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ABSTRACT

Regression-based methods for facial landmark detection usu-

ally learn a series of regressors to update the landmark po-

sitions from an initial shape with a fixed number of itera-

tions. Their accuracy is sensitive to the initial shape, and

the fixed number of iterations always leads to massive un-

necessary computation. In this paper, we propose a Dynamic

Cascaded Regression Network (DCRN) with a two-stage ar-

chitecture to address these issues. In the first stage, we intro-

duce a Global Estimation Network (GEN) to provide a coarse

landmark estimation. In the second stage, we propose a Lo-

cal Regression Network (LRN) to iteratively refine the coarse

estimation in a reinforcement learning (RL) paradigm. Our

DCRN takes the face image as input, and adaptively learns

facial landmarks. Extensive experiments on 300W, COFW,

and AFLW datasets show the effectiveness of our proposed

method and demonstrate that DCRN consistently achieves the

state-of-the-art performance.

Index Terms— face landmark, dynamic cascaded regres-

sion, reinforcement learning

1. INTRODUCTION

Face alignment, which refers to facial landmark detection, has

drawn significant attention in computer vision due to its wide

applications, such as face recognition [1, 2, 3] and face veri-

fication [4, 5]. Though significant progress [6, 7, 8] has been

made, face alignment remains a very challenging problem.

For the face images with large view variations, different ex-

pressions, and partial occlusions, most existing methods fail

to locate the face landmarks correctly.

Cascaded regression [7, 8, 9, 10, 11, 12, 13] has been a

popular method for face alignment with significant progress

in the past years. These methods directly learn a series of
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mapping functions (i.e., regressors) to progressively update
the estimation results towards the true locations in an itera-

tive way. Nevertheless, the cascaded regression model suf-

fers from their intrinsic shortcomings. First, current cascaded

regression-based methods are sensitive to the initial landmark

positions. They rely on the local feature descriptors. As a re-

sult, when the initialized shape is far from the true shape, they

are prone to get trapped in local optima. Second, existing cas-

caded regression-based methods fix the number of iterations

for the regression process, which typically causes extra com-

putation cost when the initial shape is close to the true shape.

Therefore, an adaptive number of iterations may benefit the

cascaded regression-based methods.

To address the above issues, we propose a novel Dynamic

Cascaded Regression Network (DCRN) with a two-stage ar-

chitecture for face alignment. In the first stage, a Global Es-

timation Network (GEN) is proposed to estimate the land-

mark positions by extracting the global feature from a face

image directly. Thanks to the GEN component, our DCRN

is free of the landmark position initialization, which is differ-

ent from most existing cascaded regression-based methods.

In the second stage, a Local Regression Network (LRN) is

adopted to iteratively refine the coarse estimated landmark

positions from the first stage. The regression process stops

when a termination criterion is met, so as to dynamically

change the number of iterations. By virtue of the dynamic

iterative LRN component, our DCRN reduces the computa-

tion cost of landmark refinement process. Essentially, the

cascaded shape regression process with a termination crite-

rion is formulated as a reinforcement learning (RL) problem,

in which LRN corresponds to a policy network which outputs

a series of shape increments as actions. To solve this continu-
ous decision-making process, we adopt the deep deterministic

policy gradient (DDPG) [14] algorithm to train our model.

In summary, our major contributions are listed as follows:

• We propose a novel Dynamic Cascaded Regres-

sion Network (DCRN) with a two-stage architecture

for coarse-to-fine facial landmark detection. Com-

pared with existing cascade regression-based methods,

DCRN is free of landmark position initialization.
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Fig. 1. Architecture of the proposed DCRN. GEN and LRN represent Global Estimation Network and Local Regression Network, respec-
tively. GEN provides a coarse estimation of landmark positions as initialization x0 for the local regression process. We repeat the local

landmark refinement process to update the landmark estimation xt and historical actions feature dt until the termination criterion is met. The

input of LRN is state st, which is composed of image patches pt and historical actions feature dt.

• We formulate the cascaded regression process as a
decision-making process and train it with reinforce-

ment learning (RL). As a result, our method merely

takes about 2∼3 iterations for landmark regression,
largely reducing the computation cost.

• Extensive experiments demonstrate that our method is
effective, and achieves the state-of-the-art performance

on several standard datasets.

2. RELATEDWORK

In this section, we briefly review the cascaded regression-

based methods and the direct shape regression-based meth-

ods, which are closely related with our work.

