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Abstract
Word embedding aims to represent each word with a dense vector which reveals the semantic similarity between words. 
Existing methods such as word2vec derive such representations by factorizing the word–context matrix into two parts, i.e., 
word vectors and context vectors. However, only one part is used to represent the word, which may damage the semantic 
similarity between words. To address this problem, this paper proposes a novel word embedding method based on point-wise 
mutual information criterion (PMIVec). Our method explicitly learns the context vector as the final word representation for 
each word, while discarding the word vector. To avoid the damage of semantic similarity between words, we normalize the 
word vector during the training process. Moreover, this paper uses point-wise mutual information to measure the semantic 
similarity between words, which is more consistent with human intuition on semantic similarity. Experiments on public data 
sets show that our PMIVec model can consistently outperform state-of-the-art models.

Keywords  Natural language processing · Word embedding · Point-wise mutual information

1  Introduction

Word embedding is a widespread technique in boosting the 
performance of modern NLP systems by learning a vector 
for each word as its semantic feature. The general idea of 
word embedding is to assign each word with a dense vec-
tor. In a qualified word embedding model, the vector simi-
larity tends to reflect the word semantic similarity. These 
vectors will be either directly used as feature representa-
tions or further fine-tuned with training data from down-
stream supervised tasks [21, 23]. Although contextualized 

word embedding models like Bert [4] and ELMo [20] have 
achieved great success, pre-trained word embedding models 
like fastText [1] remain to be vital in the scenario when the 
text are too short to be fed into Bert. For example, the state-
of-the-art TextVQA models such as M4C [10] use fastText 
to generate embedding for the OCR tokens in images.

Previous studies such as word2vec [16] mainly focus on 
how to generate word embedding as a by-product of training 
a language model. Later, Levy derived that the skip-gram 
with negative-sampling (SGNS) training method in word-
2vec is equivalent to implicitly factorizing a word–context 
co-occurrence matrix into “word” vectors and “context” 
vectors [12]. The cells in this word–context co-occurrence 
matrix are point-wise mutual information (PMI) between 
words and contexts. The PMI value and its variants have 
been considered as the best metric to evaluate the seman-
tic similarity between words [11, 22] for a long time. As 
reported in Levy’s paper, the exact factorization with SVD 
can achieve solutions that are at least as good as SGNS’s 
solutions for word similarity tasks. After word2vec, several 
variants have been proposed in recent years [17, 18].

However, this paper argues that factorizing the word–con-
text matrix into two different parts will create a gap between 
training and evaluation stage. During training, both the 
SGNS model and its variants use the inner product between 
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“word” and “context” vectors to approximate the seman-
tic similarity between words, while in the evaluation stage, 
people use only “word” vectors and discard the “context” 
vectors or vice versa. Such gap make the vector similar-
ity between “word” (“context”) vectors lack a clear and 
unambiguous definition, and damages the semantic similar-
ity between words. For example, when the inner product 
between the “word” vector of “happy” and the “context” 
vector of “birthday” approximates the PMI value of “happy 
birthday”, there is no reason to believe that the “word-word” 
inner product between “happy” and “birthday” also approxi-
mates the PMI value between them.

To close the above-mentioned gap and quantitatively 
define the information captured by vector similarity between 
words, this paper proposes a point-wise mutual information 
(PMI)-guided word embedding model. We proposed three 
improvements. First, we normalize the “word” vectors and 
scale up the “context” vectors in the training stage. This 
will force the PMI value to be encoded by the “context” 
vectors mainly. Next, we initialize all “word” and “context” 
vectors in the way that the angle between any pair of them 
is no bigger than 30◦ . Finally, we introduce a new objective 
function. This new objective function explicitly model the 
word pair’s joint probability conditioned on different context 
in addition to the conventional uni-gram language models. 
In this way, our model can capture the word co-occurrence 
statistics better than current SG models. This paper shows 
that the resulting vector similarity between “context” vectors 
approximates the PMI value between words. Therefore, the 
vector similarity can better reveal the semantic relationship 
between words as expected.

In summary, the contributions of this paper are as follows:

–	 A new criterion called point-wise mutual information 
(PMI) is introduced to describe the human intuition on 
semantic similarity, which makes it possible to test if the 
word vectors’ similarity can reflect the semantic simi-
larity. To our best knowledge, this is the first attempt to 
explicitly define a quantitative criterion to measure the 
quality of a word embedding model.

