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Abstract. This paper explores value-decomposition methods in cooper-
ative multi-agent reinforcement learning (MARL) under the paradigm of
centralized training with decentralized execution. These methods decom-
pose a global shared value into individual ones to guide the learning of
decentralized policies. While Q-value decomposition methods such as
QMIX show state-of-the-art performance, V-value decomposition meth-
ods are proposed to obtain a reasonable trade-off between training effi-
ciency and algorithm performance under the A2C training paradigm.
However, existing V-value decomposition methods lack theoretical anal-
ysis of the relation between the global V-value and local V-values, and do
not explicitly consider the influence of individuals on the total system,
which degrades their performance. To address these problems, this paper
proposes a novel approach called V-value Attention Actor-Critic (VAAC)
for cooperative MARL. We theoretically derive a general decomposing
formulation of the global V-value in terms of local V-values of individ-
ual agents, and implement it with a multi-head attention formation to
model the impact of individuals on the whole system for interpretability
of decomposition. Evaluations on the challenging StarCraft II microman-
agement task show that VAAC achieves a better trade-off between train-
ing efficiency and algorithm performance, and provides interpretability
for its decomposition process.

Keywords: Multi-agent reinforcement learning · Multi-agent policy
gradients · Deep reinforcement learning

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) has made significant
progress in recent years [7,15,16], where a system of agents learns towards coor-
dinated policies to optimize the accumulated global rewards. Many complex
real-world tasks such as autonomous vehicle coordination [1] and sensor net-
works [20] can be modeled as cooperative MARL problems. One natural way
to address cooperative MARL problems is the fully centralized approach that
views the multi-agent system as a single-agent reinforcement learning task with
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a joint action space [13]. However, since the joint action space of the agents
grows exponentially with the number of agents, the fully centralized approach
has limited scalability. Besides, due to partial observability and communication
constraint in practical environments, it is necessary to use decentralized policies
that act only based on the local observation history of individual agents. The
simplest approach to decentralized policies is independent learning which trains
the agents independently, but suffers from non-stationarity since it views other
agents as part of the environment [5].

To address these above issues, the paradigm of centralized training with decen-
tralized execution (CTDE) [4] has attracted great attention of researchers, where
decentralized policies are trained with access to additional global state informa-
tion in a centralized fashion and executed only conditioned on local histories in
a decentralized way. There is still a challenging problem of how to use a global
shared value, such as joint action-value (Q-value) or global state value (V-value),
for the training of decentralized policies. One approach is value-decomposition,
which decomposes the global value into individual ones to guide the learning of
decentralized policies. Many breakthroughs in Q-value decomposition methods
have been made recently. Value Decomposition Network (VDN) [12] represents
joint action-value Qtot as a summation of individual Q-values that condition only
on individual observations and actions. QMIX [8] extends to a broader class of
monotonic functions using a mixing network of per-agent Q-values. QTRAN [10]
proposes a provably more general value factorization method that avoids repre-
sentation limitations. Qatten [18] theoretically derives a general formula of Qtot

and considers the impact of individuals on the global.
In real applications, how to improve the training efficiency of CTDE is a prac-

tical problem in cooperative MARL. A2C framework [6] is a popular training
paradigm that promotes training efficiency by asynchronously executing multi-
ple instances of the environment. However, Q-value decomposition methods such
as QMIX do not perform well under the A2C paradigm, because these off-policy
methods utilize replay buffers which are incompatible with multi-thread execu-
tion. As reported in [11], when using the A2C training paradigm, the perfor-
mance of QMIX degrades on the StarCraft Multi-Agent Challenge (SMAC) [9].
On the other hand, on-policy actor-critic methods such as counterfactual multi-
agent (COMA) [2] can exploit the A2C framework efficiently while having poor
performance on SMAC [9].

To narrow the performance gap between on-policy actor-critic and Q-value
decomposition methods, [11] extends value-decomposition to on-policy actor-
critic methods and proposes a V-value decomposition framework called value-
decomposition actor-critic (VDAC). VDAC represents the global state value Vtot

as a monotonic function of local state values V a, and introduces two V-value
decomposition methods, i.e. VDAC-sum and VDAC-mix. The former method
represents Vtot as a summation of V a, while the later one generalizes the rep-
resentation to a larger family of monotonic functions through a mixing net-
work. However, both V-value decomposition methods impose certain assump-
tions which lack theoretical analysis of the relation between Vtot and V a. Besides,



564 H. Liu et al.

they do not explicitly consider the influence of individuals on the total system,
just viewing that each agent is equal or mixing local state values implicitly. These
problems of existing V-value decomposition methods limit their performance.

