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Abstract
A high-level of understanding about the surrounding context of an image is indispensable for VQA when faced with difficult 
questions. Previous studies address this issue by modeling object-level visual contents and transforming the internal rela-
tionships into a graph or tree. On one hand, however, this still leaves a gap between the modalities of language and vision. 
On the other hand, the abstract-level contents of the images and the meaning of the relationships between them are ignored. 
This paper proposes introducing a method of question-relationship guided graph attention network (QRGAT) to study a new 
representation of the visual features of an image through the guidance of a question and the explicit, internal relationships 
of objects. Specifically, to narrow the gap between different modalities, visual regions are represented as the combination 
of their attributes and visual features. Meanwhile, semantic relationships are transformed into the modality of language and 
used to form updated visual features. The three graph encoders with diverse relationships are considered to capture high-
level features of images. Experimental results of the VQA 2.0 model show that our proposed QRGAT outperforms other 
interpretable visual context structures.

Keywords  Visual question answer · Graph attention network · Visual relationship detection

1  Introduction

Visual question answering aims at answering a question 
related to the content of a given image. There are two avail-
able state-of-the-art approaches that can aid in performance 
improvement within VQA. One area is using the better 

representation provided by multimodality fusion strategies, 
such as bilinear fusion [35], DFAF [18], MCAN [34], and 
MUTAN [3]. The other is by gaining a better understand-
ing of a given image [24]. Poor comprehension of visual 
regions leads to a strong dependency on language modality 
and enhances the effects of existing textual biases. However, 
these models pull surface information from images. Images 
do not typically contain explicit expressions of meaning and 
inter-relationality [10, 24]. Meanwhile, the process of updat-
ing visual features cannot refer various relationships and 
linguistic meanings of each image. Also, it is necessary to 
make questions participate in the encoding process of visual 
features early. To overcome the problem of an insufficient 
understanding of the visual regions and the deficiency of 
high-level information within images, this paper considers 
extracting attributes, visual features, and relational contents 
of objects to get the fine-grained features of images (Fig. 1). 
To capture an abundance of information from images, two 
kinds of relationships are contained: prior knowledge rela-
tions and implicit relations. Prior knowledge relations are 
divided into semantic relations and spatial relations. These 
relations, as the novel representations of an image, capture 
the location, action, state, and implicit information. Semantic 
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relations are transformed into vectors with the same encod-
ers to narrow the gap between the different modalities. With 
a knowledge graph available for consultation, the graph is 
used to construct the connections among the image regions. 
Because the related and important objects and relationships 
should be paid attention to, a modified graph attention net-
work is considered. Question participates in the interaction 
of relations and visual features in the early step. The high-
level features of relations and visual regions are obtained in 
accordance with their neighbors. Compared with ReGAT, 
this paper uses individual attributes and classes as part of 
the representation of an object. Meanwhile, a better encod-
ing method is applied to the semantic relations which guide 
the updating process of visual features. Questions partici-
pate in the encoding processes with different graph encod-
ers. Also, there are interactions among nodes and relations. 
These methods help the model capture significant relations 
and objects within a specific question while considering the 
properties of objects. However, this method does have some 
challenges. First, the intended purpose of the process only 
requires an interpretable, efficient, and effective method, 
depending on the graph structure, for encoding relational 
information and visual features. To obtain an enormous 
capacity for justification and a deep comprehension of the 
image context, the question-guided updating layer and the 
modified graph attention network layer with edge informa-
tion are designed. In these encoders, the updating of visual 
features and the relational features relies on a specific task 
represented by a question. And the self-attention layer is 
used for getting abstract features to enhance the ability to 
communicate robustness. Second, to narrow the gap between 
different modalities, attributes, relations, and questions are 
encoded by the same encoder. Third, different relations con-
tain diverse information for predicting true answers. This 
paper is only interested in some relationships and pays more 

attention to the specific information formed from different 
relation-graphs. For assigning weight accordingly, an ulti-
mate predictor is designed to make full use of the supporting 
evidence provided by different relation-graphs. In principle, 
the gap between language and vision is reduced. Also, more 
information is considered within this model than other VQA 
systems. It explicitly provides relational information, and 
this information permeates the updating of visual features 
to enhance the understanding of images and to enrich image 
representations. Experiments prove that this method, with 
its use of attributes and graph encoders, can improve the 
performance of the VQA model.