–	 Guided by the PMI criterion, this paper develops a novel 
word embedding model called PMIVec model, which can 
significantly improve the performance of word embed-
ding and better reveal the semantic relationship between 
words as expect. Moreover, experiments on public popu-
lar data sets also show that our model can outperform 
state-of-the-art models consistently across both word 
similarity tasks and sentence embedding tasks.

2 � Related work

Mikolov introduces continuous bag of words (CBOW) and 
skip-gram algorithm to build a language model. In the 
skip-gram algorithm, they intend to estimate the probabil-
ity of a context word appearing around the given center 
word. This is a conditional probability, and therefore, is 
asymmetric, i.e., p(wi|wj) ≠ p(wj|wi) , where wi,wj denote 
different words. To estimate the two different conditional 
probability separately, each word has two vector repre-
sentations. One is the “context” vector �i , and the other 
is “word” vector �i . At last, the skip-gram model proposes 
p(wi�wk) ∝ ⟨�i, �k⟩ and p(wk�wi) ∝ ⟨�k, �i⟩.

The GloVe model learns the word vectors by aggregat-
ing global word–word co-occurrence matrix from a corpus 
[19]. Specifically, in the training stage, Glove forces the 
inner product 

⟨
�i, �j

⟩
 to fit wi and wj ’s co-occurrence count 

Cij . However, Glove will only use 
⟨
�i,�j

⟩
 in the down-

stream tasks and throw 
⟨
�i, �j

⟩
 away or vice versa. The 

co-occurrence count information Cij is not explicitly used 
in the downstream tasks because 

⟨
�i, �j

⟩
 is never used. 

PMIVec explicitly avoids this problem by forcing 
⟨
�i,�j

⟩
 

to capture the PMI, which is determined by the global 
word–word co-occurrence matrix, between wi and wj.

The FastText model is proposed to enrich word vectors 
with subword information, that is, it represents each word 
with a bag of character n-grams, and the SG model will 
learn vector representation not only for the whole word but 
also for each character n-gram [1]. Therefore, this model 
can compute word vectors for out-of-vocabulary (OOV) 
words by summing their character n-grams’ representation. 
The FastText model inherits most of the SG’s problems.

Xing points out that there is an inconsistency among 
the SG model’s objective function used to learn the word 
vectors (maximum likelihood based on inner product) and 
the distance measurement for word vectors (cosine dis-
tance). Therefore, they developed a normalization model 
[24]. By normalizing each word vector during training, 
the inner product will be equivalent to the cosine distance. 
However, we argue that this model use only one vector to 
represent each word, and therefore, it cannot estimate the 
asymmetrical conditional probability well fundamentally.

In recent years, the contextualized word representa-
tion learning [20] and the pre-trained [4] language mod-
els achieve the state-of-the-art results in multiple NLP 
tasks. In these models, one word will have different vec-
tor representations based on its context, and therefore, 
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can handle the polysemy better than the word embedding 
models. However, the contextualized models cannot per-
form well for context-free tasks. For example, BERT’s 
score in WordSim353 task is 0.477 while skip-gram’s 
score is 0.711 according to [15]. What is more, we argue 
that our work can shade light on these models. To be spe-
cific, BERT will estimate a masked language model during 
training time, and any language model will rely on a soft-
max layer to make prediction. The weight for each word 
in this softmax layer corresponds to the “context” vector 
in our model. Therefore, with further analysis, one can 
extend our model’s conclusion to these models and explore 
the relationship between the softmax layer’s weights and 
the contextualized word representations. This topic goes 
beyond this paper’s scope.

3 � Our model

We will introduce the PMI’s definition and why it is impor-
tant in the first subsection. Then, we will review the skip-
gram model briefly to reveal why its energy function is prob-
lematic in the second subsection. In the third subsection, we 
will introduce our model and show why our model can solve 
this problem. At last, we will describe the algorithm of our 
model in the fourth subsection.

3.1 � Point‑wise mutual information

PMI is an estimation of how much one word wi tells about 
the other word wk [3]. People developed the notion of word 
window to help define when two words “co-occur”, i.e., wi 
and wk co-occur, only when they appear in the same word 
window [16]. Let L denote the word window’s width. By 
moving the word window across the whole corpus, we 
can construct a co-occurrence matrix [Cki]V∗V , where V is 
the vocabulary’s length. Each entry Cki represents that the 
word wi appears in wk ’s word window Cki times totally in 
the whole corpus. Based on these counts, one can calculate 
how many times the word wk appears in the corpus totally. 
Let Ck denote this quantity, then

What is more, let T denote the total number of tokens in this 
corpus, then one can also calculate p(wk) and p(wi|wk) by

At last, the PMI’s definition is

Ck = 1∕L

V∑

i=1

Cki.

