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Abstract. Sparse coding is typically solved by iterative optimization
techniques, such as the ISTA algorithm. To accelerate the estimation,
neural networks are proposed to produce the best possible approxima-
tion of the sparse codes by unfolding and learning weights of ISTA. How-
ever, due to the uncertainty in the neural network, one can only obtain a
possible approximation with fixed computation cost and tolerable error.
Moreover, since the problem of sparse coding is an inverse problem, the
optimal possible approximation is often not unique. Inspired by these
insights, we propose a novel framework called Learned ISTA with Mix-
ture Sparsity Network (LISTA-MSN) for sparse coding, which learns to
predict the best possible approximation distribution conditioned on the
input data. By sampling from the predicted distribution, LISTA-MSN
can obtain a more precise approximation of sparse codes. Experiments
on synthetic data and real image data demonstrate the effectiveness of
the proposed method.
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1 Introduction

Sparse coding (SC) has shown great success in uncovering global information from
noisy and high dimensional data such as image super-resolution [17], image classi-
fication [15], and object recognition [13]. The main goal of SC is to find the sparse
representation from over-complete dictionary. To solve this problem, classic meth-
ods are based on high dimensional optimization theory, such as proximal coordi-
nate descent [9], Least Angle Regression [8] and proximal splitting methods [2].
Among these methods, Iterative Shrinkage-Thresholding Algorithm (ISTA) [5] is
the most popular one, which belongs to proximal-gradient method. It has been
proven that ISTA converges with rate 1/t, where t is the number of the itera-
tions/layers, and its computational complexity is too high. To address this issue,
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Beck and Teboulle proposed the FISTA [3] algorithm converges more rapidly in
2009. The major difference with ISTA is the introduction of a “momentum” term.
The algorithms mentioned above belong to traditional iterative approaches.
However, even though the FISTA accelerates the speed of convergence a lot,
these algorithms are still too slow for practical applications such as real-time
object recognition.

To further increase the speed of ISTA, Gregor and LeCun proposed a train-
able version of ISTA called Learned ISTA (LISTA) [11] by unfolding ISTA
structure into a recurrent neural network (RNN). Unlike the traditional iter-
ative approaches, LISTA is highly computationally efficient during the inference
period. Once the learnable parameters of the neural network are trained, it can
quickly estimate a solution of sparse codes by passing the input through a fixed
recurrent neural network rather than solving a series of convex optimization
problems. Moreover, LISTA yields better estimation result than ISTA on new
samples for the same number of iterations/layers. This idea has led to a profu-
sion of literature [6,18]. For one thing, they follow the idea of LISTA and modify
the structure to use more historical information. For another, some works change
shared weights to layer-wise weights and get better performance. All these meth-
ods have achieved impressive performance in solving sparse coding.

But the existing neural network-based methods have suffered from the follow-
ing drawbacks. First, they ignore the fact that the LASSO problem is an inverse
problem and the optimal solution may be not unique. For example, in a super
resolution task [12] a low-resolution image could be explained by many different
high-resolution images. In this case, the neural network designed to predict a
specific value is not effective. Second, due to the uncertainty of deep learning, it
is hard to get a unique accurate solution of sparse codes with fixed iterations.
In fact, neural network-based methods (e.g., LISTA) can only obtain a possi-
ble approximation of sparse codes with fixed computational cost and tolerable
error [11]. Therefore, the best possible approximation of sparse codes should sat-
isfy some kind of distribution. We argue that, it is more reasonable to predict
the distributions of possible approximation of sparse codes instead of the specific
value of best possible approximation.

Inspired by the above insights, this paper proposes a novel framework called
Learned ISTA with Mixture Sparsity Network (LISTA-MSN) for sparse coding.
The key idea is to introduce a novel module called Mixture Sparsity Network
(MSN) to predict the distribution of best possible approximation of sparse codes.
Specifically, the proposed framework first uses the popular LISTA network to
obtain an initial estimate solution of sparse coding. The LISTA framework can
be replaced by any other neural networks such as ALISTA [14], Coupled-LISTA
(LISTA-CP) [6], etc. Then, our framework introduces the Mixture Sparsity Net-
work to predict the distribution of the best possible approximations according
to the initial estimate solution. At last, the proposed framework samples the
final optimal results of sparse coding from the distribution. Note that, it is a
challenging problem to model the conditional probability density function of the
target sparse vectors conditioned on the input vector. To address this problem,
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Mixture Sparsity Network adds an additional penalty to the popular framework
of Mixture Density Network [4] so that it can ensure the sparsity of network’s
outputs as we hope. Experiments on synthetic data and real image data have
shown that the proposed LISTA-MSN framework can significantly improve the
accuracy and convergence speed of sparse coding.