The contributions of this paper are as follows: first, infor-
mation flows through mutual effects of relations and among 
visual features based on graph networks to create abstract 
features. A question-guided layer for a graph-based relations 
encoder and a question-guided layer for a graph-based visual 
features encoder are proposed to focus on more meaningful 
and salient parts of relations and images. Second, to narrow 
the gap between language modality and visual modality, the 
attributes of visual objects are extracted as part of visual fea-
tures, and the meanings of relations between visual objects 
are transformed into explicit features to make the model 
more interpretable and comprehensive. Third, this paper 
synthesizes different evidence provided by various graphs 
to predict a more integrated result answer.

2 � Related work

2.1 � Visual question answering

With the emergence of deep learning, the computer vision 
community and the NLP community have made great con-
tributions to VQA studies. Meanwhile, many studies have 

Fig. 1   In the left figure, there 
are some objects recognized by 
the model. In the right figure, 
there is a part of relationships 
and attributes of the visual 
elements. QRGAT recognizes 
the semantic relation between 
woman and chair, and the 
attribute of the hair (blonde) 
and gives true answers
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been conducted on the challenges of VQA. One approach 
is to focus on better expression of the visual regions [8, 14, 
16, 17, 22, 23, 33, 35]. To acquire richer visual informa-
tion, the work of Noh et al. [16] developed a method for 
learning visual features based on a task-conditional classi-
fier and unsupervised method without question information 
while attempting to transform this information into a VQA 
model. The works of Singh et al. [23] focus on the capabil-
ity to read text within images and an attempt at mixing the 
OCR system and VQA model when answering questions. 
Another method endows the model with the capability to 
address and understand multisource modal information that 
also creates a better representation of a fusion feature [8, 
14]. Peng et al. [18] and Yu et al. [34] think that the central 
goal of VQA is to learn the features of multimodal images 
and fuse them effectively. Their methods aim at dynami-
cally fusing multimodal features between different modali-
ties, which transmit both intra-modality and inter-modality 
information. It captures the high-level interactions between 
different domains. Nevertheless, these models tend to ignore 
the inherent semantic connections in images and the multiple 
steps of reasoning. Some works pay attention to a viewer’s 
capability of reasoning [4, 10, 23, 27, 32]. Graphs and trees 
are used to construct connections among image regions [10, 
24]. Despite existing models’ attempts to enhance the capa-
bility of visual modality, these approaches lack the explicit 
application of semantic information and consideration of 
multisource information, which we address in this paper.

2.2 � Attention mechanism in VQA

Attention mechanisms imitate human cognitive capabili-
ties and try to mix internal experiments and external guided 
information to increase observational awareness in terms of 
regionality [15]. One common VQA [29] and image caption-
ing task are to capture the most relevant regions in images. It 
should be noticed that the self-attention mechanism becomes 
a significant method in VQA for enhancing performance and 
is often applied in hidden states from a bidirectional LSTM 
of machine translation tasks. This results in an enhanced 
understanding of the relations in texts [12, 25]. To solve 
the task on the graph structure, graph attention networks 
emerged [26]. Using the local information of a graph, it 
breaks through the graph’s structural limitations and gives 
a new ability to form generalizations and distinct processes. 
Nevertheless, the edge information in the graph is often 
ignored. For obtaining a better combination of visual fea-
tures and relations information, this paper modifies the graph 
attention network to consider more factors within a specific 
task. Other researchers [11] have introduced a method to 
dynamically determine what media and what time to focus 
on in the sequential data to predict an answer. However, 
they have not explored the high-level information in images.

2.3 � Visual relationship

Visual relationships are represented as tr iples 
( ⟨object1 − predicate − object2⟩ ). Meanwhile, the tasks of 
visual relationship detection are explored to detect objects’ 
positions and the relationships between objects which are 
used to obtain semantic relations and construct a graph 
over images. It is important to note that relationship is a 
combination of the object and the predicate. However, the 
set of possible relationships is larger than the set of pos-
sible objects and the set of predicates. Lu et al. [28] pro-
posed a method that can learn the objects and the predi-
cates separately by a visual appearance module. And the 
information of the objects and the predicates are fused to 
predict relationships in the last step. Meanwhile, a language 
module is used to create a vector space for relationships 
where similar relationships are close to each other. Some 
previous works [5, 6] provide methods to improve image 
segmentation by considering diverse relationships among 
objects, such as position relations. A two-stage pipeline is 
used by some papers to detect visual relationships between 
objects and to predict results for each object pair. Some [37] 
make great efforts toward solving entity-instance confusion, 
in which objects are related to many instances of the same 
class, and proximal-relationship ambiguity, in which sub-
ject–object pairs may have a similar connections. This paper 
also uses this structural analysis to extract the relationships 
of images. Spatial relations and implicit relations are addi-
tional sources of information utilized within this paper to 
predict an answer.