(1)p(wk) =
Ck

T
; p(wi|wk) =

Cki

LCk

.

The PMI evaluated from co-occurrence counts has a strong 
linear relationship with human semantic similarity judg-
ments from survey data [8]. Therefore, it is reasonable to 
associate word embedding with the PMI.

3.2 � Skip‑gram model revisit

There is a sequence of training words wv1
,… ,wvT

 , in which 
each word wvk

 is chosen from a fixed vocabulary. The vocab-
ulary’s size is V. The original objective of SG model is to 
maximize the average log likelihood

For the sake of simplification, let wi denote wvi
 . Then, 

p(wi|wk) is modeled by the Gibbs distribution with ⟨�i, �k⟩ 
as its energy function

where �i is the “context” vector of word wi , and �k is the 
“word” vector of word wk . The conditional probability 
p(wi|wk) describes what are the chances that word wi appears 
around word wk , and is called uni-gram language model.

However, optimizing function (3) is impractical because 
the denominator of Eq. (4), a summation over V terms (usu-
ally 105–107 terms), is difficult to calculate and optimize [16]. 
To solve this problem, SG model develops the famous nega-
tive-sampling technique by simplifying the noise contrastive 
estimation (NCE) method [7]. The following theorem shows 
that based on the energy function used in (4), the negative-
sampling method will lead to a problematic solution.

Theorem 1  Assuming that, for any conditional probabil-
ity matrix 

[
p(wi|wk)

]
V×V

 , there exist {�i ∈ R
d}i=1,…,V and 

{�k ∈ R
d}k=1,…,V , such that ∀i, k , Eq. (4) holds. Then, the 

optimal solution to SG model’s negative-sampling loss will 
have the following property, that is

where the constant K is the number of negative samples per 
positive sample.

The detailed definition of negative-sampling loss, and 
Theorem 1’s proof can be found in the appendices. Although 
Levy derived Eq. (5) in [12] as well, they need to assume 

(2)PMI(wi,wk) = log

(
p(wi|wk)

p(wi)

)
.

(3)
1

T

T∑

k=1

k+L∕2∑

i=k−L∕2

log
(
p
(
wvi

|wvk

))
, i ≠ k.

(4)p(wi�wk) =
exp(⟨�i, �k⟩)

∑V

j=1
exp(

�
�j, �k

�
)
,

(5)⟨�i, �k⟩ = PMI
�
wi,wk

�
− logK,
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that both �i, �k have infinite dimension, which is obviously 
unrealistic. Theorem 1 does not require such an assumption.

Although the inner product between wi ’s context vector 
and wk ’s word vector is meaningful, what people really use 
in practice is ⟨�i,�k⟩ or ⟨�i, �k⟩ . We argue that this gap will 
limit the performance of word embedding.

3.3 � PMIVec model

We propose to use the inner product between the “context” 
vectors of two words to approximate the PMI value between 
them. For any pair of words wi and wj , their “context” vec-
tor representations, �i and �j , should satisfy the following 
equation:

Noticing that both sides of the Eq. (6) are symmetrical about 
wi,wj , this resolves the dilemma described in the Introduc-
tion section. What is more, Eq. (6) also quantitatively defines 
what statistical information between a pair of words has been 
captured by their vector representations. To achieve Eq. (6), 
one key observation is that its left hand side is determined 
by three vectors’ norm, i.e.,

and its right hand side is also determined by three terms, i.e.,

Therefore, if one can design a Gibbs distribution and its 
energy function, such that its optimal solution satisfying 
‖�i‖22 ∝ log(p(wi)) , then Eq. (6) can be achieved.

This paper proposes to use the following Gibbs distribution 
to fit p(wi|wk):

The sketch proof of why (7) works better than (4) is that its 
optimal solutions satisfy the following equation:

where Zk is the denominator in (7), and �ik is the angle 
between �i and �k . Then, the expectation of both sides of 
(8) with respect to p(wk) is

(6)2 ∗
⟨
�i,�j

⟩
= PMI

(
wi,wj

)
= log

(
p(wi,wj)

p(wi)p(wj)

)
.

��� =
‖‖‖�i +�j

‖‖‖
2

2
− ‖‖�i

‖‖
2

2
−
‖‖‖�j

‖‖‖
2

2
,

��� = log
(
p(wi,wj)

)
− log

(
p(wi)

)
− log

(
p(wj)

)
.

