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Abstract. Although fine-tuning a pre-trained large-scale model has
become an effective method for domain generalization, domain shifts
still issue a huge challenge for successfully transferring models to unseen
test domains. In this paper, we study how to effectively adapt pre-trained
vision Transformers for domain generalization problems in image clas-
sification. To this end, this paper proposes a novel Common-Specific
Visual Prompt Tuning (CSVPT) method to transfer large-scale vision
Transformer models to unknown test domains. Different from exist-
ing methods which learn fixed visual prompts for each task, CSVPT
jointly learns domain-common prompts to capture the task context and
sample-specific prompts to capture information about data distribu-
tion, which are generated for each sample through a trainable prompt-
generating module (PGM). Combining the domain-common prompts and
the sample-specific prompts, visual prompts learned by CSVPT are con-
ditioned on each input sample rather than fixed once learned, which
helps out-of-distribution generalization. Extensive experimental results
show the effectiveness of CSVPT, and CSVPT with the backbone ViT-
L/14 achieves state-of-the-art (SOTA) performance on five widely used
benchmark datasets.

1 Introduction

Though deep learning has achieved remarkable success in many areas [1–4], it
relies on the i.i.d. assumption that training and testing data are independent and
identically distributed [5]. However, this assumption does not always hold in real
applications. When collecting data under different conditions or from different
sources, test data is often out of the distributions of training data. The out-
of-distribution (OOD) problem significantly degrades the performance of deep
models [6]. To tackle this problem, lots of domain generalization (DG) methods
aim to learn a model from multiple training domains that will generalize well on
unseen testing domains [6].

The past few years have witnessed the advance of DG algorithms [6,7].
Among them, learning feature representations that were invariant across
domains [8–12] and decomposing model parameters into shared and domain-
specific components [13,14] are the two most common methods. However, some
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researchers have revealed that none of the existing DG methods greatly out-
perform simple baselines on the diverse DG benchmarks [15]. This is because
the training and test distributions are too different to learn domain-invariant
features or obtain excellent common-specific decomposition from the training
domains alone.

Inspired by the great success of Transformers [16–19], a line of works such
as [20–22] turned to large-scale pre-trained models for help. Benefiting from
massive labeled and unlabeled data, pre-training models on diverse data can
efficiently capture rich prior knowledge and improve OOD generalization [23].
By fine-tuning on specific tasks, the rich knowledge implicitly encoded in the pre-
trained models can benefit a variety of downstream tasks. Full fine-tuning is one
of the most common practices, which updates all parameters on the downstream
tasks. However, storing a separate copy of the whole backbone parameters for
each task is an expensive and infeasible proposal, especially for large-scale Trans-
former models. Moreover, full fine-tuning may distort pre-trained features and
thus harm the robustness against distribution shifts [24]. Instead of fine-tuning
the pre-trained Transformer itself, visual prompt tuning (VPT) [25] modifies the
input to the Transformer. It introduces a small amount of task-specific trainable
parameters (namely visual prompts) into the input space while keeping the whole
pre-trained backbone frozen. Since only a few parameters (1% of model param-
eters) requires to be updated, VPT not only greatly reduces computational and
storage costs but also prevents overfitting and feature distortion. Although a
proper prompt that matches with data distribution could improve the perfor-
mance, it is difficult to design an appropriate visual prompt for an unknown
domain to address the domain shift problem.

