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ABSTRACT
Visual object tracking aims to locate a moving target speci-

fied at the initial frame. Although this task is closely related

to the temporal motion information, the motion model typ-

ically draws limited attention. In this paper, we propose a

motion-aware multi-domain network for robust visual track-

ing. In our approach, a motion-aware agent is trained via re-

inforcement learning, which can infer the parameters of the

particle filter in a continuous action space. Different from ex-

isting tracking-by-detection frameworks that the particle filter

merely relies on the previous target state, our motion-aware

agent, after receiving the current state, can adaptively change

the parameters of the particle filter (e.g., particle location and

scale range). As a result, our approach samples high-quality

candidates for further classification/tracking, thus can better

handle challenges such as fast motion and scale variation.

Extensive experiments on large-scale benchmarks verify the

effectiveness of our method.

Index Terms— visual tracking, tracking-by-detection,

particle filter, reinforcement learning

1. INTRODUCTION

Visual tracking is a fundamental task in computer vision with

numerous applications such as video surveillance, human-

computer interaction and augmented reality. In spite of con-

siderable progress [1, 2, 3] in recent years, it still remains a

challenging task due to factors like fast motion, occlusion,

deformation, etc.

Many state-of-the-art tracking algorithms [1, 4, 5] follow

the tracking-by-detection paradigm, which is typically based

on a two-stage framework. In the first stage, a tracker sam-

ples plentiful candidates via a particle filter, and in the sec-

ond stage, it selects the most reliable candidate as the track-

ing result. In recent years, the second stage has drawn con-

siderable attention and many sophisticated classifiers have
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been proposed to effectively distinguish the target from back-

ground candidates. In contrast, the first stage, which mainly

models the target motion information and plays a vital role

in many challenging scenes such as fast motion and motion

blur, receives limited attention. Under a classic particle filter

framework, in each frame, most tracking-by-detection meth-

ods simply draw abundant candidates around the target posi-

tion in the previous frame. This straightforward strategy is

based on the assumption that the target object is unlikely to

move beyond a large range in a short span of time. However,

in case of target fast motion or camera shaking, the afore-

mentioned general strategy may fail to capture enough candi-

date boxes near the current target location, which will further

disturb the second-stage classification and finally lead to the

unsatisfactory results.

In this paper, we propose a motion-aware agent to guide

the particle sampling. This agent provides adaptive policies,

which can estimate the suitable parameters of the particle fil-

ter in each frame by analyzing the current tracking environ-

ment as well as the predicted results. Compared with the tra-

ditional particle filter, the proposed agent has the advantage to

estimate a better particle sampling location, scale range and

aspect ratio. Accordingly, the high-quality candidates are pro-

vided to facilitate the second-stage classification, especially

in the challenging scenes such as fast motion, motion blur

or scale variation. As a result, our method shows superior

results in the above scenes. Specifically, we train the agent

in a deep reinforcement learning fashion during the training

phase. After exploring plentiful videos offline, our agent di-

rectly provides the particle sampling policies during online

tracking, which is extremely efficient with an ignorable addi-

tional computation complexity.

In summary, the main contribution of this work is the in-

troduction of a motion-aware agent for adaptive particle sam-

pling in the tracking-by-detection framework. Even though

quite intuitive, our method focuses on a non-trivial compo-

nent in the tracking system, i.e., the motion model, which

has been largely overlooked in recent years. Furthermore, we

formulate this problem in the reinforcement learning frame-

work to train a motion-aware agent. Finally, extensive exper-

iments on large-scale datasets show that our method achieves

state-of-the-art performance, and outperforms the tracking-
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Fig. 1: The overall architecture of our method. In the left figure, the solid line is the target bounding box in the previous frame

and the dotted line shows the twice target size with the same center. In the right figure, we show a more precise state after

executing the action given by the motion-aware network and candidates drawn with our particle sampling strategy. Then the

classification network gives positive and negative scores for every candidate to distinguish the target from the background.

by-detection based tracker using general particle sampling

strategy (e.g., MDNet [1]).

2. RELATED WORK

In this section, we briefly introduce the tracking-by-detection

based methods and reinforcement learning.