(7)p
�
wi�wk

�
=

exp
�
‖�i‖2

�
�i,

�k

‖�k‖2

��

∑V

j=1
exp

�
‖�j‖2

�
�j,

�k

‖�k‖2

�� .

(8)p(wi|wk) ∗ Zk = exp
(
‖‖�i

‖‖
2

2
∗ cos

(
�ik

))
,

(9)
V�

k=1

p
�
wi,wk

�
Zk =

V�

k=1

exp
�
‖�i‖22 cos(�ik)

�
p(wk).

If ∀i, k , �ik ≤ 30◦ , then no matter what is the distribution 
of p(wk) , the RHS of (9) will approximate to exp

�
‖�i‖22

�
 , 

because cos(�ik) ≈ 1 . This assumption can be assured by 
properly initializing and regularizing the angle between �i 
and �k . The LHS of (9) is approximated by p(wi)Ẑ , where 
Ẑ is the mean value of all Zk . One important phenomenon 
about the partition functions, Zk , is that they tend to con-
centrate around the mean value. The rigorous proof can be 
found in the chapter 7 of Ma’s Ph.D. thesis [14]. Finally, the 
log value of (9)’s both sides are

The analysis above briefly shows why the energy function 
‖�i‖2

�
�i,

�k

‖�k‖2

�
 , and the proper initialization are necessary 

for property (6). The analysis about ‖�i +�j‖22 is similar. To 
assure the property (6), one also needs to fit p(wi,wj|wk) 
using the following Gibbs distribution

where �(ij)k is the angle between �i +�j and �k , and Z′
k
 ’s 

definition is

The following theorem shows that, based on the 3 modifica-
tion proposed by this paper, there exist solutions such that 
they have property (6).

Theorem 2  Assuming that, for any conditional probability 
matrix [p(wi|wk)]V×V and [p(wi,wj|wk)](C2

V
+V)×V , there exist 

{�i ∈ R
d}i=1,…,V and {�k ∈ R

d}k=1,…,V , such that

•	 ∀i, j, k , the angles �ik, �jk, �(ij)k ≤ 30◦,
•	 ∀i, j, k , the Eq. (7), and (11) both hold,

then Eq. (6) holds for any pair of words wi,wj.
The detailed proof of theorem 2 can be found in the 

appendices.

3.4 � PMIVec algorithm

To fit p(wi|wk) and p(wi,wj|wk) , PMIVec algorithm adopts 
the NCE method [7] instead of the negative sampling tech-
nique. The resulted loss function consists of two parts.

The first part of loss is to fit p(wi|wk)

(10)log
(
p(wi)

)
+ log(Ẑ) ≈ ‖‖�i

‖‖
2

2
.

(11)p
�
wi,wj�wk

�
=

exp
�
‖�i +�j‖22 cos(�(ij)k)

�

Z�
k

,

(12)Z�
k
=

C2
V
+V∑

(m,n)

exp
(
‖‖�m +�n

‖‖
2

2
cos

(
�(mn)k

))
.
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where s(i;k) = ‖�i‖2
‖�k‖2

⟨�i, �k⟩ − log Zk − logKpn(wi) . The Zk 
is treated as a constant to be optimized, and pn(wi) is an 
arbitrary noise distribution. The first part of loss is denoted 
as L1.

The second part of loss is to fit p(wi,wj|wk)

where

The second part of loss is denoted as L2.

Algorithm 1 PMIVec (K,Ol, Il, l = 1, · · · , |V |)
1: for epoch in epochs do
2: for wk in corpus do
3: Ik ← {Ol}l=1,···,|V |;
4: for wi in Window(wk) do
5: Oi ← {Ol}l=1,···,|V |;
6: Oj ← {Ol}l=1,···,|V |;
7: L1+ = L1(s(i; k));
8: L2+ = L2(s(i, j; k));
9: Gradient update of Oi,Oj .
10: for t in range(K) do
11: wt ∼ pn(wt);
12: Ot ← {Ol}l=1,···,|V |;
13: L1+ = L1(s(t; k));
14: Gradient update of Ot.
15: for m in range(K) do
16: for n in range(K) do
17: wm ∼ pn(wm),wn ∼ pn(wn);
18: Om ← {Ol}l=1,···,|V |;
19: On ← {Ol}l=1,···,|V |;
20: L2+ = L2(s(m,n; k));
21: Gradient update of Om,On.
22: Riemann gradient update of Ik.