In summary, our main contributions are as follows:

– A novel framework called LISTA-MSN is proposed to learn fast approxima-
tions of sparse codes. Different from previous works (such as LISTA [11],
SC2Net [18] and ALISTA [14]), the proposed framework learns to predict the
distribution of the best possible approximation of sparse codes instead of the
best possible approximation. To the best of our knowledge, this is the first
work to learn a trainable neural network to predict the distribution of the
optimal solution of sparse coding. Moreover, the proposed framework is very
flexible, where the LISTA can be replaced with any other neural network for
sparse coding.

– Mixture Sparsity Network is proposed to model the conditional probability
density function of the target sparse vectors conditioned on the input vector.
It ensures that the data sampling from the predicted distribution is sparse
enough, which makes the final results meaningful.

2 The Proposed Method

In this section, we will introduce the LISTA-MSN framework. The architecture
of LISTA-MSN is shown in Fig. 1. Specifically, it first uses the LISTA network to
obtain a coarse estimation of sparse codes. Then, the framework introduces the
mixture sparsity network to predict the distribution of the best possible approx-
imations according to the initial estimation. Finally, the framework samples the
final optimal sparse codes from the distribution. Note that, the proposed method
adds penalty to the mixture density network [4] to ensure the sparsity of results.

Fig. 1. The architecture of LISTA-MSN.

2.1 LISTA Network

Given the input data X = [x1,x2, ...,xN ] ∈ R
n×N , sparse coding aims to learn

the over-complete dictionary D = [d1,d2, ...,dm] ∈ R
n×m and the sparse repre-

sentation Z = [z1,z2, ...,zN ] ∈ R
m×N . And the goal of LISTA Network is to
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calculate the coarse estimation Ẑ = [ẑ1, ẑ2, ..., ẑN ] ∈ R
m×N , where ẑq is

the coarse estimation of sparse codes of xq with limited iterations. Specifically,
LISTA is:

z(t+1) = hθ (Wex + Sz(t)) t = 0, ...,K − 1 (1)

ẑ = z(K), and K is fixed number of steps. θ = [θ1, ..., θm] is a trainable vector.
The variables We , S and θ are learned by the given training data. So, the LISTA
can be replaced by any other neural networks such as ALISTA [14], Coupled-
LISTA (LISTA-CP) [6], etc.

2.2 Mixture Sparsity Network

Having the coarse estimation ẑ generated from LISTA Network, in this stage,
the mixture sparsity network is proposed to model the conditional distribution
of sparse codes z on the coarse estimation ẑ as the linear combination of kernel
function:

P (z|ẑ) =
M∑

i=1

αi(ẑ)φi(z|ẑ) (2)

where M is the number of kernel function, φi is the kernel function, αi(ẑ) is
the mixture coefficients, which can be regarded as prior probability of the sparse
code z being generated from ith kernel given the coarse estimation ẑ. In practice,
the Gauss density function is often chosen as the kernel function:

φi(z|ẑ) =
exp

(2π)
m
2

m∏
j=1

σij(ẑ)

⎧
⎨

⎩−
m∑

j=1

(zj − μij(ẑ))2

2σij(ẑ)2

⎫
⎬

⎭ (3)

where zj is the jth element of target data z, μij and σij denote the jth element
of mean and standard deviation of the ith kernel. A diagonal matrix is used
instead of the covariance matrix of Gauss density function from the concern of
computational cost. The parameters Θ = {α, μ, σ} are outputs of network which
depend on the coarse estimation ẑ. Since the ẑ is calculated by LISTA Network,
the distribution of the sparse code is conditioned on input data. A simple full-
connected network is constructed to generate the parameters Θ = {α,μ,σ} like
Fig. 1. Different activation functions are applied to these parameters in order to
satisfy the restrictions. For the coefficient α(ẑ), αi > 0 and

∑M
i=1 αi = 1, we

use the SoftMax function [10]. For the standard deviation of kernel σ(ẑ) which
should be positive, we choose a modified Elu function [7]:

f(t) =

{
t + 1, if t ≥ 0;
γ[exp(t) − 1] + 1, otherwise

(4)

where γ is a scale parameter.
Next, to ensure the sparsity of the final result, it is noteworthy that the

element of μ which corresponds to zero elements in sparse codes should be very
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close to zero when the network was trained. So, we use the coordinate-wise
shrinking function hε as sparsity restriction of μ to keep it sparse:

hε(t) = sign(t)(|t| − ε)+ (5)

Here, ε is a hyperparameter with the positive value which could be set to a
small number e.g., 0.01. The shrinking function hε could change the small
number to zero. If the output of linear layer id denoted as o ∈ R