In this paper, we investigate how to effectively adapt pre-trained vision Trans-
former models for domain generalization in image classification. Taking inspira-
tion from VPT [25] and traditional DG methods [13,14], this paper proposes
a novel Common-Specific Visual Prompt Tuning (CSVPT) method to transfer
the pre-trained vision Transformer models to unknown testing domains for bet-
ter OOD generalization. To our best knowledge, it is the first work to design
a DG algorithm based on visual prompts. Different from existing prompt-based
methods [25,26] which only learn task-specific prompts, our proposed CSVPT
jointly learns domain-common prompts and sample-specific prompts to modify
the input to the pre-trained vision Transformer models. The domain-common
prompts capture the task context and are fixed once learned, thus easy to over-
fit the training domains. To generalize the prompts to wider unseen domains
within the same task, CSVPT learns a lightweight neural network (namely
prompt-generating module, PGM) to generate the sample-specific prompts for
each sample so as to capture information about data distribution. Combining the
domain-common prompts and the sample-specific prompts, our visual prompts
are conditioned on each input sample rather than fixed once learned, which helps
out-of-distribution generalization. To validate the effectiveness of our proposed
CSVPT method, we perform extensive experiments on five popular datasets of
DomainBed [15], including PACS [27], VLCS [28], OfficeHome [29], TerraIncog-
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nita [30] and DomainNet [31]. Experimental results demonstrate that CSVPT
consistently performs better on these datasets than the vanilla VPT methods
and other DG methods based on pre-trained models. Moreover, CSVPT with
ViT-L/14 pre-trained on CLIP [32] achieves new state-of-the-art performances
on the five datasets.

In summary, our key contributions are as follows:

– A novel CSVPT method is proposed to efficiently adapt large-scale vision
Transformers for the DG problem. Instead of learning fixed visual prompts as
VPT does, CSVPT generates the visual prompts conditioned on each input
sample, and thus achieves better OOD generalization.

– Extensive experiments on five public datasets demonstrate that our proposed
CVSVPT consistently outperforms existing fine-tuning methods for domain
generalization in image classification. Especially, CSVPT with the backbone
ViT-L/14 achieves new SOTA performance.

2 Related Work

Invariance learning and decomposition learning are two mainstream methods
for DG. These conventional DG methods usually fail to learn domain-invariant
features or obtain excellent common-specific decomposition from the training
distributions alone. To solve this problem, we propose a novel CSVPT method,
which is mainly inspired by decomposition learning and pre-trained model-based
methods. In this section, we will introduce these related works concisely.

2.1 Decomposition Learning Method

Decomposition learning, which supposes that features, model parameters, or gra-
dients are composed of domain-specific components and domain-common com-
ponents, is one of the most popular methods for DG. Decomposition learning
can be divided into three categories as follows. The first type is feature decompo-
sition learning. Feature decomposition learning tries to disentangle the feature
representation into two parts, i.e., domain-specific parts and domain-common
parts. Afterward, we can either use the domain-common feature only or com-
bine the domain-common features with augmented domain-specific features for
prediction [33]. The second category is predictor decomposition learning, such
as CSD [14]. It learns a domain-common predictor (which helps generalization)
and a domain-specific predictor (which may harm generalization). The domain-
specific predictors are discarded after training and only the common predictor is
used for prediction. The last one is gradient decomposition learning. For exam-
ple, AndMask [34] updates weights only when gradients from different domains
point to the same direction, i.e., retaining the domain-common gradient com-
ponent. Similarly, we assume prompts are composed of domain-common and
sample-specific components in this paper. Domain-common components learned
from the training data are shared by the test data, but sample-specific compo-
nents are generated from the input data via a simple linear PGM. Combining



Learning Common and Specific Visual Prompts for Domain Generalization 581

the domain-common and sample-specific prompts, we can obtain more appro-
priate prompts for samples from unseen testing domains, which helps out-of-
distribution generalization.