Classic cascaded regression-based methods such as

SDM [9] and CFSS [15] mainly use handcrafted features

(e.g., HoGs, SIFT, etc.) to drive the cascade process, which
may be sub-optimal for face alignment task. To overcome

this limitation, MDM [7] introduces the first end-to-end re-

current convolutional network for face alignment, and shows

the powerful capability of neural networks. Furthermore, con-

trary to the methods that rely on local patches, DAN [16] ex-

tracts features from an entire face image and visual informa-

tion about the estimated landmark locations. However, these

methods are sensitive to the starting point of the regression

process and adopt a fixed number of iterations.

In contrast, direct shape regression-based methods, which

are free of landmark initialization, (e.g., [17]) have drawn
much attention recently. SHN [18] uses a two-part network,

i.e., a supervised transformation to normalize faces and a
stacked hourglass network to get prediction heatmaps. In or-

der to take advantage of the shape constraint and the geomet-

ric structure, PCD-CNN [13] imposes a shape constraint dur-

ing the regression process by a dendritic structure of facial

landmarks, and disentangles the head pose using a Bayesian

framework. Furthermore, LAB [8] uses the stacked hour-

glass to estimate the facial boundary heatmap, and models the

structure between facial boundaries to increase its robustness.

Besides, DSRN [19] provides the first end-to-end learning ar-

chitecture for direct face alignment. It constructs a strong

representation to disentangle highly nonlinear relationships

between images and shapes, and encodes the correlations of

landmarks to improve the performance.

Our method leverages the advantages of the two kinds of

methods mentioned above. We utilize a quite simple direct

shape regression-based method to provide a coarse landmark

estimation, and adopt a cascaded regression process, which

is equipped with a termination criterion, to refine the coarse

landmark estimation.

3. DYNAMIC CASCADED REGRESSION NETWORK

Face alignment aims to find a mapping from an input

image I to a facial shape S represented by the coordi-

nates of pre-defined landmarks in the form of a vector,

[x1, y1, . . . , xK , yK ]T ∈ R
2K , where K is the number of

landmarks.

In this section, we introduce our Dynamic Cascaded Re-

gression Network (DCRN). As shown in Fig. 1, DCRN pre-

dicts shapes from images in a two-stage architecture. In other

words, GEN provides landmark initialization for LRN, which

iteratively refines the coarse estimation. We start with GEN

in Section 3.1 and describe LRN in Section 3.2 in detail.

3.1. Global Estimation Network

Cascaded regression-based methods usually update landmark

positions from an initial shape, which makes them strongly

dependent on initialization. Besides, most of them usually

obtain initial landmark positions from a rectangular detection

region with a referenced shape. Obviously, it’s inappropriate

to adopt this initialization method. To solve this problem, we

introduce an estimation network to provide a coarse landmark

estimation by extracting the landmark information from face

image directly. However, a major challenge of this method

lies in the highly nonlinear relationship between face images

and associated facial shapes. Meanwhile, It requires a quite

high generalization ability confronting large pose variation

and various facial expression. Following the previous work,

i.e., DAN [16], we apply a concise network as our Global
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Table 1. Structure of the global facial landmark estimation net-
work. C, P and F represent 2 stacked Convolutional layers, max-

Pooling layer and Fully-connected layer, respectively.

Name C P C P C P C P F F

Kernel 3 2 3 2 3 2 3 2 - -

Channel 64 - 128 - 256 - 512 - 512 2K

Estimation Network (GEN), whose structure is shown in Ta-

ble 1. Except for the max-pooling layers and the output layer,

each convolutional or fully-connected layer is followed by a

Rectified Linear Unit (ReLU) layer for activations.

Following the previous works [7, 8, 19] on face alignment,

we use Euclidean distance normalized by “inter-ocular” dis-

tance as the global loss of landmark location for faster con-

vergence:

LGEN = NME(x, x̂), (1)

where x, x̂ represent predicted coordinates and the ground
truth, respectively, and NME represents the normalized mean
error, which is defined as follows:

NME(x, x̂) =
1
K

∑K
i=1

√
(x̂i − xi)2 + (ŷi − yi)2

d
, (2)

where (x̂i, ŷi) and (xi, yi) represent the i-th landmark’s
ground truth and the predicted coordinates, respectively, and

d is the distance for normalization.

3.2. Local Regression Network

After the global estimation of landmark positions, we propose

a LRN to refine the coarse prediction. We formulate this cas-

caded shape regression process as a reinforcement learning

(RL) problem. In this subsection, we introduce our formu-

lation for RL-based cascaded shape regression with a novel

termination criterion and reward function firstly. Then, we in-

troduce two correlative key networks used in RL algorithm,

i.e., actor network and critic network. Finally, we introduce
the DDPG algorithm which adopts actor-critic architecture.