As shown in algorithm 1, “ ← ” means we are querying 
a dictionary, “ ∼ ” represents sampling from a distribution. 
The definition of Riemann gradient update in line 22 can 
be found in [15].

Inline 3 of algorithm 1, PMIVec retrieves word wk ’s 
“word” vector �k . PMIVec also does the retrieval operation 
for word wi , wj , wt , wm , wn ’s “context” vectors �∶ respec-
tively inline 5, 6, 12, 18, and 19.

From line 4 to line 9, PMIVec samples the context words 
pair (wi,wj) from wk ’s word window and does the corre-
sponding gradient update. More specifically, PMIVec sam-
ples wi iteratively for L1 firstly, and then it samples another 
context word wj randomly from wk ’s word window.

(13)log �(s(i;k)) +

K∑

t

log �(−s(t;k)),

(14)log �(s(i, j;k)) +

K2∑

m,n

log �(−s(m, n;k)),

s(i, j;k) =
‖�i+�j‖2
‖�k‖2

�
�i +�j, �k

�

− log Z�
k
− logK2pn(wi)pn(wj).

From lines 10 to 14, PMIVec samples K negative samples 
wt from the whole vocabulary for L1 and updates the gradi-
ent. Inline 11 of algorithm 1, wt is sampled from the negative 
distribution pn(wt).

PMIVec also does the negative-sampling operation inline 
17. From lines 15 to 21, PMIVec samples K2 negative sam-
ple pairs (wm,wn) from the whole vocabulary for L2 and 
updates the gradient.

4 � Experiments

In this section, we will validate the effectiveness of our 
word embedding model on context-free tasks, and compare 
with state-of-the-art models, including the SG model, the 
FastText model,1 the GloVe model,2 and the JoSE model.3 
Another SG model’s embedding with extra training epochs 
is also reported for the sake of fairness. We will also include 
BERT’s results reported in JoSE just for comparison. Our 
model is denoted as PMIVec.

For all the models, we set the word window width to be 
10, the negative samples to be 5, the epochs to be 5, and the 
word vector’s dimension to be 100. Since our model would 
update 3 positive examples and 30 negative examples each 
time, we will train an extra SG model’s embedding with 
15 epochs. What is more, the negative samples for this SG 
model are also set to be 30. The other hyper-parameters are 
set to be their default values.

The data set used in our experiments is the MBTA (Mas-
sachusetts Bay Transportation Authority) corpus, which is 
crowed from the web4 and is a subset of the GloWbe cor-
pus.5 The MBTA corpus is well cleaned and contains about 
700 million tokens. The minimum vocabulary count is set to 
be 100, i.e., we discard the words appears less than 100 times 
in the corpus. Note here that, we did not evaluate our model 
on the famous Wiki training corpus6 as some previous work 
[15, 16]. This is because the script provided to transform its 
format from XML to text is problematic. By looking at the 
resulting vocabulary of the Wiki corpus carefully, one can 
find that many non-English characters remains to exist. We 
believe that these characters would introduce a lot of noises 
to the samples of p(wk), p(wi|wk) , and p(wi,wj|wk) , and are 
harmful to the evaluation of word embedding models.

In Sect.  4.1, to directly check whether our model’s 
embedding fits the PMI between words better than the 

1  https://​github.​com/​faceb​ookre​search/​fastT​ext.
2  https://​github.​com/​stanf​ordnlp/​GloVe.
3  https://​github.​com/​yumen​g5/​Spher​ical-​Text-​Embed​ding.
4  https://​mbta.​com.
5  https://​www.​engli​sh-​corpo​ra.​org/​glowbe/.
6  https://​dumps.​wikim​edia.​org/​enwiki/.

https://github.com/facebookresearch/fastText
https://github.com/stanfordnlp/GloVe
https://github.com/yumeng5/Spherical-Text-Embedding
https://mbta.com
https://www.english-corpora.org/glowbe/
https://dumps.wikimedia.org/enwiki/
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original word2vec model, we calculate the Pearson correla-
tion coefficient between the word–word PMI and word–word 
vector similarities. Section 4.2 presents the performance of 
all embedding models in the word similarity tasks. Sec-
tion 4.3 shows the performance of all embedding models in 
the sentence embedding tasks.

4.1 � Quantitative model evaluation

In this subsection, we propose to judge the word similarity 
between words according to the PMI between them, and this 
is a quantity that has a specific definition and can be calcu-
lated for any collection of corpus. We implement a script 
to estimate the PMI between words from the raw corpus 
according to the definition in Eq. (2). Some words are so 
rare, that they may never appear around another word, i.e., 
p(i|k) may be zero. For these cases, we simply ignore these 
word pairs. At last, we can calculate the Pearson correla-
tion coefficient between the vector similarities and the word 
pair’s PMI value.