2.2 Pre-trained Model-Based Method

As we all know, full fine-tuning and linear probing are two popular methods
when transferring a pre-trained model to a downstream task. All the model
parameters are trainable for full fine-tuning, while only the parameters of the
last fully connected layer are for linear probing. When training and testing data
are independent and identically distributed, full fine-tuning usually outperforms
linear probing. However, some researchers [24] pointed out full fine-tuning may
distort pre-trained features and underperform out-of-distribution, because the
features of in-distribution training data are updated greatly while those of out-
of-distribution data change less. Ananya Kumar et al. [24] proposed a two-step
approach (linear probing then full fine-tuning) to solve the problem. Besides,
some researchers [21] utilized a mutual information regularization with the pre-
trained model, called Mutual Information Regularization with Oracle (MIRO),
to prevent overfitting and feature distortion. Although MIRO achieved SOTA
performance on several DG benchmarks, updating all parameters and calculating
the above loss consume a lot of computation and storage resources. Instead of
fine-tuning the pre-trained Transformer itself, visual prompt tuning (VPT) [25]
modifies the input to the Transformer models. It introduces a small amount of
task-specific trainable parameters (namely visual prompts) into the input space
while keeping the whole pre-trained backbone frozen. It not only greatly saves
the computation and storage resources but also prevents the feature distortion
brought by full fine-tuning. Inspired by VPT, we propose a novel visual prompt
tuning method named CSVPT for domain generalization.

3 Methodology

We propose a novel CSVPT method to effectively adapt pre-trained vision
Transformers for domain generalization problems in image classification. In this
section, we will first define the problem of domain generalization formally and
then elaborate on the proposed CSVPT method.

3.1 Problem

This paper mainly studies the problem of domain generalization. In this subsec-
tion, we give the formal definition of domains and domain generalization in the
following.

Definition 1 (Domain) [6]. To be simple, a domain is a set of data sampled
from a distribution, denoted as S = {(xi, yi)}ni=1 ∼ PXY , where xi ∈ X denotes
an input sample in the input space, yi ∈ Y denotes corresponding label in the
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output space, n denotes number of samples in domain S, and PXY denotes the
joint distribution of random variable X (which means the input sample) and
random variable Y (which means the output label).

Definition 2 (Domain Generalization) [6]. In the setting of DG problem, we
have M training domains Strain = {{(x(d)

i , y
(d)
i }nd

i=1}Md=1 and one testing domain
Stest = {(x(M+1)

i , y
(M+1)
i }nM+1

i=1 . The joint distributions between every two above
domains are different: P

(i)
XY �= P

(j)
XY , 1 ≤ i �= j ≤ M + 1. DG aims to learn a

mapping function f : X → Y (using Strain only) such that f minimizes the
generalization error on domain Stest:

min
f

E(x,y)∈Stest
[l(f(x), y)]. (1)

Note that the testing domain Stest is not available during training, which differs
from the problem of domain adaptation [35].

3.2 Our CSVPT Algorithm

We propose a novel Common-Specific Visual Prompt Tuning (CSVPT)
method to adapt large-scale vision Transformer models for domain generaliza-
tion (Fig. 1). It tunes the pre-trained vision Transformer by appending N train-
able prompt tokens to the input of the Transformer layers. Different from exist-
ing prompt-based methods [25,26] which only learn task-specific prompts, our
proposed CSVPT jointly learns domain-common prompts and sample-specific
prompts to modify the input to the pre-trained vision Transformer models. The
domain-common prompts capture the task context and are fixed once learned,
while the sample-specific prompts capture information about data distribution
and are generated through a lightweight neural network (PGM). Combining
the two types of prompts above, we can make more appropriate prompts for
test data from unseen domains, which helps out-of-distribution generalization.
Before elaborating on our CSVPT algorithm, let us review the vanilla vision
Transformer (ViT) first.

For a vision Transformer [18], an input image x is divided into M patches
first: P = {Ii|Ii ∈ R

3×h×w, 1 ≤ i ≤ M}, where h and w denote the height and
width of an image patch, respectively. Then, each image patch is mapped to a
d-dimension vector, a.k.a, the context token, by a feature embedding module
(usually a 2D convolution layer):

t
(0)
i = Embed(Ii), (2)

where Ii ∈ P and t
(0)
i ∈ R

d. After that, the class token c(0) ∈ R
d and all d-

dimensional context tokens are concatenated as the input of the first Transformer
layer:

