pixels precisely and comprehensively, we design a global
graph 𝒢 = (𝒱, ℰ ,S) based on multi-view features, where S is
the affinity matrix of the graph. 𝒢 is optimized through an
appropriate ensemble of 𝒢𝑘 from multiple views as follows:

min

⃦⃦⃦⃦
⃦S−

𝑣∑︁
𝑘=1

𝜇𝑘A
𝑘

⃦⃦⃦⃦
⃦
2

𝐹

s.t. ∀𝑖, S𝑖
𝑇1 = 1, 0 ≤ 𝑆𝑖𝑗 ≤ 1, rank (L𝑠) = 𝑛− 2, 𝜇

(𝑡)
𝑙 = 𝑤

(𝑡−1)
𝑘

(1)

where 𝜇𝑘 is the ensemble weight of 𝑘-th view graph, repre-
senting the importance of 𝑘-th view feature. 𝜇𝑘 is initialized
as a uniform weight as 1

𝑣
and updated as the value of 𝑤𝑘 at

last iteration during optimization. rank (L𝑠) = 𝑛− 2 is the
constraint on the rank of matrix L𝑠. If it is satisfied, the S
becomes an ideal neighbor assignment and the data points
are partitioned into 2 clusters.

In order for a comprehensive and effective representation
from multiple views, we formulate a multi-view feature learn-
ing consisting of view-wise feature weighting and element-wise
feature selection. It simultaneously considers the efficacy dis-
parity of various features at both view and element levels.
The multi-view feature learning is formulated as follows:

min

𝑣∑︁
𝑘=1

𝑤𝑘

∑︁
𝑖,𝑗

⃦⃦⃦
(𝛽𝛽𝛽𝑘)

𝑇
x𝑘
𝑖 − (𝛽𝛽𝛽𝑘)

𝑇
x𝑘
𝑗

⃦⃦⃦2

2
𝑆𝑖𝑗 + 𝛾

𝑣∑︁
𝑘=1

⃦⃦⃦
𝛽𝛽𝛽𝑘

⃦⃦⃦1

2

s.t.

𝑣∑︁
𝑘=1

𝑤𝑘 = 1,

(2)
where x𝑘

𝑖 is the 𝑘-th view feature of 𝑖-th super-pixel. {𝑤𝑘}𝑣1
refers to the weighting parameters of different views. 𝛽𝛽𝛽𝑘 ∈
R𝑚𝑘×𝑑

𝑘

is the projection matrix for 𝑘-th view feature. It
is used to find a discriminative subspace for the original
features and select important feature elements via the 𝑙2,1-
norm regularization 𝛽𝛽𝛽𝑘. 𝑚𝑘 and 𝑑𝑘 are the original and
projected feature dimensionality, respectively.

We conduct semi-supervised co-saliency learning by proro-
gating co-saliency labels over labeled and unlabeled super-
pixels. The assumption here is that the similar super-pixels
are likely to have the same co-saliency label. The co-saliency
proportion is formulated as follows:

min
∑︁
𝑖,𝑗

‖𝑓𝑖 − 𝑓𝑗‖22 𝑆𝑖𝑗 (3)

where 𝑓𝑖 ∈ {0, 1} is the co-saliency label of 𝑖-th super-pixel.
For any labeled super-pixel, 𝑓𝑖 is generated by average pooling
the co-saliency groundtruth of pixels within the super-pixel
and binarilizing the average co-saliency score via a threshold
of 0.5. Let F𝑙 denote the co-saliency label vector of labeled
super-pixels. F𝑢 is the to-be-inferred labels for unlabeled
ones. F = [F𝑙,F𝑢]

𝑇 .
The above co-saliency prorogation is jointly optimized

with the graph structure optimization in Eq. (1), and multi-
view feature learning in Eq. (2) via a unified formulation as
the following Eq. (4), so that the three learning tasks can
enhance each other mutually and together lead to a optimal
solution to infer labels of super-pixels, which is jointly learnt
with the graph structure optimization and multi-view feature
learning. Then, we predict indicator unlabeled matrix F𝑢 by
the following unified formulation:

min

𝑣∑︁
𝑘=1

𝑤𝑘

∑︁
𝑖,𝑗

⃦⃦⃦
(𝛽𝛽𝛽𝑘)

𝑇
x𝑘
𝑖 − (𝛽𝛽𝛽𝑘)

