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ABSTRACT

Knowledge graphs (KGs) often encounter knowledge incom-
pleteness, necessitating a demand for KG completion. Path-
based methods are one of the most important approaches to
this task. However, since the number of entities is much larger
than that of relations in a knowledge graph, existing path-
based methods are only used to predict the relations between
entity pairs, and are rarely applied to solve the entity predic-
tion task. To address the issue, this paper proposes a new
framework called Path Ranking Model (PRM) for the knowl-
edge graph completion task. Our key idea is to exploit both
the observable patterns and latent semantic information in re-
lation paths to predict the entities. Extensive experiments on
public popular datasets demonstrate the effectiveness of our
proposed framework in the entity prediction task.

Index Terms— Knowledge graph, KGC, path ranking

1. INTRODUCTION

Knowledge graphs (KGs) have emerged as an effective way
to integrate disparate data sources and model underlying re-
lationships for applications such as natural language process-
ing [1], question answering [2] and recommender systems [3].
They are usually stored in triples of the form (head entity, re-
lation, tail entities), called facts. Typical KGs such as Free-
base [4], DBpedia [5] and NELL [6] may contain millions of
facts, but they are still far from complete due to the complex-
ity of the real world. For example, 75% of 3 million person
entities miss a nationality in Freebase, and 60% of person en-
tities do not have a birthplace in DBpedia. Such knowledge
graphs are difficult to use in real applications because of no
correct answers for questions based on incomplete knowledge
graphs. Knowledge graph completion (KGC) [7] tries to solve
this incompleteness by inferring new triples based on the ex-
isting ones, and has attracted much attention recently.
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Fig. 1. An example of two forms of KGC tasks. The left side
of the figure above describes the entity prediction task and the
right side describes the relation prediction task.

Many methods have been proposed to infer the incom-
pleteness of a knowledge graph, among which knowledge
graph embeddings (KGEs) are popular ones. The KGEs such
as TransE [8], DistMult [9] and RotatE [10] often learn low-
dimensional representations of the entities and relations in a
knowledge graph, and provide a generalizable context about
the overall KG that can be used to infer relations. The learned
embeddings contain rich semantic information and can bene-
fit a broad range of downstream applications [1, 2]. However,
the KGEs models purely treat the triples in a KG indepen-
dently and heavily rely on their ability to model connectivity
patterns of the relations.

Many efforts have been devoted to path-based methods
which aim to use paths to infer relations between an entity
pair [11, 12]. Different from KGEs which model the direct
path between an entity pair, multi-hop paths are the paths via
multi nodes between the source and destination nodes. When
routing between two nodes, a multi-hop path that consists of
a sequence of triples can provide more informative knowl-
edge than a direct path. For example, let us consider two
triples (Donald Trump, BornIn, New York City) and (New
York City, LocatedIn, the USA), which constitute a path Don-
ald Trump −→ BornIn −→ New York City −→ LocatedIn
−→ USA via the intermediate node New York City. Then,
the machines are supposed to infer over the multi-hop path
to conclude that missing relation Nationality exists between



Donald Trump and the USA. In order to make full use of the
relation path information in KG, many works are devoted to
mining observable patterns in knowledge graphs for reason-
ing. In early path-based methods such as PRA [11], each path
is treated as an atomic feature and used to predict the relation
in a binary classifier. As a result, there used to be millions
of distinct paths in a single classifier, not to mention that the
size increases dramatically with the number of relations in a
KG. To solve this problem, Path-RNN [12] takes multi-hop
relation paths as input for RNN to construct a vector repre-
sentation for the path. After that, the predictability of the path
to a query relation is calculated by dot-product on their repre-
sentations.

Though achieving promising performance, path-based
methods are only used to predict the relationship between an
entity pair. Since the number of entities in KG is far greater
than the number of relations, it is more challenging to use
path-based methods to predict entities that to predict relations.
The Fig. 1 illustrates the differences between relation predic-
tion and entity prediction. In fact, multi-hop paths contain
rich semantic cues and are extremely useful for entity pre-
diction tasks. For example, through the knowledge contained
in this path (Donald Trump −→ BornIn −→ New York City
−→ LocatedIn −→ USA), one can be confident that Donald
Trump’s father also lives in the USA. Because the relation
path (BornIn −→ LocatedIn) determines the tail entity selec-
tion under the path (Father −→ LivesIn).