The results are presented in Fig. 1. We can observe that 
the PMIVec model’s context vectors have the highest Pear-
son value, which means that they have captured the PMI 
information between words better than the rest vectors.

What is more, in the original SG model, the word vec-
tors are more consistent with the PMI values than the con-
text counterparts. However, the situation are opposite in the 
PMIVec model. The context vectors are the more consistent 
one. This is not surprising because we have normalized the 
word vectors so that the context vectors can capture more 
information about the co-occurrence information between 
words. Despite the seemingly contradictory results between 
Table 1 and Fig. 1, we argue that this is because of the 

vocabulary size difference between them. To be specific, the 
maximum vocabulary size in Table 1 is 1000 pairs of words, 
while Fig. 1’s vocabulary size is above 10,000. Therefore, 
with more noise in the vocabulary, the Pearson correlation 
coefficient would decrease dramatically, and appears to be 
contradict to some local results as presented in Table 1. In 
fact, in the sentence embedding tasks, the context vectors 
are better than the word vectors constantly in the PMIVec 
model.

4.2 � Word similarity tasks

To compare the quality of different models’ embedding, 
previous papers tend to exam whether the word vector simi-
larities agree with human’s judgements. For example, the 
test part of MEN data set [2] contains 1000 pairs of words 
together with human-assigned similarity judgments, such 
an example looks like “bird-insect-37.0”, where “37.0” is 
the human-assigned similarity score. Then, the previous 
papers would calculate the vector similarity scores for these 
word pairs. At last, they would calculate the Pearson correla-
tion coefficient between the vector similarity scores and the 
human-assigned similarity scores.

We also validate the performance of different models in 
a serious popular word similarity tasks, including the Word 
Similarity353 data set [6], the MEN data set [2], the Sim-
Lex999 data set [9], the RW data set [13], and the RG65 data 
set [13]. The different data sets are all human annotated but 
with different scales and coverage. Some words in these test-
ing data sets do not appear in our training corpus, and this 
means we cannot calculate the inner product between vectors 
for those words. To provide comparable results, we simply 
remove these words, and calculate the Pearson correlation 
coefficient among the remaining words. What is more, for 
the BERT model, we simply adopt the results reported in 

Fig. 1   Pearson correlation coefficient between the vector similarity 
and the PMI value in large vocabulary

Table 1   Pearson correlation coefficient rank on word similarity evalu-
ation

The bold values mean the best performance

Models MEN WS353 SimLex RW RG65

SG(O) 0.622 0.579 0.286 0.397 0.622
SG(I) 0.734 0.608 0.319 0.382 0.714
SGE(O) 0.653 0.568 0.279 0.390 0.567
SGE(I) 0.741 0.576 0.304 0.369 0.708
GloVe(I) 0.624 0.483 0.282 0.285 0.610
Fast(I) 0.726 0.574 0.286 0.379 0.709
JoSE(I) 0.727 0.681 0.301 0.325 0.645
BERT(I) 0.594 0.477 0.287 − −
PMIVec(O) 0.712 0.649 0.329 0.414 0.678
PMIVec(I) 0.743 0.596 0.342 0.295 0.723
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JoSE. Even though we used different training corpus, and 
our training corpus is smaller than the wiki corpus, these 
results can still validate our points here that the contextual-
ized word representation learning model performs poorly in 
the context-free tasks.

We can observe that for most data sets, our model can 
outperform the SOTA models. For the sake of fairness, we 
have included an extra version of the SG model with more 
epochs and more negative-sampling numbers (see Tables 2 
and 3).

4.3 � Sentence embedding tasks

The purpose of this subsection is to explore whether our 
embedding can boost the performance of the downstream NLP 
tasks better than the other word embedding models. Since our 
embedding shows superiority in the word similarity tasks, it 
is reasonable to believe that we can extend this advantage to 

sentence embedding tasks with simple generating procedural. 
We choose the bag-of-words (bow) model to generate the sen-
tence embedding from the word embedding with simple proce-
dure like averaging the word embedding. More complex sen-
tence embedding generation method goes beyond this paper’s 
scope. Therefore, BERT or Elmo’s results will not be reported 
here. There are two kinds of sentence embedding task. One is 
the sentence relatedness task, and the other one is the sentence 
classification task. For the relatedness tasks, we evaluate how 
the cosine distance between two sentences correlates with a 
human-labeled similarity score. For the classification tasks, 
we use a multi-layer perceptron which feeds on the sentence 
embedding.