𝑇
x𝑘
𝑗

⃦⃦⃦2

2
𝑆𝑖𝑗 + 𝛼

∑︁
𝑖,𝑗

‖𝑓𝑖 − 𝑓𝑗‖22 𝑆𝑖𝑗

+ 𝛾

𝑣∑︁
𝑘=1

⃦⃦⃦
𝛽𝛽𝛽𝑘

⃦⃦⃦1

2
+ 𝛿

⃦⃦⃦⃦
⃦S−

𝑣∑︁
𝑘=1

𝜇𝑘A𝑘

⃦⃦⃦⃦
⃦
2

𝐹

s.t. ∀𝑖, S𝑖
𝑇1 = 1, 0 ≤ 𝑆𝑖𝑗 ≤ 1, rank (L𝑠) = 𝑛− 2,

𝑣∑︁
𝑘=1

𝑤𝑘 = 1, 𝜇
(𝑡)
𝑙 = 𝑤

(𝑡−1)
𝑘 ,

(4)

3.3 Optimization

We introduce an alternative optimization strategy for opti-
mizing {𝑤𝑘}𝑣1 , {𝛽𝛽𝛽𝑘}𝑣1 ,S,F in Eq. (4).

(1) Fixing S, F and {𝑤𝑘}𝑣1, update {𝛽𝛽𝛽𝑘}𝑣1 . {𝛽𝛽𝛽𝑘}𝑣1 is
optimized to form a linear transform of the features and
element-wise feature selection. The optimization can be e-
quivalently decomposed into sub-problems with respect to
each 𝛽𝛽𝛽𝑘. By denoting the constant C as the sum of the related
items of 𝛽𝛽𝛽𝑖(𝑖 ̸= 𝑘), we can optimize any 𝛽𝛽𝛽𝑘 as follows:

min
∑︁
𝑖,𝑗

⃦⃦⃦
(𝛽𝛽𝛽𝑘)

𝑇
𝑥𝑘
𝑖 − (𝛽𝛽𝛽𝑘)

𝑇
𝑥𝑘
𝑗

⃦⃦⃦2

2
𝑆𝑖𝑗 + (

𝛾

𝑤𝑘
)

𝑣∑︁
𝑙=1

⃦⃦⃦
𝛽𝛽𝛽𝑘

⃦⃦⃦1

2
+C

(5)

The objective function in Eq. (5) is convex and can be solved
by an existing strategy [21].

(2) Fixing S, F and {𝛽𝛽𝛽𝑘}𝑣1, update {𝑤𝑘}𝑣1 . Following
[20], 𝑤𝑘 is dependent on S, 𝛽𝛽𝛽𝑘 and can be updated as follows:

𝑤𝑘 =
1

2

√︂∑︀
𝑖,𝑗

⃦⃦⃦
(𝛽𝛽𝛽𝑘)

𝑇
𝑥𝑘
𝑖 − (𝛽𝛽𝛽𝑘)

𝑇
𝑥𝑘
𝑗

⃦⃦⃦2

2
𝑆𝑖𝑗

. (6)

(3) Fixing {𝑤𝑘}𝑣1, S, {𝛽𝛽𝛽𝑘}𝑣1, update F. F𝑢 can be cal-
culated as according to the following formulation:

F𝑢 = −L𝑢𝑢
−1L𝑢𝑙F𝑙. (7)
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(4) Fixing {𝑤𝑘}𝑣1, S,{𝛽𝛽𝛽𝑘}𝑣1 and F, update S. The opti-
mization of S contains two sub-problems including individual
graph optimization and global graph alignment.

Individual graph optimization: We take an alterna-
tive solution for optimizing the individual graph of a single
view. First, A𝑘 can be optimized by the following objective
function:

min
∑︁
𝑖,𝑗

⃦⃦⃦
𝛽𝛽𝛽𝑇𝑥𝑖 − 𝛽𝛽𝛽𝑇𝑥𝑗

⃦⃦⃦2

2
𝑎𝑖𝑗 + 𝜆

∑︁
𝑖,𝑗

‖𝑞𝑖 − 𝑞𝑗‖22 𝑎𝑖𝑗 + 𝜂𝑎𝑖𝑗
2

𝑠.𝑡. ∀𝑖, a𝑇
𝑖 1 = 1, 0 ≤ 𝑎𝑖𝑗 , rank (L𝐴𝑘 ) = 𝑛− 2

(8)
where 𝑞𝑖 corresponds to the predicted labels for 𝑖-th super-
pixel under 𝑘-th view. The first step is to fix Q and update