To further achieve an acceptable trade-off between training efficiency and
performance, this paper proposes a novel V-value decomposition approach called
V-value Attention Actor-Critic (VAAC). We derive a decomposing formulation
of Vtot in terms of V a through theoretical analysis, and implement it with a multi-
head attention formation to model the impact of agents on the whole system for
interpretability of decomposition. Empirical results on SMAC show that VAAC
outperforms other baselines under A2C. Next, we use ablation experiments to
demonstrate the contribution of the multi-head attention formation. Moreover,
we investigate the relationship between the weights for mixing V a into Vtot and
the properties of agents to interpret the decomposition process.

2 Background

2.1 Decentralized Partially Observable Markov Decision Process

We consider a fully cooperative multi-agent task that can be modeled as a
decentralised partially observable Markov decision process (Dec-POMDP) con-
sisting of a tuple G = 〈S,U, P, r, Z,O, n, γ〉, in which n agents identified by
a ∈ A ≡ {1, ..., n} choose sequential actions. The environment has a true state
s ∈ S. Each agent simultaneously chooses an action ua ∈ U at each time
step, forming a joint action u ∈ U ≡ Un which induces a transition prob-
ability function P (s′|s,u) : S × U × S → [0, 1] and a global reward func-
tion r(s,u) : S × U → R. We consider a partially observable setting, where
each agent receives an individual partial observation z ∈ Z from the obser-
vation function O(S,A) : S × A → Z. Each agent learns a stochastic policy
πa(ua|τa) : T × U → [0, 1] conditioned on its local action-observation history
τa ∈ T ≡ Z × U . We denote joint quantities over agents in bold and joint
quantities over agents other than a given agent a with the superscript −a. All
agents coordinate together to maximize the discounted return Rt =

∑∞
l=0 γlrt+l.

The agents’ joint policy induces a value function, i.e., the expected return for
following the joint policy π from state s, V π(st) = E[Rt|st = s], and an action-
value function, i.e. the expected return for selecting joint action u in state s and
following the joint policy π, Qπ(s,u) = E[Rt|st = s,u].

2.2 Single-Agent Policy Gradient Algorithms

Policy gradient methods optimise a single agent’s policy parameterised by θπ

to maximize the objective J(θ) = Es∼pπ,u∼π[R(s, u)] by performing gradient
ascent, where pπ is the state transition by following policy π. The gradient with
respect to the policy parameters is ∇θJ(θ) = Eπ[∇θ log πθ(a|s)Qπ(s, u)]. To
reduce variations in gradient estimates, a baseline b is introduced. In actor-critic
approaches, the actor, i.e., the policy, is trained by following a gradient that



VAAC: V-value Attention Actor-Critic for Cooperative MARL 565

depends on a critic, which usually estimates a value function. This yields the
advantage function A(st, ut) = Q(st, ut) − b(st). V (st) is commonly used as the
baseline. Temporal difference (TD) error rt + γV (st+1) − V (st), which is an
unbiased estimate of A(st, ut), is a common choice for advantage functions.

2.3 IAC and COMA

Independent Actor-Critic (IAC) [2] is the simplest method to apply Policy Gra-
dient Algorithms to multiple agents, which lets each agent learn its own actor
and critic independently according to its own action-observation history. Each
agent’s critic estimates V (oa) to calculate TD error. IAC is straightforward and
easy to implement but lacks information about other agents and global state
during the training, which makes it difficult to learn coordinated strategies and
estimate its contribution to the team’s reward. To mitigate this issue, decentral-
ized policies can be learned in the centralized training and decentralized execu-
tion (CTDE) paradigm. COMA [2] uses a centralized critic and applies the fol-
lowing counterfactual policy gradients:∇θJ = Eπ [

∑
a ∇θ log π(ua|τa)Aa(s,u)],

where Aa(s,u) = Qπ(s,u) − ∑
ua πθ(ua|τa)Qa

π(s, (u−a, ua)) is the counterfac-
tual advantage for agent a. COMA provides agents with tailored gradients to
achieve credit assignment, but it becomes ineffective with complex cooperation
behaviors.