2.4 � Graph network

Graph network plays as the product of blocks with “struc-
tured representation” to complete structured computation 
and to adapt to both Euclidean and non-Euclidean data [37]. 
It is always one of important research tasks of deep learn-
ing, including graph convolutional network, graph attention 
network, graph auto-encoder, graph generative network, 
and graph spatial–temporal network [13]. As for graph con-
volutional network, it can be divided into two categories: 
spectral-based method and spatial-based method. Graph 
attention network is an application of attention mecha-
nism on graphs. Graph auto-encoder is a method of graph 
embedding which maps nodes into lower dimensional fea-
ture space and decodes graph information from that. Graph 
generative network aims to generative new graphs from the 
hidden representations of the given graphs. Time dimen-
sion is introduced into graph spatial–temporal network to 
capture the dynamicity of graphs. Graph network is widely 
used in reasoning. Some [2, 36] make great efforts toward 
combining end-to-end neural networks and inductive rea-
soning. Neural networks are one of the functions needed to 
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complete relation reasoning within graph networks. How-
ever, it includes a good deal of complex neural networks 
of which structures are difficult to decide. It does not take 
into account the factors out of graph network in reasoning 
either. Some [7] propose a probabilistic graph that represents 
underlying semantics. It regarded as Neural State Machine 
to execute reasoning under the guidance of question. Nev-
ertheless, the global structure of the graph is indispensable. 
The meaning of words within relations is not considered. 
Meanwhile, there are no interactions among nodes.

3 � Question‑relationship guided graph 
attention network

Visual question answering (VQA) is a complex task that 
involves the computer vision field and the natural language 
field. Given an image and a question, it requires neural net-
works to infer the correct answer through understanding and 
reasoning over visual regions and texts.

To capture high-level features, information flows through 
a mutual effect based on the graph network. A question joins 
the updating process early on. This section describes the 
approach to implement the question-relationship guided 
graph attention network in Fig. 2. To synthesize multisource 
information, two types of relations are considered to execute 
a specific task. Attributes and classes are extracted as part of 
the representations of the visual regions that help the atten-
tion mechanism capture the most relative visual objects 
of the question. Because of the same way in encoding to 
the questions, attributes, and classes, the attention mecha-
nism becomes more explicable. Prior knowledge relations 

are divided into semantic relations and spatial relations. A 
semantic graph transforms relations into language modal-
ity to narrow the gap between different modalities. Three 
graph encoders learn individually fused features of different 
relations to obtain diverse information for predictions. This 
process is proven to be effective and available for improving 
performance, and reduces the difficulty to directly extract 
high-level and implicit information of a VQA model, which 
contains an image encoder, a language encoder, three graph 
encoders, and an answer predictor. This model takes a set of 
k visual features, the relations between objects, attributes, 
classes, and bounding boxes of objects as inputs. The details 
of these components are laid out below.

3.1 � Visual and language feature extraction

To represent the visual features, this paper takes the method 
of bottom–up and top–down attention model [1]. The visual 
region features are obtained from Faster RCNN [20] model 
(Resnet101 as the backbone). For each image, 36 region pro-
posals and their related bounding boxes are extracted. The 
obtained visual features are denoted as � ∈ ℝ

k×2048 , where 
a visual feature is denoted as �� , and there are k regions in 
total ( � = {��, �� … ��} ). Bounding box � = [x1, y1, x2, y2] 
represents a 4-dimensional spatial coordinate, where (x1, y1) 
denotes the coordinate of the top-left point and (x2, y2) 
denotes the coordinate of the bottom-right point. All bound-
ing boxes are normalized.

A bidirectional RNN with Gated Recurrent Unit (GRU) 
is adopted for GLove word embedding of question-word fea-
tures. A question is denoted as � ∈ ℝ

dq . All questions are 
padded or truncated to the length 14.