A𝑘. Here, we denote
⃦⃦
𝛽𝑇𝑥𝑖 − 𝛽𝑇𝑥𝑗

⃦⃦2

2
as 𝑚𝛽𝑥

𝑖𝑗 and ‖𝑞𝑖 − 𝑞𝑗‖22
as 𝑚𝑓

𝑖𝑗 . 𝑑𝑖𝑗 = 𝑚𝛽𝑥
𝑖𝑗 + 𝜆𝑚𝑓

𝑖𝑗 is the feature difference and la-
bel disparity between 𝑖-th and 𝑗-th super-pixels. Each row
a𝑘
𝑖 of A𝑘 is obtained via solving the following optimization

problem:

min
∀𝑖 a𝑘

𝑖
𝑇
1=1,rank(L𝐴𝑘 )=𝑛−2,

⃦⃦⃦⃦
a𝑘
𝑖 − 1

2𝜂
d𝑖

⃦⃦⃦⃦2

2

(9)

where d𝑖 = [𝑑𝑖1, 𝑑𝑖, ..., 𝑑𝑖𝑛]
𝑇 . The second step is to fix A𝑘 and

update Q = [F𝑙,Q𝑢]
𝑇 . Similar to Eq. (7), Q can be solved

as i.e., Q𝑢 = −L𝑘
𝑢𝑢

−1
L𝑘

𝑢𝑙F𝑙. We alternatively optimize Q
and A𝑘 until the sum of the two smallest eigenvalues of L𝐴𝑘

becomes zero [21]. 𝜂 is initialized as 1 and is decreased if the
connected component of A𝑘 is larger than the class number
two or otherwise increased during the iteration.

Global graph alignment: The second step is to build an
integrated graph. We obtain individual view affinity matrix
{A𝑘}𝑣1 by Eq. (7), The optimization of the global graph can
be rewritten as follows:

min

𝑣∑︁
𝑘=1

𝑤𝑘

∑︁
𝑖,𝑗

⃦⃦⃦
(𝛽𝛽𝛽𝑘)

𝑇
𝑥𝑘
𝑖 − (𝛽𝛽𝛽𝑘)

𝑇
𝑥𝑘
𝑗

⃦⃦⃦2

2
𝑆𝑖𝑗 + 𝛼

∑︁
𝑖,𝑗

‖𝑓𝑖 − 𝑓𝑗‖22 𝑆𝑖𝑗

+ 𝛿

⃦⃦⃦⃦
⃦S−

𝑣∑︁
𝑘=1

𝜇𝑘A
𝑘

⃦⃦⃦⃦
⃦
2

𝐹

𝑠.𝑡. ∀𝑖, s𝑇𝑖 1 = 1, 0 ≤ 𝑠𝑖𝑗 ≤ 1, rank (L𝐴𝑘 ) = 𝑛− 2,

(10)
where 𝜇𝑙 is set to the value of 𝑤𝑙 at last iteration, i.e., 𝜇

𝑡
𝑙 =

𝑤𝑡−1
𝑙 . The optimization strategy for Eq. (10) is same as that

for Eq. (9). After each iteration, we can obtain the co-saliency
labels F𝑢 based on the current learned features and similarity
matrix S.

4 EXPERIMENTS

4.1 Experimental Setup

Dataset and Performance Metric. We evaluate the pro-
posed FASS approach on three widely used benchmark dataset-
s: Cosal2015, iCoseg and MSRC datasets. Cosal2015 is the
largest and most challenging dataset for co-saliency detec-
tion. It contains 50 image groups with a total of 2,015 images.
iCoseg consists of 38 image groups with a total of 643 images.

Algorithm 1: The FASS Algorithm

Input: 𝒳 = {X1,X2, . . . ,X𝑣};
X𝑘 = [𝑥𝑙

1, 𝑥
𝑘
2 , . . . , 𝑥

𝑘
𝑛] ∈ R𝑚𝑘×𝑛;

the trade-off parameters 𝛼, 𝛾, 𝛿; label matrix F.
Output: The predicted label matrix for unlabeled

super-pixels.
Initial: The weight for 𝑘-th view 𝑤𝑘 = 1

𝑣
,

𝛽𝛽𝛽𝑘 = I(𝑚
𝑘×𝑑𝑘) and S initialized by Euclidean distance.