Tracking-by-detection. The approach [1, 6] based on

tracking-by-detection aims to build a discriminative classi-

fier that distinguishes the target from the surrounding back-

ground. Deep correlation filter based tracker is trained

through minimizing a least-squares loss for all circular shifts

of a training sample, and is further enhanced by adopting

an adaptive scale scheme [7] or a part-based framework [8],

alleviating the boundary effects [9, 10], combining with re-

detection modules [11] and so on. The MDNet method pro-

posed in [1] trains a CNN in a multi-domain learning frame-

work and shows outstanding performance among state-of-the-

art methods. However, the above tracking-by-detection meth-

ods mostly ignore the motion information between the succes-

sive frames, and they simply draw a search window or plenti-

ful candidates on the target position predicted in the previous

frame. In contrast, we propose a motion-aware network to

guide the candidate sampling for better classification.

Reinforcement Learning. The field of reinforcement

learning (RL) has revived with the power of deep learning

in recent years. RL is a machine learning technique consider-

ing how an agent learns to make decisions by interacting with

the environment to achieve a given goal. Many algorithms

have emerged such as DQN [12] and DPPG [13] to solve the

sequential decision-making problems. This framework has

recently been applied to video tracking tasks. ADNet [14]

learns a policy to select an optimal discrete action to track the

target, while ACT [2] exploits continuous actions to address

this issue. EAST [15] learns an agent to adaptively select the

cheap shallow feature or expensive deep feature. Deep RL

is also used for hyperparameter optimization for tracking in

[16]. Different from the previous methods, in this paper, we

focus on learning a robust motion model using deep RL.

3. METHOD

Figure 1 shows an overview of our tracking framework, which

consists of a motion-aware network and a classification net-

work. In the rest of this section, we first revisit the MDNet

method in Section 3.1. Then we introduce the details of our

deep reinforcement learning-based motion-aware network in

Section 3.2. Online tracking and discussion are elaborated in

Section 3.3 and Section 3.4.

3.1. Revisiting MDNet Tracker

The MDNet method [1] not only learns the shared representa-

tion of targets but also the domain-specific information where

each video is regarded as a separate domain. To this end, the

network has K branches for output domain-specific layers

corresponding to K sequences, while all the preceding lay-

ers are shared to capture the general feature representations.

The model receives a 107× 107 RGB input and contains five

hidden layers including three convolutional layers followed

by two fully connected layers. In the offline training phase,

each domain is processed individually. Namely, only one sin-

gle branch corresponding to the video sequences is enabled in

each iteration. During online tracking, the multiple branches

of output layers are replaced with a new domain-specific layer

for each test sequence. During online tracking, the tracking-

by-detection method mainly consists of two steps as follows.

Particle Sampling. To estimate the target state in the

t-th frame, N(= 256) candidates, xi
t = (xi

t, y
i
t, s

i
t), i =

1, · · · , N , are drawn from a Gaussian distribution based on

the previous target box b∗t−1 = {x∗t−1, y
∗
t−1, w

∗
t−1, h

∗
t−1}, and

the mean as well as the covariance of the Gaussian distribu-

tion are defined as follows,

mean = {x∗t−1, y
∗
t−1, 0},

covariance = diag(0.09r2, 0.09r2, 0.25),
(1)

where

r = (w∗t−1 + h∗t−1)/2,
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and diag(·) means the diagonal matrix. Besides, the scale

of each sample is computed by multiplying 1.05s
i
t . In this

case, width and height can only be enlarged or reduced in the

same proportion. Note that the above strategy simply relies

on the previous target state and does not exploit the motion

information between successive frames.

Binary Classification. In the second stage, the above

samples are further evaluated by the classification network.

After computing their positive scores f+(xi
t) and negative

scores f−(xi
t), the optimal target state b∗t is estimated by

searching the sample with the maximum positive score.

3.2. Learning Motion-aware Network

Our Particle Sampling Strategy. Traditional tracking-by-

detection methods typically take a Gaussian sampling strat-

egy as described in Section 3.1. Admittedly, the location in

the previous frame provides a strong clue to guide the target

searching in the current frame. However, the rich information

in the current frame is ignored. To this end, we propose a

motion-aware network to estimate the movement of the target

object to direct where and how to draw the candidates.

Specifically, the motion-aware network outputs a contin-

uous action a = [Δx,Δy,Δw,Δh] to predict the particle

sampling, where Δx and Δy denote the horizontal and the

vertical scale-invariant shift, respectively, and Δw,Δh repre-

sent the width and height variation range of the particles in the

current frame. Then the mean and covariance of our Gaussian

distribution can be formulated as follows,

mean = {x∗t−1(1 + Δx), y∗t−1(1 + Δy), 0},
covariance = diag(0.09r2, 0.09r2, 0.25),

(2)

where

r = [w∗t−1(1 + Δw) + h∗t−1(1 + Δh)]/2.