2.4 Value Decomposition Actor-Critic

Value Decomposition Actor-Critic (VDAC) [11] is an actor-critic, on-policy
framework that uses the paradigm of CTDE. VDAC has local critics for each
agent to estimate the local state values V a and a central critic to estimate the
global state value Vtot. Inspired by difference rewards [17], VDAC decomposes
the global state value Vtot(s) into local states V a(oa) through the following con-
straint:

∂Vtot

∂V a
≥ 0, ∀a ∈ {1, ..., n} . (1)

With Eq. 1 enforced, given that the other agents stay at the same local states
by taking u−a, any action ua that leads agent a to a local state oa with a
higher value will also improve the global state value Vtot. In [11], they also
prove the convergence of VDAC frameworks to a locally optimal policy. Two
variants of value-decomposition that satisfy Eq. 1, VDAC-sum and VDAC-mix,
are proposed in [11]. In VDAC-sum, Vtot(s) is represented by a summation of
local state values V a, Vtot(s) =

∑
a V a(oa). This linear representation satis-

fies the constraint. θ denotes the actors’ parameters and θv denotes the dis-
tributed critics’ parameters. The distributed critic is optimized by minibatch
gradient descent to minimize the following loss Lt(θv) = (yt − ∑

a Vθv
(oa

t ))2,
where yt =

∑k−t−1
i=t γiri + γk−tVtot(sk) is bootstrapped from the last state sk,

and k is upper-bounded by T . To generalize the representation to a larger
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family of monotonic functions, VDAC-mix uses a feed-forward neural network
that takes input as local state values V a(oa),∀a ∈ {1, ..., n}, and outputs the
global state value Vtot. To enforce Eq. 1, the weights (not including bias) of
the mixing network, which are produced by separate hypernetworks [3] that
take s as an input, are restricted to be non-negative. The distributed crit-
ics are optimized by minibatch gradient descent to minimize the following
loss Lt(θv) = (yt − Vtot(st))2 = (yt − fmix(Vθv

(o1t ), ..., Vθv
(on

t )))2, where fmix

denotes the mixing network. The central critic is optimized by minimizing the
same loss Lt(θc) = (yt − Vtot(st)), where θc denotes parameters in the hyper-
networks. The policy network is trained using the following policy gradient
g = Eπ [

∑
a ∇θ log πa(ua|τa)A(s,u)], where A(s,u) = rt + γV (s′) − V (s) is

a simple TD advantage.

3 Method

In this section, we propose a new V-value decomposition approach called V-
value Attention Actor-Critic (VAAC). First, we perform the theoretical analysis
of global and local V-values and derive a general decomposition formula. Then,
we describe the architecture of VAAC that uses a multi-head attention formation
to implement the decomposition formula.

3.1 Theoretical Analysis

Considering a stochastic policy π, the relationship between V π(s) and Qπ(s, u)
is V π(s) =

∑
u π(a|s)Qπ(s, u). Thus, Vtot and V a can be formulated as:

Vtot(s) =
∑

u

π(u|s)Qtot(s,u), V a(oa) =
∑

ua

πa(ua|τa)Qa(oa, ua), (2)

where π denotes the joint policy and πa denotes the individual policy of agent
a. In [18], they theoretically derive a general decomposition formula of Qtot by
local state-action values Qa:

Qtot(s,u) ≈ c(s) +
∑

a,h

λa,h(s)Qa(oa, ua), (3)

where u = (u1, ..., un) and λa,h is a linear functional of all partial derivatives
∂hQtot

∂Qa1 ...∂Qah
of order h, decaying super exponentially fast in h. Equation 3 appears

to be a linear relationship between Qtot and Qa, yet contains the non-linear
information due to the coefficient λa,h that is a function of all partial derivatives
of order h, and corresponds to all cross-terms Qa1 ...Qah of order h. Therefore,
we could decompose Vtot to V a as shown in the following Theorem 1.

Theorem 1. Assuming that the joint policy π can be formulated as a product
of independent actors: π(u|s) = Πaπa(ua|τa), then

Vtot(s) ≈ c(s) +
∑

a,h

λa,h(s)V a(oa) (4)
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where c and λa,h depend on the global state s, λa,h is a linear functional of
all partial derivatives ∂hQtot

∂Qa1 ...∂Qah
of order h, decaying super exponentially fast

in h.