Inspired by the above insights, this paper proposes a novel
framework to solve the entity prediction task, namely Path
Ranking Model (PRM). Our key idea is to use the latent se-
mantic information and observable patterns in relation paths
for entity prediction tasks in the knowledge graph. Specifi-
cally, our framework first uses the depth-first search (DFS) to
find all the effective paths (meta-paths) to represent for each
relation. Then, we represent the paths into continuous vec-
tor space. Finally, by combining the path features linearly
and activating them, we will get the probability that this triple
appears in the KG. Extensive experiments on three popular
benchmark datasets demonstrate the effectiveness of the PRM
in entity prediction tasks.

In summary, our main contributions are listed as follows:

• This paper proposes a novel PRM framework for entity
prediction task, which simultaneously exploits both the
latent semantic information and observable patterns in
relation paths. To the best of our knowledge, this is the
first work to use the path-based methods to solve the
entity prediction task.

• Extensive experiments are conducted on three popular
benchmark datasets. Experimental results show that the
PRM achieves the state-of-the-art performance in the
entity prediction task.

2. RELATED WORK

In this section, we will describe the related work and the key
differences between them and our works. Roughly speaking,
we can divide knowledge graph completion models into two
categories—KG embedding models and path-based models.
KG embedding models: Knowledge graph embedding,
which aims to represent entities and relations as low dimen-
sional vectors. It often fall into three major categories: (1)
Translational distance model: Inspired by the translation in-
variant principle from word embedding [13]. TransE [8] de-
scribes relations as translations from head entities to tail en-
tities, which means that entities and relations satisfy the for-
mula h + r ≈ t, where h, r, t ∈ Rn. (2) Tensor decom-
position based model: DistMult [9] and ComplEx [14] both
use tensor decomposition to represent each relation as a ma-
trix and each entity as a vector. (3) Neural network based
models: ConvE [15] employs convolutional neural networks
to define score functions. Recently, graph convolutional net-
works are also introduced, as knowledge graphs have graph
structures [16]. However, most of KGE methods merely con-
sider the facts immediately observed in KG and ignore extra
prior knowledge to enhance KG embedding.
Path-based models: Paths existing in KG have gained more
attention to be combined with KG embedding because multi-
hop paths could provide relations between seemingly uncon-
nected entities in KG. Path Ranking Algorithm (PRA) [11] is
one of the early studies which searches paths by random walk
in KG and regards the paths as features for a per-target rela-
tion binary classifier. [12] proposed a compositional vector
space model with a recurrent neural network to model rela-
tional paths on knowledge graph completion. [17] proposed
PTransE to obtain the path embeddings by composing all the
relations in each path.

Compared with KG embedding models, path-based mod-
els fully consider the diversity of relation paths in KG and
capture the rich information in them. However, the previ-
ous studies only verified the effectiveness of the path-based
methods can decide whether the given query relation exists
between the entity pairs, Ignoring the entity prediction task.

3. METHOD

3.1. Overview of the PRM

In this subsection, we will generally introduce the PRM
framework and the details of the feature generation. When
the traditional path ranking algorithm predicts an unknown
relationship, it usually firstly extracts the useful meta-paths,
which can be used to represent a relation. And then it gener-
ates the paths’ features through random walk. However, this
way will be very slow for large knowledge graph. Therefore,
the proposed PRM can be divided into two stages, online and
offline. The offline stage will store the corresponding paths’
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Fig. 2. Pipeline of the PRM on solving the entity prediction task.

features and scoring weights, while the online stage will use
them for entity prediction task. Fig. 2 illustrates the pipeline
of the PRM on how to solve the entity prediction task.
Path Extraction Module

Given a knowledge graph, we can formulate one fact triple
as (e,R, e′). T = {(ei, Ri, e