Then the width and height of each sample are computed by

multiplying (1 +Δw) · 1.05sit and (1 +Δh) · 1.05sit , respec-

tively. Obviously, variations in width and height are indepen-

dent of each other, so as to obtain candidates with different

aspect ratios.

By performing action a = [Δx,Δy,Δw,Δh], samples

are more likely to overlap or even coincide with the ground

truth than the usual sampling method. Thus we will get a

more accurate location estimation, which is exactly what we

expect.

Problem Settings. We formulate the motion prediction

problem as a Markov Decision Process (MDP) since this set-

ting provides a formal framework to model an agent that

makes a sequence of decisions to optimize a goal by interact-

ing with the environment. In this paper, we consider a single

image as the environment, where the agent infers the motion

of the target. Formally, the MDP has a set of actions A, a set

of states S, and a reward function R. In each frame of the
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Fig. 2: An overview of the motion-aware network and critic

structure.

training sequences, the agent gives an action a ∈ A accord-

ing to the current state s ∈ S, and then receives a positive or

negative reward after executing this action.

The state representation in our work is a tuple (o, d),
where o is the current observed image patch and d is a vector

of the action history. Specifically, given a video sequence, in

the t-th frame, the observed image patch o is cropped from

the image within bounding box b∗t−1 and the twice target size

with the same center (the crop operation below is the same as

here). The vector d is concatenated by the last D actions. De-

spite that d is low-dimensional compared to o, it provides rich

information of the past actions which is helpful for motion

smoothness and motion modeling. Given the current state s,

our motion-aware network gives a continuous action a to pre-

dict the motion and scale transform of the target to get a new

bounding box bt. Afterward, the next state s′ can be obtained

by cropping the image within bt and updating the action his-

tory according to at.
After executing the action a, we give a +1 reward sig-

nal to encourage our agent if the Intersection-over-Union

(IoU) between the ground truth gt and the predicted bound-

ing box bt is larger than 0.7, where IoU(bt, gt) = area(bt ∩
gt)/area(bt ∪ gt). Otherwise, a −1 reward signal will be

given to penalize the agent.

Network Architecture. We adopt DDPG algorithm [13]

based on the Actor-Critic framework to train our motion-

aware network. In the DDPG method, there is a critic network

to suggest the learning direction for actor network. As illus-

trated in Figure 2, the motion-aware network, i.e., the actor in

our work, uses three convolutional layers to extract the image

patch feature. The following layer fc 4 is a fully connected

layer with 512 units and combined with ReLUs. The feature

after fc 4 and the action history are concatenated and fed into

fc 5 with 532 units and tanh. We keep the recent 5 actions

in our setup. The output layer predicts a four-dimensional ac-

tion predicting the target’s motion. The critic network has the

same structure with the motion-aware network, except that the

feature vector after fc 5 should be concatenated with the ac-
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tion vector before the output layer, meanwhile its output layer

only has one unit which represents the Q value for the action

executed on the corresponding state.

Network Training. We use the pre-trained VGG-M [17]

to initialize our motion-aware network and critic network.

We denote the motion-aware network as μ(s|θ). The out-

put of the critic, expressed as Q(s, a|ω) is learned using the

recursive relationship known as the Bellman equation. We

create a copy of the actor and critic networks, μ′(s|θ′) and

Q′(s, a|ω′), respectively, which are used for calculating the

target values. Given some pairs of (st, at, rt, s
′
t), we can op-

timize the motion-aware network by minimizing the loss:

L(ω) = Est,at
[(Q(st, at|ω)− yt)

2], (3)

where

yt = rt + γQ′(s′t, μ
′(s′t|θ′)|ω′). (4)

The motion-aware network is updated by the chain rule to

the expected return from the start distribution J with respect

to θ:

∇θJ = Est [∇aQ(s, a|ω)|s=st,a=μ(st)∇θμ(s|θ)|s=st ]. (5)

The weights of these target networks are then updated by hav-

ing them slowly track the learned networks:

θ′ ← τθ + (1− τ)θ′,
ω′ ← τω + (1− τ)ω′, (6)

where τ = 0.001 to constrain the target network to change

slowly.