(c(1), t(1)1 , . . . , t
(1)
M ) = L1(c(0), t

(0)
1 , . . . , t

(0)
M ), (3)
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(a) Feature Embedding
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Fig. 1. Overview of the proposed Common-Specific Visual Prompt Tuning (CSVPT).
(a) We first utilize a feature embedding module to embed input image patches into
several context tokens (marked gray). (b) Mapping the class token (marked blue, pre-
trained) and input context tokens to several prompt tokens (sample-specific prompts,
marked green) through a prompt-generating module (PGM). Then, initialize domain-
common prompts (marked red) to zeros and add domain-common prompts and sample-
specific prompts together as total prompts. Finally, concatenate the class token, input
context tokens and total prompt tokens as the input of the frozen Transformer Layer
(CSVPT-Shallow). (c) Use PGM to generate sample-specific prompt tokens and ini-
tialize domain-common prompt tokens at each Transformer encoder layer (CSVPT-
Deep). During training on downstream DG tasks, only the parameters (marked red) of
domain-common prompts, PGMs and the linear head are updated, while keeping the
whole Transformer encoder frozen. (Color figure online)

where the superscripts “(1)” and “(0)” denote the output and input of the first
Transformer layer, respectively. For a vision Transformer with L layers, we have

(c(l), t(l)1 , . . . , t
(l)
M ) = Ll(c(l−1), t

(l−1)
1 , . . . , t

(l−1)
M ), (4)
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where l ∈ {1, 2, . . . , L}. Finally, c(L) is used for classification through the head
module:

ŷ = Head(c(L)). (5)

As mentioned above, our proposed CSVPT algorithm (Fig. 1) attempts to
learn common-specific visual prompts to tune the pre-trained ViTs for better
OOD generalization. Specifically, we first utilize a feature embedding module
to embed input image patches into several context tokens (Fig. 1(a)) as in (2).
Then, CSVPT utilizes a Prompt-generating Module (PGM) to generate sample-
specific prompt tokens from the input context tokens to adapt to changes of data
distributions:

(p(k)s,1 , . . . , p
(k)
s,N ) = PGM(c(k), t(k)1 , . . . , t

(k)
M ), (6)

where k represents the input prompts of the (k + 1)th layer, and the subscript
“s” in p

(k)
s,i means specific prompts. For the sake of simplicity, we apply a linear

module as PGM:

[p(k)s,1 , . . . , p
(k)
s,N ] = [c(k), t(k)1 , . . . , t

(k)
M ]WT, (7)

where W ∈ R
N×(M+1) denotes the weights of the PGM. Next, we add specific

and common prompt tokens (which are initialized to zeros and updated during
training like other prompt tuning methods) together:

p
(k)
i = p

(k)
s,i + p

(k)
c,i , (8)

where i ∈ {1, 2, . . . , N} and the subscript “c” in p
(k)
c,i means common prompts.

Similar to VPT, we propose two specific implementations: CSVPT-Shallow
and CSVPT-Deep. In the setting of CSVPT-Shallow (Fig. 1(b)), sample-specific
prompt tokens generated by PGM and domain-common prompt tokens are used
only in the input space of the first Transformer layer (i.e., k ∈ {0}), while at
each Transformer layer (i.e., k ∈ {0, 1, . . . , L − 1}) in the setting of CSVPT-
Deep (Fig. 1(c). Finally, the total prompt tokens are used to modify the input
to the pre-trained vision Transformer models. Specifically, for CSVPT-Shallow,
we have

(c(l), t(l)1 , . . . , t
(l)
M , p

(l)
1 , . . . , p

(l)
N )

=Ll(c(l−1), t
(l−1)
1 , . . . , t

(l−1)
M , p

(l−1)
1 , . . . , p

(l−1)
N ),

(9)

where {p
(0)
i }Ni=1 is obtained from (8). But for VPT-Deep, we have

(c(l), t(l)1 , . . . , t
(l)
M , p̃

(l)
1 , . . . , p̃

(l)
N )