The test data sets of relatedness tasks include the STS 
14, 15, 16, and the SICK-Relatedness. Similar to the word 
similarity tasks, there is a premise sentence and a hypothesis 
sentence in these data sets. Take STS 14 for example, one 
such premise sentence is “Liquid ammonia leak kills 15 in 
Shanghai”. The corresponding hypothesis sentence is “Liq-
uid ammonia leak kills at least 15 in Shanghai”. The label 
for this pair of sentence is 4.6. The minimum score is 0, and 
the maximum score is 5.

For the classification tasks, we use the MR, CR, MPQA, 
and SUBJ data sets to test our model’s performance. The 
MR data set is about sentiment classifications over movies’ 
reviews. For example, the sentence, “Too slow for a younger 
crowd, too shallow for an older one.”, has a negative label. 
The rest test data sets are similar, while they are collected 
from different domains.

As we can see, our model can outperform the rest models 
in most of the data sets by a large margin except for the STS 
16 data set. In the sentence embedding tasks, the context 
vector of our model is always better than the word vector 
counterpart except in the MPQA data set. We argue that it 
is because each sample in this data set is rather a phrase than 
a sentence. For example, a positive record would look like 
“liberation and independence”, and the negative one would 
be like “suffering from some intoxication”.

5 � Conclusion

In this paper, we introduce PMI as a new criterion to 
describe the human intuition on semantic similarity, which 
makes it possible to test if the word vectors’ similarity can 
reflect the semantic similarity. Guided by the PMI criterion, 
this paper develops a novel word embedding model called 
PMIVec model. Different from previous work, our model 
explicitly models the word pair’s joint probability condi-
tioned on different context in addition to the conventional 
uni-gram language model. Our model can capture the word 
co-occurrence statistics better than current SG models. 
Besides, the resulting vector similarity between any two 

Table 2   Pearson correlation coefficient rank on sentence similarity 
evaluation

The bold values mean the best performance

Models STS 14 STS 15 STS 16 SICK-R

SG(O) 0.505 0.5451 0.5023 0.6348
SG(I) 0.5248 0.5697 0.5398 0.6352
SGE(O) 0.5218 0.5678 0.5251 0.6214
SGE(I) 0.5299 0.5753 0.5461 0.6387
GloVe(I) 0.4137 0.4744 0.4126 0.6297
Fast(I) 0.5375 0.5848 0.5507 0.6236
JoSE(I) 0.5182 0.5493 0.4854 0.6437
BERT(I) 0.4098 0.4715 0.4606 0.5227
PMIVec(O) 0.5429 0.6016 0.5455 0.6543
PMIVec(O) 0.5363 0.5747 0.5416 0.6366

Table 3   Precision rank on sentence classification evaluation

The bold values mean the best performance

Models MR CR MPQA SUBJ

SG(O) 70.83 72.53 85.6 86.88
SG(I) 71.66 72.9 85.51 87.21
SGE(O) 70.32 69.38 85.07 86.86
SGE(I) 70.46 70.73 85.24 87.59
GloVe(I) 70.55 72.03 84.43 86.57
Fast(I) 70.65 72.66 85.19 87.02
JoSE(I) 72.26 74.17 85.88 88.16
BERT(I) 71.53 73.25 84.66 87.37
PMIVec(O) 73.11 75.02 85.7 88.48
PMIVec(I) 71.77 71.66 86.17 87.6
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words is more consistent with human’s expectation. Experi-
ments show that our model can improve the performance 
of word embedding on the word similarity tasks, sentence 
embedding tasks.

Appendix

Proof of Theorem 1

There are two steps to prove Theorem 1. The first step is to 
formulate the loss function of SG model by applying the 
noise contrastive estimation (NCE) method [7] to equation 
(3) and (4). The second step is to reveal that the simplifica-
tion made by SG’s negative sampling technique will lead to 
property (5).

Step 1

To find the assumed optimal solutions {�i, �k}i,k=1,…,V , and 
yet to avoid directly computing the denominator of Eq. (4), 
which will be denoted as Zk , NCE proposes to treat it as 
a constant number to be estimated, and one can estimate 
{�i, �k, Zk}i,k=1,…,V via solving a supervised learning task.