(2m+1)M =
{oα

i , oμ
i1, ..., o

μ
im, oσ

i1, ..., o
σ
im}M

i=1, the parameters Θ are:

αi =
exp(oα

i )
∑M

j=1 exp(oα
j )

μij = hε(o
μ
ij) σij = Elu(oσ

ij) (6)

The whole network is optimized by using the negative log-likelihood loss (NLL)
of (4) and (5), the loss function is defined as:

E = −
N∑

q=1

Eq

Eq = −ln(
M∑

i=1

αi(ẑq)φi(zq|ẑq))

(7)

So, the derivatives of Eq with respect to output of linear layer o are calculated
as follows:

πi =
αiφi∑M

j=1 αjφj

∂Eq

∂oα
j

= αi − πi

(8)

∂Eq

∂oσ
ij

= πi

{
1

σij
− (zj − μij)2

σ3
ij

}
f

′
(oσ

ij) (9)

∂Eq

∂oμ
ij

= πi

{
(μij − zj)

σ2
ij

}
δ(|oμ

ij | > λ) (10)

where f
′
denotes the derivative of function f , δ(t) is defined as follow:

δ(t) =

{
1, if t is true;
0, otherwise

(11)

So, the standard back-propagation is guaranteed, and the algorithm is shown in
Algorithm 1 and Algorithm 2.

Finally, after getting the parameters Θ, we need to sample the final results
from the learned distribution. Luckily, we get the mixture of Guass density func-
tion by which the sampling approach can be easily implemented. The location is
obtained by randomly sampling according to α and the corresponding center is
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the result of sampling. Actually, what interested us more is the most likely value
of the output. The most likely value for output vector is calculated by maximum
the conditional distribution, but this procedure might be computationally costly.
A faster approximation is to use the center of kernel function which has highest
probability of being sampled, from (4) and (5):

ind = arg max
i

{αi} (12)

The corresponding center μind is the most likely output. And the result of sample
will be sparse as long as the hε activation for μ is used.

Algorithm 1. LISTA-MSN: fprop and bprop
fprop(x, z, We , S, θ)

Variable Z(t), C(t), B, Θ are stored for bprop
B = Wex; Z(0) = hθ (B)
for t=1 to K do

C(t) = B + SZ(t − 1)
Z(t) = hθ (C(t))

end for
ẑ = Z(K)
o = Wm ẑ
αi =

exp(ôα
i )

∑M
j=1 exp(ôα

j )
μij = hε(ô

μ
ij) σij = f(ôσ

ij)

Θ = {α, μ, σ}

bprop (z∗, x, We , S, Wm , θ, δWe , δS, δWm , δθ)
Z(t), C(t), B and Θ were stored in fprop
Initialize: δB = 0; δS = 0; δθ = 0
δo is calculated by (10) − (12)
δWm (t) = δoẑT ; δẑ = W T

m δo; δZ(K) = δẑ
for t = K down to 1 do

δC(t) = hθ
′(C(t)) � δZ(t))

δθ = δθ − sign(C(t)) � δC(t)
δB = δB + δC(t)
δS = δS + δC(t)Z(t − 1)T

δZ(t − 1) = ST δC(t)
end for
δB = δB + hθ

′(B) � δZ(0)
δθ = δθ − sign(B) � hθ(B)δZ(0)
δWe = δBXT

3 Experiment

In this section, we evaluate the performance of the proposed framework on syn-
thetic data and real image data, and compare it with other state-of-the-art algo-
rithms, including ISTA, FISTA, LISTA, ALISTA, and Coupled-LISTA. Similar
to previous works [1,3,11], we adopt Prediction error and Function value error as
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the criteria. Prediction error is the squared error between the input data and pre-
dicted codes in a certain dictionary. And cost function error is the cost between
current prediction and best prediction. These criteria can evaluate the accuracy
and convergence of the algorithm. During the experiments, we find that all the
evaluated methods perform stable when λ ranges between 0.1 and 0.9. So, the spar-
sity parameter λ = 0.5 is fixed in all the experiments, which means the difference
during experiments is just the algorithms themselves. All the algorithms are imple-
mented by python and pytorch, and run the experiments on a DGX-1v server.

3.1 Synthetic Experiments

For synthetic case, the dictionary D ∈ R
n×m of standard normal distribution

is generated. Once D is fixed, a set of Gaussian i.i.d. samples {xi}N
i=1 ∈ R

n are
draw. In this case, we set m = 256, n = 64, Ntrain = 40000 and Ntest = 10000.