=Ll(c(l−1), t
(l−1)
1 , . . . , t

(l−1)
M , p

(l−1)
1 , . . . , p

(l−1)
N ),

(10)

where {p
(l−1)
i }Ni=1 is obtained from (8) and p̃

(j)
i is discarded in the next layer’s

input in order to prevent the number of tokens from gradually increasing with
layers. During training on downstream DG tasks, only parameters of common
prompt tokens, PGMs and the linear head are updated while the whole Trans-
former encoder is frozen, simply using the cross entropy loss.
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4 Experiments

In this section, we conduct extensive experiments to compare the performance of
the proposed CSVPT algorithm and other pre-trained model-based DG methods
on different challenging and widely used datasets via DomainBed [15], a testbed
for domain generalization.

4.1 Datasets and Implementation Details

Datasets. We evaluate our method on five challenging benchmark datasets,
including PACS [27] (4 domains, 7 classes, and 9, 991 examples), VLCS [28]
(4 domains, 5 classes, and 10, 729 examples), OfficeHome [29] (4 domains, 65
classes,and 15, 588 images), TerraIncognita [30] (4 domains, 10 classes, and 24, 788
examples), and DomainNet [31] (6 domains, 345 classes, and 586, 575 examples).

Implement Details. Two backbones, ViT-B/16 [18] and ViT-L/14, are used on
these five datasets to explore the influence of backbone scale on the performance
of downstream DG tasks. Without further explanation, ViT-B/16 is used in the
next experiments. In general, the number of training iterations is 5,000, and the
batch size is 16 times the number of domains. But more training iterations are
implemented for large datasets like DomainNet, and we reduce the batch size by
half when using a larger backbone ViT-L/14. In our experiments, we uniformly
use the Adam optimizer and determine the optimal learning rate through a
model selection process. We follow the same training, validation and testing
split scheme as in MIRO [21]. For each domain, twenty percent of the data is set
aside as a validation set, that is, the holdout fraction is 0.2.

As Ishaan Gulrajani and David Lopez-Paz [15] put it, any DG algorithm
without model selection is incomplete. We use two model selection criteria in
our experiments:

– Training-domain validation set. We split every training domain into two
subsets used for training and validation respectively. Then, we aggregate the
validation subsets of all training domains to obtain the final validation set.
Finally, the model maximizing the top-1 accuracy on the validation set is
chosen as the best model.

– Testing-domain validation set. We split the testing domain into testing
and validation subsets. The model maximizing the top-1 accuracy on this
validation set is chosen as the best model.

Note that the leave-one-domain-out validation experiments are conducted
just like previous work [27]. We select one domain for testing and the remaining
domains for training every time. Finally, the average top-1 accuracy of classifi-
cation is calculated as the evaluation metric for each dataset.

4.2 Main Results and Discussion

Comparison with Other Methods. In our experiments, we choose the vanilla
VPT [25] method and popular DG methods (including ERM [15], DANN [8],
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Table 1. Experimental Results of ViT-B/16.