Fig. 2   An overview of GRG​CAT​ model. It contains three kinds 
of graph encoder. Visual features, attributes, bounding boxes, and 
classes are extracted from Faster RCNN. Relations are detected for 

updating visual features. Putting them into graph encoder to learn 
question-relation guided visual features, which will be fused with lin-
guistic features and then will be put into answering predictor
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3.2 � Visual relationship and attribute extraction

To obtain semantic relationship features, this paper uses the 
method in [37] to extract relations in images. There are 51 
kinds of relations (e.g., walking in, watching, wearing, and 
sitting on), including a no-relation class retained for enti-
ties pairs. Each ��� denotes the relationship between subject 
i and object j, where i and j both denote the entities detected 
by the architecture. Glove word embedding �� of each rela-
tion word is adopted as the input of the RNN (in this paper, 
GRU is used) to encode relationships, which is the same 
as the question encoder. � ∈ ℝ

k×k×dim denotes the matrix 
of relations, where ��� denotes the relation. This shows that 
visual region i has the relationship ��� with visual region j. 
All relation words also are padded or truncated to the same 
length 2. This paper adopts a bottom–up and top–down 
attention model [1] for getting attributes. Attributes (includ-
ing classes) are obtained from a classifier that takes the 
visual features from Faster RCNN as inputs. Because each 
object may have more than one attribute, and each attribute 
may have more than one word, an RNN is considered. The 
treatment of attributes (including classes) is the same as the 
semantic relationships.

3.3 � Graph construction

Each object �′

�
 is regarded as a vertex. A visual feature �� 

and a attribute feature �� are concatenated as a new vertex 
feature �′

�
.

3.3.1 � Implicit graph

���� = {�
�

,�} is a complete graph of all visual regions. 
Each vertex has an undirected edge with any other vertex. 
The edge represents the relation between two objects that 
cannot be explicitly expressed. This graph demonstrates an 
abstract feature for every vertex through graph convolution 
as shown in the following section and is regarded as a sup-
plement for other relationship graphs.

3.3.2 � Semantic graph

���� = {�
�

,�} is constructed referring to relationships R 
extracted from VQA v2 dataset by [37] which is pretrained 
on a visual relationship dataset (Visual Genome). If a rela-
tion between two objects is attainable, according to � , 
there will be a corresponding edge between them. Differ-
ent from previous works, for each pair of objects i and j, if 
⟨i − r − j⟩ (e.g., girl eating cake, man sitting on the chair) is 
a valid relation, an explicit feature of relation encoded by 
the aforementioned way is given for this edge, which will 
then take effect with the updating of �′

�
 . It should be noticed 

that object i has a relation � with object j, but object j does 

not necessarily have a relation with object i. It also indicates 
that the graph is directed. It proves that the relation features 
would help to increase the understanding of images. Exam-
ples of semantic relations are shown in Fig. 3

3.3.3 � Spatial graph

���� = {�
�

,�} , the method of construction is the same as 
the semantic graph. The spatial relation ⟨i − r − j⟩ denotes 
the position connections between objects. The key to con-
structing a spatial graph is building a position matrix of all 
detected objects. 11 different classes for different layouts like 
the way proposed by [31] are defined. A no-relation class is 
set in the situations where the objects are too far away from 
each other during classification. Of course, spatial relation 
⟨i − r − j⟩ and spatial relation ⟨j − r − i⟩ are not identical, 
but the two relations must be simultaneously valid. Both 
in semantic graph relations and spatial graph relations, it is 
interchangeable for subjects and objects, illustrating that the 
edges of the graph are not symmetric.

3.4 � Graph encoder

For the sake of utilizing the visual contents, three kinds 
of relations are considered for capturing the locations, the 
actions, and the states. The semantic graph encoder is used 
for extracting semantic relations, such as the states and the 
actions of instances. The spatial graph encoder is used for 
extracting the position relations between objects in the lay-
out of the image. The implicit graph encoder is a supplement 
with implicit relations.

For each graph as follows, each visual feature is trans-
formed into a new feature by the linear operation. Every ver-
tex is denoted as a new feature by concatenating the visual 
feature with the corresponding attribute, and represented as:

Fig. 3   There are the examples of the semantic relations detected by 
the model. There are two relations: man wearing skirt and racket of 
man
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where �� is the ith node in � ∈ ℝ
k×dim which denotes visual 

features. �� ∈ ℝ
dim is the ith node in � ∈ ℝ

k×dim which rep-
resents attribute features.