During training, we randomly select a video sequence

from the training set. Following previous methods, in the first

frame, we use supervised learning with L2 loss to train our

model, due to the huge state and action space for our agent

to randomly explore. That is, the ground truth actions of the

training samples will be given, and then the parameter can be

updated by minimizing the following loss:

Ek‖μ(sk|θ)− ak‖22, (7)

where sk is the k-th sample and ak is the ground truth ac-

tion. In the following frames, for instance, in frame t, our

motion-aware network interacts with the image to get the tran-

sition (st, at, rt, s
′
t) which will be stored in a reply buffer for

training. We also conduct the ε-greedy method to alleviate

the problem that the positive reward signals are seriously less

than negative rewards. Namely, an expert policy is adopted

with the probability ε, ε equals 0.5 at first and anneals along

with the training by multiplying 0.05 every 10k iterations.

3.3. Online Tracking

Once we complete the motion-aware network training de-

scribed in Section 3.2, we remove the critic network and only

use the motion-aware network to guide where to sample dur-

ing the online tracking process. Although the network has

learned the motion of the objects based on the current frame

only, the target object of each video sequences has its own

specific attributes. Hence we fine-tune the motion-aware net-

work in the first frame following the L2 loss described above.

To estimate the target bounding box b∗t in current frame

t, we first crop the image patch within the previous target

bounding box b∗t−1 and read the action history from the cache

as the input to the motion-aware network, then we get a closer

location bt to the target object by performing the output action

at. N = 128 samples are drawn using Eq. 2. And another 128
samples are drawn following Eq. 1.

In the second stage, all the samples are fed into the clas-

sification network. The sample with the maximum positive

score is our final target object status in the current frame. For

more details of the classification network, please refer to [1].

3.4. Discussion

How does the motion-aware agent work? Our motion-aware

network performs as a regression model and can be regarded

as a local object detection network. The network extracts the

rich motion information in the current frame to direct particle

sampling, thus boosting the tracking-by-detection framework.

The role of reinforcement learning. The previous art [16]

proves that deep reinforcement learning is an effective way

for hyperparameter learning. Different from it, our method

focuses on motion information modeling and estimates the

parameters for particle filter, and solves this continuous prob-

lem in the DDPG framework.

The extra computational burden. After offline reinforce-

ment learning, our motion-aware network merely involves

one feed-forward computation for each frame. Besides, our

network is relative lightweight with only three convolutional

layers, which also guarantees the efficiency.

Finally, our motion-aware network is quite general and

can be combined with other tracking-by-detection methods.

4. EXPERIMENTS

4.1. Experimental Details

In our experiments, the training sets are 768 video sequences

from ILSVRC [18] trainval set. We randomly select 20 ∼ 40
consecutive frames from a video to train our motion-aware

network and the critic. In the first frame, we take 32 samples

whose IoU scores with the ground truth are larger than 0.7
to train our network by supervised learning, and the learning

rate here is 1e-4. In the following frames, the learning rate of

motion-aware network and the critic is 1e-6 and 1e-5, respec-

tively. The batch size is 128. In the online tracking phase,

we take 500 positive samples to fine-tune our motion-aware

network with learning rates 1e-4. We follow the parameters
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Table 1: Experimental results of MDNet and our approach on

OTB-2015 [19] and Temple-Color [20] benchmark. The dis-

tance precision (DP) at 20 pixels threshold and overlap preci-

sion (OP) at an overlap threshold 0.5 are reported.

DP OP
MDNet Ours MDNet Ours

OTB-2015 87.9% 89.8% (1.9% ↑ ) 82.0% 83.8% (1.8% ↑ )
Temple-Color 80.5% 82.0% (1.5% ↑ ) 72.5% 73.9% (1.4% ↑ )

in the MDNet method for classification network. The exper-

iment was conducted on a computer with an Intel Core i9-

7900X 3.30GHz CPU and a NVIDIA GeForce GTX 1080 Ti

GPU.

We evaluate the proposed method on two standard bench-

marks: OTB-2015 [19] and Temple-Color [20]. All the track-

ing methods are evaluated by conducting a one-pass evalua-

tion (OPE) based on two metrics: center location error and

bounding box overlap ratio.