′
i), · · · } is the set of all triples in

KG. And we can also write (e,R, e′) as R(e, e′) if e and e′

are related by R. A relation path P is a sequence of relations
R1, · · · , R` with constraint that ∀i : 1 < i < `− 1. For each
relation Ri in KG, we use the depth-first search (DFS) to find
the meta-paths P = {P1, · · · , Pn} of the bounded length `
through all triples, which means the maximum length of the
meta-paths is `. In fact, ` is a hyper-parameter that needs to
be adjusted.
Path Vectorization Module

In order to emphasize the types associated with each step,
path P = R1, · · · , R` can be written as:

E0
R1−→ · · · R`−→ E`, (1)

where Ei = range(Ri) = dom(Ri+1), using dom(Ri) to
denote the domain of R, and range(R) for its range. And
we also define dom(P ) ≡ E0, range(P ) ≡ E`. One can
recursively define a distribution, denoted as hEe,P (e

′), to de-
scribe the probability that the head entity e is connected to
the tail entity e′ through the path P . For any relation path
P = R1, · · · , R`, and set of seed entities Ee ⊂ dom(P ), one
can define the following distribution if P is the empty path:

hEe,P (e
′) =

{
1/|Ee|, if e′ ∈ Ee,

0, otherwise .
(2)

If P = R1, · · · , R` is nonempty, then let P ′ =

R1, · · · , R`−1, and define:

hEe,P (e
′) =

∑
q∈range(P ′)

hEq,P ′ (q) · P (e | q;R`) , (3)

where P (e|q;R`) = R`(q,e)
|R`(q,·)| , is the probability of reaching

node e from node q a one step random walk with edge type
R`, R(e′, e) indicates whether there exists an edge with type
R that connect q to e.

More generally, given a set of paths P1, · · · , Pn, one
could treat each hEe,Pi(e

′) as a path feature for the node e,
and rank nodes by a linear model

θ1hEe,P1(e
′) + θ2hEe,P2(e

′) + · · ·+ θnhEe,Pn(e
′), (4)

where θi are weights for the paths. In this paper, we consider
learning such linear weighting schemes over all relation paths
of bounded length ` (e.g., ` ≤ 4). One can easily generate
P(e, l) = {P}, the set of all type-correct relation paths with
range Te and length ≤ l. This gives a ranking of nodes e′ ∈
I(Te) by the following scoring function

s(e′; θ) =
∑

P∈P(e,l)

hEe,P (e
′)θP . (5)

In matrix form this could be written s = Aθ, where s is a
sparse column vector of scores, and θ is a column vector of
weights for the corresponding paths P . We will call A the
feature matrix, and denote the i-th row of A as Ai.

Finally, we will store the corresponding paths’ features in
the database, which can accelerate the speed of the prediction
in online stage.
Training Module

Given a relation R and a set of node pairs {(ei, e′i)}, we
can construct a training dataset D = {(xi, li) by (3) and

3



(4), where xi is a vector of all the path features for the pair
{(ei, e′i)} i.e., the j-th component of xi is hei,Pj

(e′i), and li
indicates whether R(ei, e′i)) is true. It can be formulated as
follows:

li =

{
1, if (ei, R, e′i) ∈ T
0, otherwise

(6)

With the training data D, we formalize oi(θ) as the per-
instance objective function like (7). Parameter θ is the
weights to be estimated. In this paper, we use binomial log-
likelihood, which has the advantage of being easy to optimize
and also does not penalize outlier samples too harshly [18].

oi(θ) = wi [li ln pi + (1− li) ln (1− pi)] (7)

where pi is the probability of triple appearing in KG, it can be
calculated by (8):

p (li = 1 | xi; θ) =
exp

(
θTxi

)
1 + exp (θTxi)

(8)

So, the parameter estimation can be formulated as maximiz-
ing a regularized objective function:

O(θ) =
∑
i

o(i)(θ) (9)

where λ is a parameter controls L2-regularization to prevent
overfitting. After the training stage, we can get the scoring
weights for online prediction.

3.2. PRM For Entity Prediction Task

In this subsection, we will describe how to formulate entity
prediction on a knowledge graph as a ranking task. Since
lacking head entity or tail entity are equivalent, here we only
discuss the latter.