3.4.1 � Notation

This paper denotes scalars, vectors, and tensors using lower 
case, bold lower case, and bold upper case letters. The 
details are shown in Table 1.

3.4.2 � Semantic graph encoder

Figure  2 gives a detailed illustration of semantic graph 
encoder. The semantic graph encoder learns to capture the 
important and relative relation between each pair of visual 
regions by the guidance of the question. This paper proposes 
four layers to encode the semantic graph: a relation self-atten-
tion layer, a question-guided relation attention layer, a vision 
self-attention layer, and a question-guided graph attention 
layer. It makes a deep excavation of the information of rela-
tions and transforms this information into visual features. The 
information on relations and questions would guide the model 
learn weights of importance and aggregate features to update 
each visual feature. The relation self-attention layer learns to 
capture the influence between different connections. In terms 

(1)�
�

�
= [��||��] for i = 1,… , k, of a relationship ��� , this paper considers all relations including 

subject �′

�
 (considering the edges which come out from subject 

�� ) and explores their effect on this relationship ��� . Each rela-
tion feature is transformed into query, key, and value feature 
as follows [21, 30]:

where ����
�

,����
�

∈ ℝ
dim×drare projection matrices. Self-

attention is then performed on the relations. �ij

im
 is computed 

by scaled dot product. This way is adopted in the following 
sections. The equation will be omitted in the following con-
tent. This paper uses this information flows to update rela-
tion features as ��

��
 . Specifically, �ij

im
 represents the similarity 

between relation features and Ni are the neighbors of node i. 
m represents the subscript of the neighborhood of i. For the 
question-guided relation attention layer, it learns to capture 
the most relative and salient relations to extract new features. 
Given a question � and relation features as inputs, ��

��
 is a new 

relation feature:

where � ′

ij
 represents the correlation between the relation fea-

ture ��
��
 and the question � . The vision self-attention layer 

calculates the association weights between every pair of 
visual features and is endowed with the ability to extract 
abstract information. The process is similar to the relation 
self-attention layer, so this paper only provides equations of 
vision self-attention layer:

(2)�
ij

im
= (����

�
���)

T
����

�
���,

(3)�
ij

im
=

�
ij

im√
dr

,

(4)(�
ij

im
)
�

=
exp(�

ij

im
)

∑
n∈Ni

exp(�
ij

in
)
,

(5)��
��
=

∑

m∈Ni

(�
ij

im
)
�

����
�

���,

(6)�ij = (����
�

�)
T
����

�
��
��
,

(7)𝛽
�

ij
=

exp(𝛽ij)∑
0<m,n<k exp(𝛽mn)

,

(8)�
�

��
= �

�

ij
����

�
��
��
,

(9)�ij = (����
�

�
�

�
)
T
����

�
�

�

�
,

Table 1   The descriptions of notations

Name Description

� A tensor as a projection matrix
� A tensor as a projection matrix
� A tensor as a projection matrix
� A tensor as a projection matrix
� A tensor as a projection matrix

�
ij

im
The similarity between the ��� and the ���

�i The correlation between the visual feature �� and the question 
�

�v
ij

The similarity between the �� and the ��
�ij A scalar of weights
�ij A scalar of weights
�ij A scalar of weights
�ij A scalar of weights
k The number of visual regions
��� The relationship between the region i and the region j
�� The visual region i
� The question
� The fused feature
�� The query
�� The key
�� The value
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This paper argues that relationships and question informa-
tion are complementary to the process of updating of visual 
features, and should be taken into account for the model. For 
example, “Are the bird’s legs touching the water”, the model 
should understand the relation “touching”, and locate rela-
tive regions. Thus, a question-guided graph attention layer 
is proposed. It compromises the visual contents and relation 
contents, and guides the updating of visual features. This 
layer is modified on the conventional attention mechanism:

where ����
�

∈ ℝ
dim×dq , ����

�
∈ ℝ

dim×(dr+dv) are projection 
matrices. The rest equations are similar to the vision self-
attention layer. This paper final encodes visual feature as 
�
�

�
∈ ℝ

dim . In contrast to the conventional graph attention 
network, this approach of encoding visual features consid-
ers the influence of relation and question on visual features, 
which also effectively takes advantage of the relation con-
tents. It learns different weights of importance to nodes 
according to the relevance of a specific question. The outputs 
would then be fed into a multimodal fusion module.