4.2. Ablation Study

In Table 1, we exhibit the experimental results on the OTB-

2015 [19] and Temple-Color [20] benchmark to verify the

effectiveness of our proposed framework. Following our

method, the candidates tend to be denser around the ground

truth. Besides, Δw,Δh changes the width and height of the

bounding box, which means we are more likely to get the

candidates having the same scale and aspect ratio with the

ground truth than the original MDNet method. For detailed

performance analysis, we also report the results on the com-

mon challenging factors on the OTB-2015 in Table 2. The

results show that our method outperforms the baseline by a

large margin almost on all attributes, especially on fast mo-

tion, scale variation, deformation and motion blur.

It should be noted that our baseline, e.g., MDNet, has

already achieved an excellent performance level, but our

method still obviously boosts its performance. Since the only

difference between our method and the MDNet tracker is the

addition of motion-aware network, we can attribute the per-

formance gain to our motion-aware agent without doubt.

The MDNet in our experiments is the Python version1 and

all of our implementations are based on Python.

4.3. State-of-the-art Comparison

We present the evaluation results of our method and the

other 11 state-of-the-art trackers including MDNet [1], AD-

Net [14], DeepSRDCF [21], HCF [22], MCPF [7], C-

COT [9], CREST [23], BACF [10], Staple [24], SiamFC [25],

and CFNet [26]. Figure 3 illustrates the precision and suc-

cess plots of OPE based on distance precisoin and overlap ra-

tio. Our tracker provides the state-of-the-art performance on

the OTB-2015 [19] against other trackers. Compared to the

1Python version of MDNet open source code is available at

https://github.com/HyeonseobNam/py-MDNet

Table 2: Comparisons with baseline tracker under 11 chal-

lenging factors, including Illumination Variation (IV), Scale

Variation (SV), Occlusion (OCC), Deformation (DEF), Mo-

tion Blur (MB), Fast Motion (FM), In-Plane Rotation (IPR),

Out-of-Plane Rotation (OPR), Out-of-View (OV), Back-

ground Clutters (BC) and Low Resolution (LR). The DP (%)

(@20px) and OP (%) at an overlap threshold 0.5 are reported.

The best performances are highlighted in bold.

Method IV SV OCC DEF MB FM IPR OPR OV BC LR

DP
MDNet 91.1 85.1 84.7 83.9 82.1 81.9 88.8 87.1 79.9 88.6 94.2

Ours 90.8 88.6 85.7 88.9 84.4 85.4 90.6 89.1 80.8 90.7 94.7
-0.3 +3.5 +1.0 +5.0 +2.3 +3.5 +1.8 +2.0 +0.9 +2.1 +0.5

OP
MDNet 85.8 76.4 79.1 75.9 82.4 77.6 79.4 79.8 77.6 84.3 76.0

Ours 86.6 79.4 80.5 79.7 83.6 80.5 80.4 81.3 77.1 84.0 76.2
+0.8 +3.0 +1.4 +3.8 +1.2 +2.9 +1.0 +1.5 -0.5 -0.3 +0.2

(a) OTB-2015

(b) Temple-Color

Fig. 3: Precision and success plots with Area Under the Curve

(AUC) for OPE on OTB-2015 [19] and Temple-Color [20]. In

the legend, the DP at a threshold of 20 pixels and AUC scores

are reported.

ADNet method, which is also trained based on reinforcement

learning, our method achieves a notable absolute gain of 2.4%

and 1.4% in distance precision and AUC score on the OTB-

2015, respectively. On a more challenging dataset, Temple-

Color [20], the proposed method still achieves the best results

on both metrics. As shown in Fig. 3(b), our proposed tracker

provides the distance precision score of 82.0% on Temple-

Color, which outperforms the C-COT method by a significant

margin of 3.9%.

Figure 4 presents the results comparing with MDNet [1],

MCPF [7], SiamFC [25] and C-COT [9] qualitatively in sev-

eral challenging sequences. It shows that in the case of short

time occlusion, fast motion or motion blur, our tracker shows

superior results thanks to the motion information used in the

current frame.
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#71 #111 #61 #456

#1361 #1426 #60 #170
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Fig. 4: Qualitative evaluation of our tracker, MDNet [1],

MCPF [7], SiamFC [25] and C-COT [9] on several chal-

lenging video sequences (BlurBody, Yo-yos ce2, Eagle ce,
Kobe ce, Girl2, Human3, Freeman4, ClifBar).

5. CONCLUSION

In this paper, we proposed a motion-aware network to direct

the particle sampling in the tracking-by-detection framework.

Taking advantage of the motion information, we predict a

more precise location of the target object. Experimental re-

sults prove that our tracker achieves the state-of-the-art per-

formance on the challenging datasets.
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