Proof. Since π(u|s) = Πaπa(ua|τa), we have π(u|s) = π(u−a|τ−a)πa(ua|τa),
where π(u−a|τ−a) denotes a product of independent actors other than a given
agent a, according to Eqs. 2 and 3 we have:

Vtot(s) ≈
∑

u

π(u|s)
(
c(s) +

∑

a,h

λa,h(s)Qa(oa, ua)
)

= c(s)
∑

u

π(u|s) +
∑

u

π(u|s)
∑

a,h

λa,h(s)Qa(oa, ua)

= c(s) +
∑

a,h

λa,h(s)
( ∑

u−a

π(u−a|τ−a)
∑

ua

πa(ua|τa)Qa(oa, ua)
)

= c(s) +
∑

a,h

λa,h(s)
( ∑

u−a

πa(u−a|τ−a)V a(oa)
)

= c(s) +
∑

a,h

λa,h(s)
(
V a(oa)

∑

u−a

πa(u−a|τ−a)
)

= c(s) +
∑

a,h

λa,h(s)V a(oa)

(5)

3.2 Implementation

Following the above decomposition formula in Eq. 4, we propose VAAC based
on the attention mechanism [14]. Figure 1 illustrates the overall architecture of
VAAC. For each agent a, there is one agent network, which receives its action-
observation history τa (last hidden states ha

t−1 and current local observation oi
t)

and outputs both πa(oa) and V a(oa) by sharing non-output layers between dis-
tributed critics and actors. The key to the mixing process is how to approximate
different weights λa,h corresponding to agent a and order h in Eq. 4. Thus, fol-
lowing the practice in Qatten [18], we feed local state values V a and additional
global state information (including the global state s and the agent’s individual
features μa) into the mixing network using a multi-head attention formation to
model the individual impacts.

In Eq. 4, let the outer sum over h:

Vtot(s) ≈ c(s) +
H∑

h=1

N∑

a=1

λa,h(s)V a(oa). (6)

First, for each h, the inner weighted sum operation can be implemented by the
differentiable key-value memory model [19], we compute the weights λa,h as:

λa,h ∝ softmax
(eT

a es√
d

)
, (7)
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Fig. 1. The overall architecture of VAAC.

where es and ea are obtained by a two-layer embedding transformation for s and
μa, d is the embedding dim. Note that individual features μa are the part of the
global state s related to agent a, hence λa,h still only depends on s when we
compute in Eq. 7. Then we compute the weighted sum of the local values V a as
V h =

∑
λa,hV a(oa), where V h denotes the output of a single attention. Next,

for the outer sum over h, we adopt multiple attention heads to correspond to
different orders of partial derivatives. Since λa,h decays super exponentially fast
in h, we stop at H for the feasibility of implementation, where H denotes the
number of attention heads. Adding up the outputs of different heads and c(s)
which is produced by a two-layer network with the global state s as the input,
we have

Vtot(s) ≈ c(s) +
H∑

h=1

V h. (8)

Naturally, VAAC satisfies the constraint of VDAC in Eq. 1. The distributed
critics and the value mixing network are optimized by minibatch gradient descent
to minimize the following loss Lt(θ) = (yt − Vtot(st))2. The policy network is
trained using the following policy gradient g = Eπ [

∑
a ∇θ log πa(ua|τa)A(s,u)],

where A(s,u) = rt + γVtot(st+1) − Vtot(st) is a simple TD advantage.

4 Experiments

We evaluate VAAC against previous state-of-the-art multi-agent on-policy actor-
critic methods such as VDAC-sum [12], VDAC-mix [12], COMA [2] and IAC [2],
and multi-agent Q-learning method QMIX under A2C training paradigm
(QMIX-A2C) [12] on the StarCraft Multi-Agent Challenge (SMAC) environ-
ment [9], in which each agent controls an individual allied army unit to beat
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the enemy. SMAC consists of various maps which have been classified as easy,
hard, and super hard. We consider the following maps in our experiments: four
easy maps (2s vs 1sc, 2s3z, 3s5z, and 1c3s5z), three hard maps (2c vs 64zg,
bane vs bane and 3s vs 5z) and one super hard map (MMM2). Note that all
algorithms are trained under the A2C training paradigm where 8 episodes are
rolled out independently during the training. Our method uses RMSprop with
learning rate 0.0025, γ is set to 0.99 and λ is set to 0.8. For baseline algo-
rithms, we use the same training setup as provided by their authors. The agent
networks resemble a DRQN with a recurrent layer comprised of a GRU with
a 64-dimensional hidden state, with a fully-connected layer before and after.
The agent networks contain an additional layer to output local state values and
the policy network outputs a stochastic policy. c(s) is produced by a two-layer
network with a 32-dimensional hidden state. We use ReLU for all activation
functions. For the attention part, query (global state s) and key (agent’s indi-
vidual features μa) are obtained by two-layer embedding transformations, where
hidden state dim is 64 and embedding dim is 32, and the number of heads H is 4.