3.4.3 � Spatial graph encoder

This encoder adopts a simpler structure which includes two 
layers: a question-guided graph attention layer and a graph 
attention convolution layer. It encodes visual features which 
guided by a question. The question-guided graph atten-
tion layer only considers question � and visual features as 
inputs. The operation mode of this layer is similar to the 
question-guided relation attention layer of the semantic 
graph encoder:

where �′

i
 represents the correlation between the visual 

feature �� and question � . It is easy to explicate that a big-
ger weight is assigned to the visual feature which is more 
relevant to a specific task. The graph attention convolu-
tion layer would consider the spatial relation information. 

(10)�
�

ij
=

exp(�ij)∑
m∈Ni

exp(�im)
,

(11)��
�
=
∑

j∈Ni

�
�

ij
����

�
�

�

�
,

(12)�ij = (����
�

�)
T
����

�
[��

�
, �

�

��
],

(13)�i = (�����)
T
�����

�

�
,

(14)𝛼
�

i
=

exp(𝛼i)∑
0<j<k exp(𝛼j)

,

(15)�
�

�
= �s

i
�����

�

�
,

Every edge in the spatial graph is encoded by one-hot. Each 
edge is transformed into another vector space. This layer is 
endowed with the sensitive capacity both for different layout 
between subject and object and for capturing the important 
parts of visual features. This paper omits the equation of �ij ; 
specifically:

where �,�,�,�,� are projection matrices, ����
��

 and 
�
���

��
∈ ℝ

dlabel . ����
��

 represents the spatial information of each 
edge. The outputs contain the prior spatial relations informa-
tion between each pair of objects through the spatial graph 
encoder.

3.4.4 � Implicit graph encoder

It is similar to the spatial graph encoder, including two lay-
ers. Comparing with the spatial graph encoder, this paper 
only changes the equation to calculate the weights of differ-
ent visual features like [10]:

where fb computes a 4-dimensional relative geometry fea-
ture, and computes cosine and sine functions of different 
wavelengths. Then, this approach transforms them into a 
new feature �� . And � ∈ ℝ

dh projects the new feature into a 
scalar weight. In all graph encoders, multihead attention is 
adopted to improve the architecture performance. It means 
that there are M independent attention mechanisms simul-
taneously work. Then, the results of every attention mecha-
nism are concatenated.

3.5 � Multimodal fusion and answer prediction layer

After each graph encoder process, the outputs are considered 
to contain information about different graphs and relations 

(16)�
�

ij
=

exp(�ij + ��
���

��
)

∑
m∈Ni

exp(�im + ��
���

��
)
,

(17)��
�
=
∑

j∈Ni

�
�

ij
(��

�

�
+ ��

���

��
),

(18)�v
ij
= (�����

�

�
)
T
�����

�

�
,

(19)�b
ij
= max{0,� ⋅ fb(��, ��)},

(20)�
�

ij
=

�b
ij
exp(�v

ij
)

∑
m∈Ni

�b
im
exp(�v

im
)
,

(21)�� = ||M
m=1

�
(∑

j∈Ni

�ij���
)
,
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between each pair of objects. Then, the multimodal fusion 
approach is applied to fuse various features, including lin-
guistic features and visual features. The same operation is 
executed on every graph. Through the multimodal fusion 
strategy, a fused feature � is learned by a neural network:

where f denotes a fusion approach, and �∗ represents the 
final visual feature after a graph encoder. So far, diverse rela-
tion information from different graphs is obtained. The final 
features of different graphs are fed into a 2-layer multilayer 
perceptron and then are fed into a softmax function. The loss 
function in the model is cross-entropy. To achieve selecting 
different source information, a 2-layer multilayer perceptron 
(MLP) is employed to learn the weights of information from 
different sources obtained by three graphs:

where ��

∈ ℝ
dim represents the result of the whole model. 

� ∈ ℝ
dim denotes the result of a single graph.

4 � Experiment

4.1 � Setting

The proposed VQA model is evaluated on VQA 2.0 and 
VQA-CP v2. VQA 2.0 contains numerous varied real images 
from MSCOCO images. Human-annotated questions and 
answers based on images are provided by VQA 2.0. There 
are three questions provided in an image and ten answers 
provided per question. The ground-truth accuracy of a can-
didate answer is the average of min ( #Humans votes

3
, 1 ) over 

all 10 select 9 sets. Three types of questions are contained in 
VQA 2.0 (yes/no, number, and other). VQA-CP v2 dataset 
is a derivation of the VQA 2.0 dataset. The distributions of 
answers in training and test splits are different.