Repeat:

1. Update {𝛽𝛽𝛽𝑘}𝑣1 via Eq. (5).
2. Update {𝑤𝑘}𝑣1 via Eq. (6).
3. Update F via Eq. (7), where it is formed by the 𝑐

eigenvectors of L𝑠 corresponding to the 𝑐 smallest
eigenvalues and 𝑐 = 2.

4. Update S via Eq. (10).

Until converge

MSRC dataset consists of 7 image groups with a total of 240
images. All the images within these datasets have been man-
ually labeled with pixel-level co-saliency ground-truth. We
adopt three popular performance metric in the experiments,
including the precision–recall (PR) curve, average precision
(AP) and F-measure. The PR curve is generated by a series
of thresholds 𝑇 , varying from 0 to 255.

Image Features. We adopt two categories of image fea-
tures, i.e., traditional low-level features and deep learning
features, to represent various characteristics of image content.
Six types of low-level features are used, including RGB (3-D),
LAB (3-D), HSV (3-D), Texture (15-D), Texture-hist (15-D),
and LBP-hist (256-D) descriptors [24]. For the deep learning
features, we use off-the-shelf fully connected convolutional
network (FCN) as feature extractor due to its impressive
performance in image segmentation and saliency detection.
“FCN-32s” network [19] is used in our experiments, which
contains seven convolutional layers, five pooling layers and
one upsampled prediction layer. The network is pre-trained
on saliency datasets.The feature maps from the first and fifth
convolutional layers are used as the low-level and high-level
image representation, respectively. The sizes of the feature
maps are 56× 256× 256 and 512× 17× 17, respectively. We
resize the feature maps to the size of input image by bilinear
interpolation and then conduct average pooling to produce
the low-level and high-level features for each super-pixel of
56 dimensionality and 512 dimensionality, respectively.

Implementation Details. We randomly select 50% im-
ages from each image group as labeled samples and use the
remaining images as unlabeled ones. We conduct five-fold
cross validation and report the average performance. We ini-
tialize the supe-rpixel number 𝑛 of each image as 200 and the
precise value of 𝑛 is determined by the SLIC algorithm [1].
The individual saliency maps are generated by the pre-trained
DHS-Net model [17]. For the proposed FASS algorithm, we
initialize the parameter 𝛿 = 1 in Eq. (4) and decrease 𝛿 if the
connected component of 𝑆 is larger than the class number 𝑐
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(b) The results measured in terms of the PR curves for the iCoseg, Cosal2015 and MSRC datasets.

(c) The results measured in terms of the AP score and the F-measure for the iCoseg, Cosal2015 and MSRC datasets.

Figure 3: The performance comparison between the proposed FASS and nine state-of-the-arts methods in
terms of AP curve, AP score and F-measure.

Figure 4: Illustration of sample co-saliency maps by the proposed FASS and multiple representative state-of-
the-art methods. Note that the saliency maps on Cosal2015 and MSRC in the fourth row are produced by
the ML-SVM approach and the co-saliency maps on iCoseg are from MI-SPL.

or otherwise increase 𝛿 during the iteration. The setting for
the parameter 𝜂 in Eq. (9) is in the same way. We set the
parameters 𝛼 and 𝛾 in Eq. (4) to 1 and set the dimensionality
𝑑𝑙 of 𝛽𝛽𝛽𝑙 as 𝑑𝑙 = 2

3
𝑚𝑙 following the work [21].

Running Time. The experiments are run on a PC with
an i5-3.3 GHz CPU, 8 GB of memory and a Titan 1080 Ti
GPU. Our code is implemented in MATLAB and C without
optimisation and the CNN feature extractor is implemented
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in Python. Without the extraction of multi-view features and
initial saliency map, the average running time per image for
the iCoseg, Coseg2015 and MSRC datasets are 10.75 s, 13.28
s and 9.53 s, respectively. This indicates that the proposed
FASS is efficient.

4.2 Comparison to State-of-the-Arts

We compare the proposed FASS approach to nine state-of-the-
art co-saliency detection methods, ranging from unsupervised
methods, i.e., CS [7], HS [18], LR [23], LDW [32], BLSM [30],
MV-SRCC [31] and TS [28], to a weakly supervised method
MI-SPL [34] using image category label and a supervised
method ML-SVM [10].