In decision-making process, there is an agent that inter-
acts with the environment, and executes a series of actions, so
as to optimize a goal. In face alignment, the goal is, given a
face image I , to locate face landmarks progressively through
a series of increments {Δx0,Δx1, . . . ,ΔxT−1}, whereΔxt

is the shape increments in t-th iteration and T is the number of
iterations. Mathematically, a RL problem is defined by states

s ∈ S , actions a ∈ A, state transition function s′ = F (s, a),
reward r(s) and termination criterion G(s).
State & Action. The state st is defined as a tuple (pt,dt),
where pt ∈ R

K×30×30×3 denotes the image patches around

the estimation landmarks xt ∈ R
2K and dt ∈ R

512 represents

the historical actions feature denoted by a vector. The action

at ∈ R
2K is defined as shape increments Δxt ∈ R

2K . The

initial conditions is set to ‖d0‖1 = 0.
State Transition. After decision of action at in state st,
the next state st+1 is obtained by the state transition func-

tions (pt+1,dt+1) = F ((pt,dt),at): the patches pt+1 are
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Fig. 2. An illustration of our policy netwok μπ and state-action

value network Qθ(s,a).

cropped around the landmark estimation xt+1, which is up-

dated by xt+1 = xt + at; The historical actions vector dt+1

is updated by dt+1 = LRN(st), which is described below.
Termination Criterion. The cascaded regression process is
supposed to be stopped when the distance between the pre-

dicted landmarks and the ground truth is within a certain

threshold. To achieve a balance between the performance and

computational complexity, we adopt the termination function:

G(st) =

{
1, NME(xt, x̂) < α1 & ‖at−1‖1 < α2 ·K,
0, otherwise.

(3)

During testing, since x̂ is unavailable, we hold the assump-
tions that NME(xt, x̂) ≡ 0. Note that G(st) = 1 represents
st is the terminate state.
Reward. The reward function is defined as a function of state
s, i.e., r(s), since the agent obtains the reward by the state s
regardless of the action a. In order to increase the stability of
RL algorithm, we make a few changes in r(s). When st is not
the terminate state, r(s) is assigned by

r(st) =

⎧⎨
⎩

1, (1− β1) · NME(xt−1, x̂) ≥ NME(xt, x̂),
−1, (1− β2) · NME(xt−1, x̂) ≤ NME(xt, x̂),
0, otherwise.

(4)

We enforce the refinement process to stop iterating if it does

not arrive the terminate state within 10 iterations and set

r(s10) = −10. At the terminate state sT , r(sT ) = 10.
From the RL perspective, we regard LRN as the policy

network μπ (i.e., actor network). The policy network μπ pro-

vides action at at each state st according to regression policy
π. As shown in Fig. 2, LRN outputs the shape increments

Δxt (i.e., at) and historical actions feature dt+1. To facili-

tate the RL training, we further introduce a state-action value

network (i.e., critic network), which assists to train the policy
network and is removed during online estimation. The state-

action value function Qπ(st,at) is defined as the prediction
of the total reward r with the discount rate γ from the ob-

served state st after taking action at, following the regression
policy π, i.e.,

Qπ(st,at) = E[r(st+1) + γr(st+2) + . . . , |(st,at),
at+1,...,T ∼ π].

(5)

We approximate the value function using a state-action value

network, Qθ(s, a) ≈ Qπ(s,a). It serves as an evaluation
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of state st after taking the action at. As shown in Fig. 2,
our state-action value network concatenates the feature of ob-

served state st and given action at to output the evaluated
value Qθ(st,at).

We train LRN using the DDPG [14] approach, the core

idea of which is to iteratively update the actor network and

the critic network with training sample pairs collected based

on the RL rule. It is not feasible to directly apply the original

DDPG framework to train our model, since the state and ac-

tion space are enormous in face alignment problem. To solve

this problem, we pre-train LRN through a cascaded regression

process with a fixed number of iterations. Obviously, this kind

of pre-training inevitably holds some limitations, e.g., it fixes
the number of iterations, which leads to poor efficiency and

bad interpretability of the fixed number of iterations. There-

fore, we utilize the DDPG algorithm to fine-tune the policy

network in turn, as elaborated in Algorithm 1.

Algorithm 1 DDPG algorithm
Initialize critic network Q(s, a|θQ) and actor network
μ(s|θμ) with weight θQ and θμ according to the pre-

training process.