The hyper-parameters of this paper in the experiments 
are as follows: visual features that are extracted from Faster 
RCNN with the backbone of Resnet101 have 2048 dimen-
sions, while each word of the question, relationship, and 
attribute is embedded by 600 dimensions. The sentence of 
a question is fixed length at 14 by padding or truncating. 
The key, query, and value vectors are transformed into 1024 
dimensions for the implicit graph and the spatial graph (512 
dimensions for the semantic graph on the VQA-CP dataset). 
All graph encoders adopt 4 multihead attention with 256 
(128) dimensions for each head. Three fusion strategies are 
adopted to fuse visual features and linguistic features: bot-
tom–up top–down (BUTD) [1], multimodal tucker fusion 
(MUTAN) [3], and bilinear attention network (BAN) [8]. 
Adam solver [9] with beta1 = 0.9 and beta2 = 0.999 is used 

(22)� = f (�∗, �;�),

(23)�
�

= MLP(����, ����, ����
;�),

to train the model. The base learning rate is set to 0.001. 
This paper takes a gradual warm-up learning rate: 0.5*base 
learning rate, 1.0*base learning rate, 1.5*base learning rate, 
and 2.0*base learning rate at the first 4 epochs. 2.0*base 
learning rate is kept in the next epochs, and the learning 
rate decays by 0.25 every 2 epochs after 16 epochs. Full 
connected layers have a dropout rate of 0.2. The environ-
ment of experiment is Pytorch platform, and the variables 
are initialized to default value.

4.2 � Ablation studies

All ablation studies are conducted on the validation split of 
VQA 2.0. These ablation studies explore the influence of dif-
ferent layers and different modules for three graph encoders. 
The results are shown in Table 2.

4.2.1 � Implicit graph encoder and spatial graph encoder

To investigate the effect on the question-guided graph atten-
tion layer (GGAL) and the graph attention convolution layer 
(GACL) on the implicit graph encoder and the spatial graph 
encoder, comparative experiments are executed with the dif-
ferent layers. The fusion strategy is BUTD [1]. From the 
results, the model with both of two layers outperforms other 
structures on validation. It proves that the GGAL improves 
the performance of the VQA model and means that question 
information is a significant complement for implicit graph 
encoder when there is no additional information. Mean-
while, the positive influence of the modified graph attention 
network is certified. When the GACL is built into the struc-
ture, the performance of the VQA model simultaneously 
improves.

Table 2   Results of ablation studies

Graph Encorder Component Accuracy (%)

Implicit(BUTD) W/o question-guided layer 63.38
Implicit(BUTD) W/ question-guided layer 64.02
Spatial(BUTD) W/o question-guided layer 63.84
Spatial(BUTD) W/ question-guided layer 64.05
Semantic(BUTD) W/o relation self-attention 63.67
Semantic(BUTD) W/o relation-question attention 63.53
Semantic(BUTD) Only w visual self-attention 63.36
Semantic(BUTD) Complete network 63.76
Semantic(ReGAT) MLP as pretrained network 65.59
Semantic(BAN) MLP as pretrained network 65.75
Semantic(BAN) ContrastiveLosses4VRD as 

pretrained network
65.92

Semantic(BAN) W/o attributes 65.26
Semantic(BAN) W/ attributes 65.92
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4.2.2 � Semantic graph encoder

This paper investigates the influence of 4 layers in the 
semantic graph encoder. The default model contains all four 
layers to predict an answer. The first two layers are tried 
to abandon separately in the model. The fusion strategy 
is BUTD [1]. Using all the four layers, performance can 
improve by 0.4%. It notices that when the module of the 
layers about relations is abandoned, the performance of the 
VQA model decreases. There is a reasonable conjecture that 
the semantic graph encoder has captured the information of 
semantic relations in images and then passes such informa-
tion into predictor. The attention mechanism also is proved 
to have an immense effect on semantic graph encoder. With 
the same pretrained network (MLP), the semantic graph 
encoder gets better performance than the ReGAT [10].