Figure 3 illustrates the performance comparison between
these methods in terms of PR curve, AP score and F-measure.
From these results, we can obtain the following observation-
s. (a) The proposed FASS approach performs better than
the state-of-the-art methods in terms of all the performance
metric on the iCoseg and Cosal2015 datasets. It improves
F-measure over the state-of-the-art methods on the MSRC
dataset and has a marginal AP degradation compared to the
supervised method ML-SVM; (b) It outperforms the best
compared method ML-SVM by 2.80% and 7.90% in terms
of AP score and F-measure respectively on the challenging
Cosal2015 dataset. It achieves 5.34% performance improve-
ment in terms of AP score on the iCoseg dataset compared
to the best performed existing method LDW as well as 7.36%
F-measure improvement compared to MI-SPL. On the MSR-
C dataset, it improves the compared method ML-SVM by
5.14% in terms of F-measure and has a marginal performance
degradation of 0.58% in terms of AP score.

Figure 4 shows some sample co-saliency maps produced
by the proposed FASS approach and four competitive ex-
isting methods including LDW [32],LR [23],ML-SVM [10]
and MI-SPL [34]. It illustrates the co-saliency maps for the
image groups of “bird” and “butterfly” in Cosal2015, “red-
clothed athletes” in iCoseg and “house” in MSRC. We can
see that the proposed FASS approach generates much more
accurate co-saliency maps than the existing methods. Al-
though the CFs in each image group have large variations
in pose, shape, color and point-of-view, FASS detects and
localizes the co-salient objects accurately. It has almost no
background regions wrongly detected as foreground.

4.3 Ablation Study

In this section, we evaluate the effectiveness of the compo-
nents within FASS and the robustness of it. We conduct
evaluation on the most challenging dataset, i.e., Cosal2015.

We first implement two variants of FASS, i.e., “FASS ∖MVL”
and “FASS ∖MVL+GSO”. “FASS ∖MVL” refers to FASS
without the component of multi-view feature learning. It
conducts co-saliency prorogation and graph structure op-
timization based on the concatenation of multi-view fea-
tures. FASS ∖MVL+GSO refers to FASS without the com-
ponents of both multi-view feature learning and graph struc-
ture optimization. It performs semi-supervised co-saliency

(a) (b)

Figure 5: Evaluation of component effectiveness and
robustness of FASS.

prediction over a fixed group based on the concatenated
multi-view features. For the sake of fair comparison, these
two baseline variants have the same experimental settings
with FASS. Figure 5 (a) shows the performance compar-
ison on Cosal2015 in teams of AP score and F-measure.
We can see that FASS ∖MVL+GSO causes heave perfor-
mance degradation as compared to FASS. “FASS ∖MVL”
outperforms FASS ∖MVL+GSO, indicating the effectiveness
of graph structure optimization. FASS performs better than
“FASS ∖MVL” and achieves the best performance. This demon-
strates that the multi-view feature learning indeed improves
co-saliency detection.

Moreover, we conduct experiment to investigate the ro-
bustness of FASS to the initial single-image saliency maps.
We apply several single-image saliency detection methods
including DCL[14], DHS[17] and ELD [13] to generate the
initial saliency maps for FASS. Figure 5(b) shows the per-
formance comparison and demonstrates the robustness of
FASS.

5 CONCLUSIONS

This work proposes a novel feature-adaptive semi-supervised
(FASS) framework for co-saliency detection. The FASS is
able to predict accurate co-saliency map by a joint learning
of multi-view features, graph structure and co-saliency pro-
rogation. Specially, the multi-view feature learning consists
of both view-wise feature weighting and element-wise feature
selection leads to effective representation robust to feature
noise and redundancy as well as adaptive to task at hand.
The graph structure optimization offers an optimal graph
that represents underlaying inter-region correlation precisely
and comprhensively. Thus, our proposed FASS method is
able to generate satisfactory co-saliency map based on the
effective exploration of multi-view features as well as the cor-
relation among regions. We conduct extensive experiments
to evaluate the proposed FASS approach on three widely
used co-salience datasets, i.e., Cosal2015, iCoseg and MSRC.
Experimental results have shown that the FASS outperforms
the state-of-the-art methods.
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