Fig. 2. Median win percentage on eight different SMAC maps
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4.1 Main Results

We compare VAAC with other baselines on all maps mentioned above. The
main evaluation metric is the median win percentage of evaluation episodes as a
function of environment steps observed over the 2 million training steps [9]. The
training is paused after every 10000 timesteps during which 32 test episodes are
run with agents performing action selection greedily in a decentralized fashion.
The median performance as well as the 25-75% percentiles are obtained by 5
independent training runs with different seeds. Figure 2 presents results.

In all scenarios, VAAC outperforms other baselines under A2C. On the easy
and hard maps, VAAC can master these tasks and achieve competitive perfor-
mance. Even on the super hard map, VAAC’s win percentage can reach approx-
imately 40%. VDAC-mix has good performance on easy maps but performs not
well on hard and super hard maps due to the difficulty and complexity.

4.2 Ablations

We perform ablation experiments to investigate the influence and necessity of the
multi-head attention formation. In our implementation, we use multiple atten-
tion heads to approximate different orders of partial derivatives in Eq. 4. Because
λa,h decays super exponentially fast in h, we stop at H = 4 which denotes the
number of attention heads. We compare against VAAC without the multi-head
attention formation by setting H = 1. We refer to this method as VAAC-H1.
We test on the 3s5z (easy), 3s vs 5z (hard), and MMM2 (super hard) maps.
Figure 3 shows that VAAC outperforms VAAC-H1. It reveals that the multi-
head attention formation could capture sophisticated relations between Vtot and
V a to improve performance.

Fig. 3. Ablations of VAAC on three SMAC maps

4.3 Weights Analysis

We analyze the attention weights λa,h to show how our method models the
individual impact of agents, which provides interpretability for our method’s
decomposition process. In our implementation, the attention weights λa,h are
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produced by the global state s, agent’s individual features μa, and correspond-
ing to different orders using multiple heads. We choose the 1c3s5z map as the
representative for experiments since it contains three different types of units
(including 1 Colossi, 3 Stalkers, and 5 Zealots).

First, we calculate the mean of λa,h for different agents and heads. For clarity,
we consider the difference between the mean of λa,h and the average weight
(Specifically, on the 1c3s5z map with nine agents, the average weight is 1

9 ).
Figure 4 presents the results. For each agent, the weights λa,h of different heads
are not the same, but in general, the higher value unit types of agents have higher
weights. As shown in Fig. 4, Colossi’s weights are much higher than others, the
weights of Stalkers are roughly around the average weight and Zealots have the
lowest weights. It demonstrates that our method could assign higher weights to
more powerful and impactful agents.

Fig. 4. The difference between the mean of λa,h and the average weight (1/9 on this
map) for different agents and heads on 1c3s5z map

Next, since the attention weights λa,h are adaptive to the global state, we
calculate the matrix of correlation coefficients for λa,h during the training from
the perspective of agents and attention heads respectively. Figure 5(a) shows
the matrix of correlation coefficients from the perspective of Head-0. We find
a strong positive correlation between the weights of agents of the same type,
such as Stalkers (Agent 1, 2, and 3) or Zealots (Agent 4-8). Agents of the same
type tend to perform the same function as a group. Interestingly, we notice
that the weights of Stalkers and Zealots are strongly negatively correlated. For
the 1c3s5z map, Stalkers and Zealots should maintain the formation to protect
the Colossi that can deal a lot of damage to the enemy. Due to cooldown or
other features, Stalkers and Zealots take turns taking a more important role
in the team, reflected in the ebb and flow of their weights according to the
team’s needs. Figure 5(b) shows the matrix of correlation coefficients from the
perspective of Agent 0. Generally, for a given agent, there is a certain degree
of positive correlation between the weights λa,h of different heads. According
to Fig. 4 and 5(b), different attention heads may capture different features in
sub-spaces to approximate the weights of different orders.
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Fig. 5. The matrix of correlation coefficients for λa,h on 1c3s5z map

5 Conclusion

In this paper, we propose V-value Attention Actor-Critic (VAAC) for cooperative
MARL. First, we derive a decomposition formulation of the global state value
Vtot in terms of local state values V a. To implement the decomposition formula,
we adopt the multi-head attention formation in the mixing network, which can
explicitly model the impact of individuals on the whole system for interpretabil-
ity of decomposition. Experiments on the StarCraft II micromanagement task
demonstrate that our method VAAC not only reaches better performance, but
also provides interpretability for its decomposition process. In future work, we
aim to further research on V-value decomposition methods.
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