Given a triple that lacks tail entity (ei, Ri, ?). We use
the all candidate entities in KG to expand to a set of triples
T = {(ei, Ri, e

′
1), · · · , (ei, Ri, e

′
M )}, where M is the num-

ber of the entities in KG. Then, we retrieve the paths’ feature
xi of the corresponding triples in the database generated in
the offline stage. Next, we can calculate the probability of all
candidate entities pi through the xi by (8).

ind = argmax
i

{pi} (10)

Finally, selecting the entity index ind with the highest score
by (10), the e′ind is the most likely tail entity to be predicted.

4. EXPERIMENT

In this section, we evaluate the performance of the PRM on
the task of entity prediction. All the algorithms are imple-
mented by python and PyTorch, and run the experiments on 2
Quadro RTX 6000 and 96 Intel Xeon Platinum 8268.

4.1. Experimental Settings

Datasets. We evaluate the PRM on three popular bench-
mark datasets in the task of KGC. FB15k-237 [7], YAGO3-
10 [7], and WN18RR [7]. They are subsets of WN18, FB15k,
and YAGO3 respectively. Recent studies [7] found that the
FB15k and WN18 contain inverse relations. Under this cir-
cumstances, FB15k-237 and WN18RR were proposed, which
removed the reverse relations in FB15k and WN18. So, they
are regarded as more challenging datasets. Therefore, we
use FB15k-237, WN18RR, and YAGO3-10 as the benchmark
datasets. The statistics of the datasets are summarized in Ta-
ble 1.

Table 1. Statistics of the Three Datasets. Rel denotes relation
and Ent denotes entity.

Dataset #Ent #Rel #Train #Valid #Test
FB15k-237 14,541 237 272,115 17,535 20,466
YAGO3-10 123,182 37 1,079,040 5,000 5,000
WN18RR 40,493 11 86,835 3,034 3,134

Baselines. To demonstrate the effectiveness of the PRM in
link prediction task, we select several involved state-of-the-art
models for comparison, including two types of baselines: (1)
KGE methods, which has been widely used in entity predic-
tion tasks, such as: TransE [8], DistMult [9], ComplEx [14],
RotatE [10], ConvE [15], R-GCN [16], HAKE [19], Inter-
actE [20] and TuckER [21]. (2) Rule enhanced models, which
aims to use first-order logic rules in KG for reasoning [7] like:
DRUM [22]. We use the best results presented in their origi-
nal papers for comparison.
Evaluation Metric. Following Bordes [8], for each triple (h,
r, t) in the test dataset, we replace either the head entity h or
the tail entity t with each candidate entity to create a set of
candidate triples. We then rank the candidate triples in de-
scending order by their scores. It is worth noting that we use
the “Filtered” setting as in [8], which does not take any ex-
isting valid triples into accounts at ranking. We choose Mean
Reciprocal Rank (MRR, the mean of all the reciprocals of
predicted ranks) and Hits at N (H@N, the proportion of ranks
not larger than N) as the evaluation metrics. Higher MRR or
H@N indicates better performance.
Parameters Setting. During the training stage, we use the
adaptive moment (Adam) algorithm to optimize the model.
And we search the best hyper-parameters of all models ac-
cording to the performance on the validation set. Notice that
the validation set does not participate in training. In detail,
we search the learning rate α in {0:001; 0:005; 0:01; 0:1},
meta-paths length ` for one relation in {2; 3; 4}. Finally, we
set the α: 0.01, `: 4, maximum numbers of meta-paths under
each relation: 500 for all the datasets. And all the training
parameters are randomly initialized.
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Table 2. Entity prediction results on FB15k-237, WN18RR.
FB15K-237 WN18RR

MRR Hits@N MRR Hits@N
@1 @3 @10 @1 @3 @10

TransE(Bordes et al. 2013) .294 - - .465 .226 - - .501
DistMult(Yang et al. 2015) .241 .155 .263 .419 .430 .391 .442 .490