Model selection method: training-domain validation set

Algorithm PACS VLCS OH TI DN Avg

ERM [15] 92.9 81.4 78.9 53.6 56.1 72.6

DANN [8] 92.2 80.1 78.0 47.9 57.5 71.1

CORAL [11] 92.6 79.6 78.5 51.7 56.4 71.8

MIRO [21] 95.2 81.1 82.5 52.9 56.6 73.7

VPT-Shallow [25] 97.0 81.7 83.6 53.1 58.7 74.8

CSVPT-Shallow (Ours) 96.6 82.7 84.2 56.3 59.2 75.8

VPT-Deep [25] 96.6 82.9 85.0 57.0 59.6 76.2

CSVPT-Deep (Ours) 96.6 82.7 85.5 57.7 59.8 76.5

Model selection method: testing-domain validation set

ERM [15] 90.8 79.1 74.9 54.2 56.2 71.0

DANN [8] 90.6 81.4 76.2 50.7 57.7 71.3

CORAL [11] 90.6 80.2 76.8 52.0 56.0 71.1

MIRO [21] 95.8 83.6 82.3 58.8 57.2 75.5

VPT-Shallow [25] 96.8 83.2 83.6 56.7 59.0 75.9

CSVPT-Shallow (Ours) 96.6 83.5 84.5 60.1 59.5 76.8

VPT-Deep [25] 97.2 84.9 85.2 59.9 59.8 77.4

CSVPT-Deep (Ours) 97.3 84.9 85.0 60.1 60.0 77.5

CORAL [11], MIRO [21]) as our baselines. We provide extensive performance on
five DG benchmarks in Table 1. For the sake of fairness, all the experiments in
Table 1 are conducted with the same backbone, ViT-B/16 for CLIP [32], keep-
ing other experimental conditions as consistent as possible. As said in the last
subsection, we use two model selection criteria in our experiments: training-
domain validation set and testing-domain validation set. We show the corre-
sponding experimental results at the top and bottom of Table 1. Experimental
results in Table 1 show that popular full fine-tuning DG methods (e.g., ERM [15],
DANN [8], CORAL [11]) are prone to overfitting training data and often have
inferior DG performances. MIRO that utilizes a mutual information regular-
ization significantly improves performance on every dataset, resulting in +0.9pp
average improvement (72.6% → 73.7%) with training domain validation set and
+4.2pp average improvement (71.3% → 75.5%) with testing domain validation
set, which achieved SOTA performance with the backbone of ViT-B/16 for CLIP
before VPT. Compared to MIRO, the vanilla VPT algorithm further improves
performance on almost every benchmark dataset. We obtain 74.8% average top-
1 accuracy with VPT-Shallow and 76.2% with VPT-Deep using the first model
selection criterion, while VPT-Shallow achieves 75.9% average top-1 accuracy
and VPT-Deep 77.4% using the second model selection criterion. VPT-Deep
slightly outperforms VPT-Shallow, because VPT-Shallow only tunes the input
of the first Transformer layer, and VPT-Deep tunes that of each layer. Most
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Table 2. Experimental Results of ViT-L/14.

Model selection method: training-domain validation set

Algorithm PACS VLCS OH TI DN Avg

VPT-Shallow [25] 98.5 81.6 88.5 60.0 63.6 78.4

CSVPT-Shallow (Ours) 98.6 81.8 89.0 61.5 63.7 78.9

VPT-Deep [25] 98.4 82.3 90.8 65.4 65.0 80.4

CSVPT-Deep (Ours) 98.5 83.0 90.9 65.3 65.3 80.6

Model selection method: testing-domain validation set

VPT-Shallow [25] 98.5 81.7 88.3 62.9 64.3 79.1

CSVPT-Shallow (Ours) 98.5 82.1 88.9 66.1 64.1 79.9

VPT-Deep [25] 98.5 84.3 90.3 67.3 65.5 81.2

CSVPT-Deep (Ours) 98.7 85.3 90.7 67.1 65.7 81.5

importantly, our proposed CSVPT further improves the performance on the
five benchmark datasets, especially in the setting of “Shallow”: +1.0pp aver-
age improvement (74.8% → 75.8%) with the training domain validation set and
+0.9pp average improvement (75.9% → 76.8%) with the testing domain valida-
tion set. However, in the setting of “Deep”, the improvement of CSVPT is not
so remarkable: +0.3pp average improvement (76.2% → 76.5%) with the training
domain validation set and +0.1pp average improvement (77.4% → 77.5%) with
the testing domain validation set. Anyway, the experimental results have shown
the superior performance of CSVPT over popular DG methods and the vanilla
VPT, which validates the effectiveness of the CSVPT algorithm.