In this subsection, two experiments are carried out to verify the performance
of the proposed method. First, we compare the LISTA-MSN with several tradi-
tional algorithms by measuring their prediction error to verify whether LISTA-
MSN outperforms the traditional iterative approaches. Figure 2 shows the pre-
diction error of several algorithms for different iterations or layers (For ISTA
and FISTA, the number of iterations changes. For LISTA and LISTA-MSN, the
number of layers changes.) From Fig. 2, we can observe that LISTA-MSN can
always achieve the lowest prediction error in different depth compared with other
algorithms. Even a 10 layers LISTA-MSN can achieve the same error as the five
times depth of LISTA or FISTA. Furthermore, in order to verify whether the
proposed framework is effective under different estimation network structures.
So, we use the proposed framework for verification under the two network struc-
tures (ALISTA and Coupled-LISTA) respectively. Figure 3 and Fig. 4 show that
for different estimation network structures, the proposed framework also outper-
forms the original network structure. And it can decrease the prediction error
nearly by 10% at the same network depth and structure.

Fig. 2. Evolution of prediction error in ISTA, FISTA, LISTA, LISTA-MSN on simu-
lated data
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Fig. 3. Evolution of prediction error in Coupled-LISTA, Coupled-LISTA-MSN on sim-
ulated data

Fig. 4. Evolution of prediction error in ALISTA, ALISTA-MSN on simulated data

Second, we compare the convergence performance of the proposed method
with other algorithms by calculating the function value error. Figure 5 and
Fig. 6 show that the proposed method converges faster than traditional iterative
approaches (ISTA and FISTA) and reaches a lower overall cost than other meth-
ods. Besides, we can also find that under the same network structure, using the
proposed framework can improve the convergence speed of the original algorithm.
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Fig. 5. Evolution of the function value error in ISTA, FISTA, LISTA, LISTA-MSN on
simulated data

Fig. 6. Evolution of the function value error in four algorithms on simulated data

3.2 Digit Data Experiments

About real image data, we use the handwritten digits dataset from scikit-learn
[Pedregosa et al., 2011]. The digits dataset contains 60,000 training images and
10,000 test images, where each image size is 8 × 8 and sampled from digits (0
to 9). We randomly sample m = 256 samples from dataset and normalize it to
generate the dictionary D. Besides the above, all the image data is processed to
remove its mean and normalize its variance.

In the digit dataset, we also compare several algorithms with the proposed
method by measuring their prediction error. From Fig. 7, 8 and Fig. 9, we can
observe that the results are very similar to the synthetic data. The proposed
method outperforms the traditional iterative approaches. And under different
estimation network structures (LISTA, ALISTA and Coupled-LISTA) with the
use of our framework, the prediction error can also decrease. The interesting
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Fig. 7. Evolution of prediction error in ISTA, FISTA, LISTA, LISTA-MSN on digit
data

Fig. 8. Evolution of prediction error in Coupled-LISTA, Coupled-LISTA-MSN on digit
data

thing observed is that all the algorithms perform better on synthetic dataset
than digit dataset. For this result, the dictionary D of the digit data has a much
richer correlation structure than the simulated Gaussian dictionary, which is
known to impair the performance of learned algorithms [16].

3.3 Sparsity Analysis

As mentioned earlier, how to guarantee the sparsity of results from the learned
distribution is a very important thing. And the sparse regulation is put forward
to solve this problem. Therefore, we experimented to prove the importance of
sparse regulation to MSN by comparing the sampling results’ sparsity of the
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Fig. 9. Evolution of prediction error in ALISTA, ALISTA-MSN on digit data

proposed method with or without sparse regulation under the same estimation
network structure. We calculate the proportion of zero elements in the final
results. Table 1 shows that no matter how the dataset changes, under a certain
estimation network structure with sparse regulation can always keep the sparsity
of the results. This also guarantees that the final results are meaningful.

Table 1. The sparsity of the results whether use sparse regulation under a certain
network structure

Datasets Whether use
sparse regulation

LISTA-MSN ALISTA-MSN Coupled-
LISTA-MSN

Synthetic data Without 35.67% 38.52% 40.28%

With 97.57% 94.31% 95.46%

Digit data Without 34.30% 33.60% 37.59%

With 94.67% 93.69% 93.55%

4 Conclusion

This paper proposes a novel framework called LISTA-MSN for sparse coding,
which significantly improves the accuracy of sparse coding. Different from exist-
ing neural network-based methods, the proposed framework learns the approx-
imation distribution of sparse codes, then obtains the final optimal solution by
sampling from the learned distribution. Furthermore, the proposed framework
is very flexible. Mixture sparsity network can be combined with various neural
networks as estimation networks for sparse coding, including LISTA, ALISTA,
and Coupled-LISTA. Experimental results show that the proposed framework
can significantly improve the accuracy of sparse coding.
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