ComplEx(Trouillon et al. 2016) .247 .158 .275 .428 .440 .158 .275 .428
R-GCN(Schlichtkrull et al. 2018) .249 .151 .264 .417 .249 .151 .264 .417

ConvE(Dettmers et al. 2018) .316 .239 .350 .491 .461 .390 .430 .481
RotatE(Sun et al. 2019) .338 .241 .375 .533 .476 .428 .492 .571

DRUM(Sadeghian et al.2019) .343 .255 .378 .516 .486 .425 .513 .586
TuckER(Balazevic et al.2019) .358 .266 .394 .544 .470 .443 .482 .526

HAKE(Zhang et al.2020) .346 .250 .381 .542 .497 .452 .516 .582
InteractE(Vashishth et al.2020) .354 .263 - .535 .463 .430 - .528

PRM .364 .255 .388 .580 .498 .431 .733 .766

Table 3. Entity prediction results on YAGO3-10

YAGO3-10

MRR Hits@N
@1 @3 @10

TransE(Bordes et al. 2013) - - - -
DistMult(Yang et al. 2015) .340 .240 .380 .540

ComplEx(Trouillon et al. 2016) .360 .260 .400 .550
ConvE(Dettmers et al. 2018) .520 .450 .560 .660

RotatE(Sun et al. 2019) .495 .402 .550 .670
HAKE(Zhang et al. 2020) .545 .462 .596 .694

InteractE(Vashishth et al. 2020) .541 .462 - .687
PRM .698 .526 .692 .723

4.2. RESULTS AND ANALYSIS

Experimental results are shown in Table 2 and Table 3. From
Table 2 and Table 3, we have the following findings.

1) The results indicate that PRM significantly and con-
sistently outperforms all the state-of-the-art competitors on
three benchmark datasets. In both Table 2 and Table 3, PRM
achieves the best results on most metrics. The experimental
results clearly demonstrate the effectiveness of the PRM in
the entity prediction task.

2) Specifically, in the YAGO3-10 dataset, PRM is 15.3%
higher than HAKE’s MMR, 6.4% higher than InteractE’s
Hits@1, 9.6% higher than HAKE’s Hits@3, and 2.9% higher
than HAKE’s Hits@10. In the WN18RR dataset, PRM im-
proves upon DRUM’s Hits@10 and Hits@3 by a large margin
of 18% and 22% respectively respectively. And the Hits@1
and MRR are basically the same compared to other methods.
In the FB15K237 dataset, PRM also has achieved good re-
sults on all evaluation metrics. Although on FB15k-237, the
performance of the Hit@1 and Hit@3 is not so good, we can
still observe that PRM is better than KGE methods on MMR

metrics all the time. This also explains that PRM can guaran-
tee the average accuracy of the prediction results. The experi-
mental results illustrate that the path-based model can capture
both the latent semantic information and observable patterns
in KG, which has great help for the entity prediction task.

Due to the differences between the FB15k-237 dataset and
the other two datasets, the performance of different types of
algorithms may be different. For example, the PRM performs
much better on YAGO3-10 dataset and WN18RR dataset than
KGE models. However, on the FB15k-237 dataset, the im-
provement to the entity prediction task by PRM is not so
significant. A possible reason is the number of relations in
FB15k-237 is much more than the other two datasets, which
means there are more complex relation path patterns and less
training data under one relation. Besides, from the above ex-
perimental results, it can be found that the path-based method
can achieve greater improvement on Hits@N (N > 1) than
Hits@1, which means the path-based method can usually pre-
dict the best solution within the tolerable error range.

5. CONLUSION

In this paper, we first propose the PRM framework to solve
the entity prediction task. Compared with KGE models treat-
ing the triples independently, and only using the direct re-
lations between entities. PRM simultaneously exploits both
the latent semantic information and observable patterns in re-
lation paths, which has great help for predicting the missing
entities in KG. The extensive experimental results verified the
paths’ features with different weights learned by PRM are sig-
nificant in improving the performance on the entity prediction
task. In the future, we will investigate how to use structure in-
formation and more entity information (e.g., entity type.) to
help the path-based model get better results.
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