4.2.3 � Attributes

This paper compares the results between the approach with 
attributes (including classes) and the approach without 
attributes (including classes). The results are in Table 2. A 
semantic graph encoder with a fusion strategy of BAN [8] is 
adopted. The number of objects is fixed at 36. By adding the 
attribute features, performance improves by 0.66%. There 
is a reasonable conjecture that the introduction of attrib-
utes reduces the gap between visual modality and linguistic 
modality.

4.3 � Baselines

By evaluating the performance of this model, this paper 
compares the results with some baselines. The results are 

in Table 3. Bottom–up top-down (BUTD) [1], multimodal 
tucker fusion (MUTAN) [3], dynamic tree structures 
(VCTREE-HL) [24], bilinear attention networks (BAN) 
[8], relation-aware graph attention (ReGAT) [10], DFAF 
[18], and multimodal relational reasoning (MuRel) [19] 
methods are considered as baselines. They proposed dif-
ferent schemes to address the task of VQA. BUTD [1] 
thinks the salient parts of the image should be paid more 
attention to. DFAF [18], MUTAN [3], and BAN [8] aim 
to find better multimodality fusion approaches. VCTREE-
HL [24] and ReGAT [10] focus on structuring the spatial 
relationship and explicit relationship in images to enhance 
the understanding of pictures. For modeling complex rea-
soning features for high-level tasks, MuRel [19] introduces 
the MuRel cell [19] to reason the interactions between 
question and image regions by a rich vectorial representa-
tion. The results are on the VQA 2.0 validation. Imp/Spa/
Sem means a single type of implicit, semantic, or spatial 
relation. When compared with the baselines of BUTD [1] 
and MUTAN [3], it reports the single-type graph encoder 
with BUTD [1] and MUTAN [3] delivers the best per-
formance. The total result of graph encoders has the best 
performance.

This paper conducts experiments on the VQA-CP v2 
dataset. MuRel [19], BUTD [1], BAN [8], and ReGAT 
[10] methods which have the stronger reasoning ability are 
considered as baselines. Table 4 shows the results on the 
test split. The model in this paper surpasses the baselines 
by a large margin. With only a single graph encoder, the 
model achieved the best performance on baselines (41.24 
vs 41.17). 

Table 3   Model accuracy on the VQA 2.0 validation

The bold letters denote the best results of the experiments

Model Accuracy (%)

BUTD [1] 63.15
MUTAN [3] 58.16
MUTAN+MLB [3] 58.76
BAN [8] 65.36
VCTREE-HL [24] 65.1
ReGAT(BUTD fixed) [10] 64.98
ReGAT(BAN fixed) [10] 66.62
ReGAT(BAN ada) [10] 67.18
DFAF [18] 66.66
MCAN [34] 67.2

Semantic (%) Implicit (%) Spatial (%) All

Ours (MUTAN fixed) 62.34 62.27 62.14 n/a
Ours (BUTD fixed) 63.76 64.05 64.02 65.23 %
Ours (BAN fixed) 65.92 66.39 65.97 67.30 %
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4.4 � Visualization analysis

In Fig. 4, this paper visualizes the relations, which are 
detected and used by this model, to illustrate the effective-
ness of the semantic graph encoder. It shows how detected 
relations help to improve the performance of the model. 
When relations are valid for visual regions, the model is 
more inclined to give more weight on the relations related 
to question.

Figure 5 provides the weights at the runtime and illus-
trates the effect of the different graph encoders. Comparing 
different methods, it shows that the graph encoders in this 
paper help model to locate the important objects, capture 
the interactions between regions, and assist with providing a 
better alignment between different regions. These examples 
give new evidence proving that the question-guided attention 
layers play a considerable role in graph encoders.

5 � Conclusion

In this paper, question-relationship guided graph atten-
tion neural Network (QRGAT) is proposed for VQA. More 
detailed divisions are carried on to the image contents, while 
graph encoders, as the keywords, are contained in this model 
to capture the actions, states, layout, and implicit relations 
in the images. One relation influences the other relation in 
reasoning and encoding process. In addition, the question is 
offered as well as a guider role in the updating process of 

visual features. It reduces the gap between language modal-
ity and relation modality. Meanwhile, it tries to obtain a new 
abstract-level feature over a relation graph. In the future, 
we intend to study an end-to-end network, including differ-
ent relations, and find a more effective and efficient way to 
precisely capture and combine diverse information of the 
images.
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encoder, and d spatial graph encoder. There are different weights of 
objects in four methods
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