CSVPT on Various Backbone Scales. In this part, we explore how dif-
ferent backbone scales influence the performance of our proposed CSVPT. We
choose two different backbones for comparison: ViT-B/16 and ViT-L/14 for
CLIP. The experimental results are listed in Tables 1 and 2, respectively. Sim-
ilarly, in Table 2, CSVPT also achieves superior performances over VPT, espe-
cially in the setting of “Shallow”: +0.5pp average improvement (78.4% → 78.9%)
with the training domain validation set and +0.8pp average improvement
(79.1% → 79.9%) with the testing domain validation set. Besides, we can find
that there is a remarkable performance improvement on the five benchmarks
when using larger Transformer backbones ViT-L/14: +4.0pp average improve-
ment (77.5% → 81.5%), which achieves new SOTA performances.

CSVPT with Different Dataset Scales. As we know, the VPT method [25]
consistently outperforms other tuning methods across different training dataset
scales. In order to explore whether our proposed CSVPT algorithm could han-
dle domain generalization problems with different dataset scales, we gradu-
ally reduce the training data in the next experiments. Detailed experimental
results are presented in Fig. 2. From Fig. 2, we can find that the average accu-
racy decreases gradually as the size of the training set decreases, but our pro-
posed CSVPT always outperforms VPT and MIRO in this process. Surprisingly,
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Fig. 2. DG performances with different dataset scales on the OfficeHome benchmark.
We change the holdout fraction of the training set from 0.2 to 0.9, that is, we gradually
reduce the training data from 80% to 10% of all training domain datasets. The variation
of the average accuracy on the four domains that are alternately used as the testing
domain with the size of the training set is shown in the histogram.

Fig. 3. Performances of VPT (without PGMs) and VPT (with PGMs) with differ-
ent numbers of prompt tokens N . In this experiment, we also adopt the leave-one-
domain-out scheme, which chooses one domain as the testing domain and aggregates
the remaining domains as training domains. We show experimental results on the four
domains of OfficeHome benchmark in this figure: (a) Art; (b) Clipart; (c) Product; (d)
Real World. The caption represents the testing domain at each time.
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CSVPT with less than 40% of training data (i.e., the holdout fraction is 0.6)
could achieve the performance of VPT with 80% of training data (i.e., the hold-
out fraction is 0.2), while CSVPT with only 20% of training data achieves the
performance of MIRO with 80% of training data. Besides, when training data
is extremely scarce, the performance of CSVPT deteriorates rapidly. We believe
that the reason for this phenomenon is that training data is too scarce to train
PGMs well enough to generate meaningful specific prompts.

CSVPT with Different Numbers of Prompt Tokens N . The difference
between the vanilla VPT and our proposed CSVPT lies in whether PGMs are
used to generate specific prompts. We conduct more experiments to illustrate the
difference with and without the PGMs. In this part, different numbers of prompt
tokens N are used in our experiments to show the consistency of CSVPT’s supe-
riority over VPT methods. Specially, we only change the number of prompt
tokens N from 2 to 18, keeping other experimental conditions the same. We show
detailed experimental results on the OfficeHome benchmark in Fig. 3. Observing
the curves in Fig. 3, we can find that the CSVPT method achieves the high-
est performance when using different numbers of prompt tokens for different
datasets. For Art, CSVPT achieved the highest performance of 83.2% when N
equals 18. But for Clipart, Product and Real World, N equals 18, 10 and 12,
respectively. Yet despite all that, the orange curve almost always lies on top
of the blue curve in each subfigure, which means CSVPT (with PGMs) almost
always outperforms VPT (without PGMs) on each testing domain of OfficeHome
benchmark. This observation is violated only at some special points, e.g., when
N equals 6 or 8. However, CSVPT always achieves higher optimal performance
than VPT.

More Ablations on Common and Specific Prompts. The above experi-
ments mainly focus on the comparison between VPT (which only uses common
prompts) and CSVPT (which uses both common prompts and specific prompts).
To further show the necessity of both kinds of prompts, we conduct an ablation
study to compare results with common prompts only (VPT), specific prompts
only (SVPT), and a combination of both (CSVPT). Experimental results in
Table 3 show that CSVPT achieves the best performance, which also justifies
both the necessity of common prompts and that of specific prompts in CSVPT.