Initialize target network Q′ and μ′ with weights θQ
′ ←

θQ, θμ
′ ← θμ.

Initialize replay buffer R.
for episode=1,· · · ,M do
Initialize a random process N for action exploration.

Receive initial observation state s0 using GEN.
for t = 1,· · · ,T do
Select action at = μ(st|θμ,Nt) according to the cur-
rent policy and exploration noise.

Store transition (st, at, rt, st+1) in R.
Sample a random minibatch of N transitions

(si, ai, ri, si+1) from R.
Set yi = ri + γQ′(si+1, μ

′(si+1|θμ′
)|θQ′

).
Update critic by minimizing the loss:

L =
1

N

∑
i

(yi −Q(si,ai|θQ))2.

Update the actor policy using the sampled policy gra-

dient:

∇θμ ≈
∑

i ∇Q(s, a|θQ)|s=si,a=μ(si)∇θμμ(s|θμ)|si
N

.

Update the target network:

θQ
′ ← τθQ + (1− τ)θQ

′
,

θμ
′ ← τθμ + (1− τ)θμ

′
.

end for
end for

4. EXPERIMENTS

We conduct extensive experiments on three datasets to pro-

vide a comprehensive comparison with state-of-the-art meth-

ods and verify the significance of each component in our pro-

posed DCRN through the ablation studies.

4.1. Dataset

We select three datasets with different characteristics to train

and evaluate our proposed DCRN.

300W [20] dataset is the most widely used benchmark

dataset with 68 landmarks. The training part includes 3,148

images and the testing dataset is split into four parts: the com-

mon subset (554 images), the challenging subset (135 im-

ages), the full set (689 images) and the private test set (600

images).

COFW [21] dataset is designed to depict faces in real-

world conditions with partial occlusions. Each COFW face

originally has 29 manually annotated landmarks. The training

set includes 1,345 face images and 507 face images are used

for testing.

AFLW [22] dataset contains a total of 24,386 face images

collected in the wild, having large-scale pose variations and

a large variety in face appearance. Each image is annotated

with up to 21 landmarks. We follow [23] to adopt two settings

on our experiments: (1) AFLW-Full: 20,000 and 4,386 im-
ages are used for training and testing, respectively. (2) AFLW-
Frontal: 1,314 images are selected from 4,386 testing images
for evaluation on frontal faces.

4.2. Experiment Setting

Evaluation Metric. We evaluate our algorithm using stan-

dard normalized landmarks mean error. Because of various

profile faces on AFLW dataset, we follow [23] to use face

size as the normalizing factor d. For other datasets, we fol-
low MDM [7] to use outer-eye-corner distance as the “inter-

ocular” normalizing factor d. Specially, to compare with the
results with “inter-pupil” (eye-centre-distance) distance nor-

malization, we report our results with both two normalizing

factors on Table 3. In addition, the failure rate for a maximum

error of 0.1 is also listed.

Implementation Details. All face images are cropped, re-
sized to 256× 256 and normalized according to the provided
bounding boxes. We conduct data augmentation (e.g., im-
age rotation and image flip) for training. However, for a fair

comparison with other methods, face images are re-initialized

without any spatial transformation for testing. We employ the

stochastic optimization algorithm Adam [24] for the neural

network training. The minibatch size is set to 128. We list

some key parameters in Table 2.
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Table 2. The setting of key parameters in our experiments. We
adopt different α2 on 300W, COFW, and AFLW, respectively.

Parameter α1 α2 β1 β2 γ τ

Value 0.07 3.0 / 2.0 / 1.5 0.03 -0.02 0.9 0.8

4.3. Comparison with Existing Approaches

In this subsection, we provide extensive experimental results

of our proposed DCRN and the state-of-the-art methods.

On 300W, as shown in Table 3, compared with recently

proposed state-of-the-art algorithms, our DCRN achieves

competitive performance on different criteria for different

testsets. In particular, our DCRN achieves the state-of-the-

art performance using the “inter-ocular” distance to normalize

mean error.

On COFW, as shown in Table 4, our DCRN achieves the

best performance on the criterion of Mean Error, which veri-

fies its effectiveness of our method confronting the challenge

with heavy occlusion. However, our method only achieves

competitive performance on the criterion of Failure Rate. The

reason may be that LRN cannot receive correct information

from the image patches under partial occlusion, which is com-

mon on COFW dataset.