One can draw Td real samples from p(⋅|wk) , and K ∗ Td 
noise samples from the known noise distribution pn(⋅) , 
where pn(⋅) can be chosen to be any distribution and K is a 
constant like 5. Each sample will have a label y, and y = 1 
stands for real sample; y = 0 stands for noise sample. Then, 
one can mix these samples together and pick one of them, 
asking whether it is a real sample or not.

One can train a logistic regression model, whose param-
eters are {�i, �k, Zk}i,k=1,…,V , to discriminate the real samples 
from the noise samples. For a real sample wi , the logistic 
regression model’s prediction on it being true is

According to NCE’s conclusion, if one treats Zk as an addi-
tional scalar parameter that can be optimized, then the 
following optimization problems (minimizing the cross 
entropy) will have the same solution as to (3)

where ∀k = 1,… ,V ,

and pd represents the true distribution of p(⋅|wk) . One can 
sample wi from pd with word window’s help.

p(y = 1�wi;wk)

= �
�
log(exp

�
⟨�i, �k⟩

�
) − log(Zk) − log(Kpn(wi))

�
.

(15)−�i∼pd
log p(1|wi;wk) − K�t∼pn

log p(0|wt;wk)

p(1�wi;wk) = �
�
⟨�i, �k⟩ − log Zk − logKpn(wi)

�
,

Step 2

The following part will show how the negative-sampling 
technique adopted by the skip-gram model can lead to Eq. 
(5).

The SG model simplifies the calculation of p(1|wi;wk) by 
omitting logZk and logKpn(wi) . This means that the logistic 
model assumes Kpn(wi) = 1 [5], i.e.,

where p̂d(1|wi;wk) represents the true probability of sample 
wi being true, and it can be derived by applying the Bayes-
ian formula to it. It is easy to show that (15) is equivalent to

where � = pd(wi;wk) + Kpn(wj) . Obviously, the above objec-
tive will equal to 0 iff

Noticing that SG chooses p(wk) as the noise distribution, 
and with some simple rearrangement, the Eq. (16) implies

Proof of Theorem 2

There are two steps to prove Theorem 2. The first step is to 
show the following equations hold for the assumed solutions 
{�i, �k}i,k=1,…,V

where Ẑ ’s definition can be found in the Eq. (10), Ẑ′ is the 
mean value of all Ẑ′

k
 , and Ẑ′

k
 is defined in the Eq. (12). 𝛼̄i, 𝛼̄j , 

and 𝛼̄ij are both constant number. The second step is to show 
that

and therefore, (19), (18), and (17) will prove this theorem.

p
�
y = 1�wi;wk

�
= 𝜎(⟨�i, �k⟩) =

exp(⟨�i,�k⟩)
exp(⟨�i,�k⟩)+1

,

p̂d
�
y = 1�wi;wk

�
=

pd(wi�wk)

pd(wi�wk)+Kpn(wi)
.

�

i

𝜌 ∗ KL
�
p̂d
�
y�wi;wk

�
‖p

�
y�wi;wk

��
,

(16)p̂d
(
y|wi;wk

)
= p

(
y|wi;wk

)
, y = 1, 0.

⟨�i, �k⟩ = PMI(wi,wk) − logK.

(17)log
(
p(wi)

)
+ log

(
Ẑ
)
= 𝛼̄i ∗

‖‖�i
‖‖
2

2
,

(18)log
(
p(wj)

)
+ log

(
Ẑ
)
= 𝛼̄j ∗

‖‖‖�j
‖‖‖
2

2
,

(19)log
�
p(wi,wj)

�
+ log

�
Ẑ�
�
= 𝛼̄ij ∗ ‖�i +�j‖22,

Ẑ� ≈ Ẑ2,

𝛼̄i ≈ 𝛼̄j ≈ 𝛼̄ij,
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Step 1

Similar to the analysis in the PMIVec section’s sketch proof, 
the assumed solution {�i, �k}i,k=1,…,V satisfies

Then the �i is the mean value of cos(�ik) , �j is the mean value 
of cos(�jk) , and �ij is the mean value of cos(�(ij)k).

The log value of both sides of these equations leads to 
Eqs. (17), (18), and (19).

Step 2

It is obvious that 𝛼̄i ≈ 𝛼̄j ≈ 𝛼̄ij because of the assumption 
about �ik, �jk , and �(ij)k.

Noticing that each term of Z′
k
 is bigger than each term of 

Z2
k
 , and meanwhile that the total number of Z′

k
 is smaller than 

the total number of Z2
k
 . Therefore, Z�

k
≈ Z2

k
 . This leads to the 

conclusion that Ẑ� ≈ Ẑ2.
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