Table 3. Ablation Experiments on Common and Specific Prompts.

Algorithm PACS VLCS OH TI DN Avg.

VPT 97.0 81.7 83.6 53.1 58.7 74.8

SVPT 95.8 81.5 82.8 50.7 58.0 73.8

CSVPT 96.6 82.7 84.2 56.3 59.2 75.8

4.3 Case Study

In this part, we study three cases in detail to further illustrate how the PGMs
influence the output of Transformers.
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Input image   Pre-trained          VPT       CSVPT(Ours)  

Fig. 4. We show how the attention flows from the start to the end throughout the
Transformer when using the pre-trained backbone (without fine-tuning), VPT methods
and our proposed CSVPT methods.

Similar to other tuning methods [36], VPT-based methods mainly influence
the process of attention in this way:

Attn(qTWq, concat(CWk,PWk), concat(CWv,PWv))

=λAttn(qTWq,CWk,CWv) + (1 − λ)Attn(qTWq,PWk,PWv),
(11)

where q ∈ R
d denotes a query token, C = [t1, . . . , tM ]T ∈ R

M×d denotes context
tokens, P = [p1, . . . , pN ]T ∈ R

N×d denotes prompt tokens, Wq,Wk,Wv ∈
R

d×d′
denote the weights of the linear layers before attention, and

λ =
∑

i exp(qTWqWT
k CT)i

∑

i exp(qTWqWT
k CT)i +

∑

i exp(qTWqWT
k PT)i

. (12)

In (11), the second term shows how prompt tokens influence the previous atten-
tion. In order to intuitively demonstrate the effect of (sample-specific) prompt
tokens on the attention, we show how the attention flows from the start to the
end in Fig. 4 using a technique called “Attention Rollout” [37]. In the first case
of Fig. 4, the pre-trained model without fine-tuning focuses on pixels not on
the “pan”, while the models with VPT-based method focus on the right pixels.
However, compared to the VPT method (without specific prompt tokens), the
proposed CSVPT method (with specific prompt tokens generated by PGMs)
pays more attention to the object in the image. In the second case, pre-trained
models without fine-tuning and with VPT method only focus on local point-like
regions of the object in the image, but our CSVPT method focuses on bigger
regions of the object. Surprisingly, in the third case, the CSVPT method captures
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three objects in the image, while other methods only focus on the bottleneck of
one bottle in that image. In a word, the success of the three cases shown in
Fig. 4 further illustrates the benefit of PGMs and sample-specific prompt tokens
on the DG classification tasks.

5 Conclusion

In this paper, we propose a novel Common-Specific Visual Prompt Tuning
(CSVPT) method to adapt pre-trained vision Transformers for domain general-
ization problems in image classification. It tunes the pre-trained vision Trans-
former by appending several trainable prompt tokens to the input of the Trans-
former layers. Different from existing methods, CSVPT jointly learns domain-
common prompts to capture the task context and sample-specific prompts to
capture information about data distribution, which are generated for each sample
through a trainable prompt-generating module (PGM). Combining the domain-
common prompts and the sample-specific prompts, CSVPT makes dynamic
visual prompts changing with data distributions adaptively, which helps OOD
generalization. Our experimental results demonstrate the effectiveness of the
proposed method. CSVPT achieves consistent superior performance over other
related DG methods under different experimental settings. Furthermore, CSVPT
with ViT-L/14 achieves new state-of-the-art performances on the five widely
used datasets of DomainBed benchmarks. Our experimental results also illus-
trate that the success of CSVPT probably results from its positive influence on
the attention flows in the vision Transformer models. We hope that this study
will encourage more research on advanced fine-tuning approaches for domain
generalization, and more theoretical analysis and technical improvement will be
our future work.
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