On AFLW, as shown in Table 5, our DCRN achieves the

state-of-the-art performance, though AFLW has significant

view changes and challenging shape variations. The results

demonstrate the robustness of the proposed methods for the

extreme diversity of samples on AFLW, e.g., large pose, and
exaggerated expressions.

Fig. 3 shows some of the difficult images and the pre-

dicted visible keypoints on the three datasets.

Table 3. Mean Error (%) on 300W Common Subset, Challeng-

ing Subset and Fullset (68 landmarks). The best performances are

highlighted in bold.

Methods
Common

Subset

Challenging

Subset
Fullset

Inter-pupil Normalisation

SDM [9] 5.57 15.40 7.50

CFAN [25] 5.50 16.78 7.69

CFSS [15] 4.73 9.98 5.76

MDM [7] 4.83 10.14 5.88

RAR [26] 4.12 8.35 4.94
TSR [12] 4.36 7.56 4.99

DCRN 4.64 9.21 5.54

Inter-ocular Normalisation

DSRN [19] 4.12 9.68 5.21

PCD-CNN [13] 3.67 7.62 4.44

SAN [27] 3.34 6.60 3.98

DCRN 3.32 6.35 3.92

4.4. Ablation Studies

The above studies on datasets with different challenges, e.g.,
limited training data, partial occlusions, large-scale pose vari-

Table 4. Mean Error (%) and Failure Rate (%) on COFW dataset

(29 landmarks).

Methods
HPM
[28]

DRDA
[21]

RAR
[15]

DAC-CSR
[29]

PCD-CNN
[12]

DCRN
Ours

Mean Error 7.50 6.46 6.03 6.03 5.77 5.42
Failure Rate 13.00 6.00 4.14 4.73 3.73 4.34

Table 5. Mean Error (%) on AFLW dataset (19 landmarks).

Methods
RCPR
[21]

CFSS
[15]

DAC-CSR
[29]

TSR
[12]

SAN
[27]

DCRN
Ours

AFLW-Full 3.73 3.92 2.27 2.17 1.91 1.92
AFLW-Frontal 2.87 2.68 1.81 - 1.85 1.78

ations, and various appearance, have proved the effectiveness

and generality of DCRN. Furthermore, we conduct some ad-

ditional experiments to verify the effectiveness and potential

of different components in our two-stage architecture.

We first introduce two fundamental baselines, i.e., GEN,
LRN-m (stack LRN m times), which are proposed to ver-

ify the effectiveness of each component. Then, we intro-

duce the baseline, i.e., GEN-LRN8 (connect GEN with LRN
stacked 8 times), which is designed to exhibit the strength of

our two-stage architecture and the termination criterion. We

train them with supervised learning using fully labeled face

images. The results are shown in Table 6. Compared with

GEN and LRN-m, GEN-LRN8 and DCRN show a signifi-

cant performance boost in accuracy. This indicates that the

two-stage architecture is effective, GEN makes them robust

to the landmark initialization. Besides, compared with GEN-

LRN8which performs 8 iterations, DCRN achieves a compet-

itive performance within approximate 2∼3 iterations, which
indicates that we can get results faster with the help of the ter-

mination criterion. We provide more experimental results in

the supplementary materials.

Table 6. Mean Error (%) on different dataset, i.e., the Fullset on
300W, all the testset on COFW and the AFLW-Full on AFLW.

Methods GEN
LRN GEN DCRN

-2 -4 -8 -LRN8 - Steps

300W 6.57 5.16 4.53 4.44 4.02 3.92 2.61
COFW 6.37 27.32 17.17 16.73 5.07 5.42 3.25
AFLW 2.15 3.91 3.64 3.85 1.97 1.92 2.09

Fig. 3. Qualitative results generated from the proposed method. The
green dots represent the predicted points. Each row shows some of

the difficult samples from 300W, COFW, and AFLW, respectively,

with all the visible predicted points.
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5. CONCLUSION

In this paper, we propose the Dynamic Cascaded Regression

Network (DCRN) for face alignment. DCRN is a two-stage

architecture composed of GEN and LRN. The GEN directly

outputs coarse landmark positions based on the global fea-

ture and the LRN iteratively refines the landmark estimation

based on the local feature. Compared with existing cascaded

regression-based methods of facial landmark detection, our

DCRN is free of landmark position initialization and dynam-

ically adapts the number of iterations. Extensive experiments

show that our DCRN consistently yields high accuracy and

it’s worth mentioning that DCRN achieves competitive per-

formance within approximate 2∼3 iterations compared with
the baseline (i.e., GEN-LRN8) which performs 8 iterations.
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