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Abstract— Domain adaptation aims to transfer the knowledge
learned from a labeled source domain to an unlabeled target
domain, which has different data distribution with the source
domain. Most of the existing methods focus on aligning the data
distribution between the source and target domains but ignore
the discrimination of the feature space among categories, leading
the samples close to the decision boundary to be misclassified
easily. To address the above issue, we propose a Margin-based
Adversarial Joint Alignment (MAJA) to constrain the feature
spaces of source and target domains to be aligned and dis-
criminative. The proposed MAJA consists of two components:
joint alignment module and margin-based generative module.
The joint alignment module is proposed to align the source and
target feature spaces by considering the joint distribution of
features and labels. Therefore, the embedding features and the
corresponding labels treated as pair data are applied for domain
alignment. Furthermore, the margin-based generative module
is proposed to boost the discrimination of the feature space,
i.e., make all samples as far away from the decision boundary
as possible. The margin-based generative module first employs
the Generative Adversarial Networks (GAN) to generate a lot
of fake images for each category, then applies the adversarial
learning to enlarge and reduce the category margin for the
true images and generated fake images, respectively. The evalua-
tions on three benchmarks, e.g., small image datasets, VisDA-
2017, and Office-31, verify the effectiveness of the proposed
method.

Index Terms— Domain adaptation, joint alignment module,
margin-based generative module.
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I. INTRODUCTION

IN THE past ten years, considerable attention has been paid
to deep learning due to its tremendous successes in various

areas, such as image segmentation, object detection, and image
classification. However, training the deep model requires a
large amount of annotated labeled data, which are difficult
to obtain and would limit the generability of the proposed
methods. Recently, domain adaptation, which aims to learn
a well-performing model from a source data distribution and
apply it to a different target data distribution, has attracted
much attention. Since the domain shift between source and
target domains exists, the model trained on the labeled source
dataset cannot work well on the unlabeled target dataset.
Based on the assumption that the source and target domains
contain the same categories, the goal of domain adaptation is
to transfer the knowledge from the source domain to the target
domain with a small generalization error in the target domain.

Recently, a lot of methods have been proposed for domain
adpation [1]–[7]. Most of these methods focus on reduc-
ing the domain shift by aligning the visual distributions
between source and target domains, e.g., statistical-based
methods [8]–[10], adversarial learning-based methods [11]–
[13], and reconstruction-based methods [14], [15]. Although
the above methods are effective, they still exist two disad-
vantages for domain adaptation. Firstly, they only apply the
marginal feature distribution to align the source domain and
the target domain, and ignore the category information. Since
the source and target domains share the common categories
in domain adaptation, the category information can also be
used for aligning two domains. Consequently, using the joint
distribution of features and categories to align the source
and target domains can be more effective than merely using
marginal features distribution. Secondly, existing methods
focus on aligning the data distribution between the source
and target domains, and ignore the discrimination of the
feature space among categories, which leads to the samples
close to the decision boundary to be misclassified easily,
as shown in Figure 1(a). Therefore, considering the joint
distribution of features and categories and enlarging the feature
discrimination are two crucial factors for domain adaptation.

By considering the issues mentioned above, we propose
a novel Margin-based Adversarial Joint Alignment (MAJA)
approach, as shown in Figure 2. The MAJA consists of
two components: joint alignment module and margin-based
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Fig. 1. (a) The previous methods only align the marginal distribution between
the source and target domains. (b) The joint alignment module aligns the
source and target domains, and the margin-based generation module enlarges
the discrepancy among categories.

generative module. The joint alignment module is proposed
to align the source and target feature spaces by considering
the joint distribution of features and categories. Since the
source and target domains share the same categories, using the
additional category information can further reduce the domain
shift, as shown in Figure 1(b). Based on the fact that the
generated fake images are different from the true images in the
source and target domains, using the fake images can help to
adjust the decision boundary via adversarial learning. There-
fore, using the margin-based generative module can enlarge
the discrepancy among categories, as shown in Figure 1(b).

The Margin-based Adversarial Joint Alignment (MAJA) is
implemented by adding the proposed joint alignment module
and margin-based generative module upon the existing domain
adaptation methods, e.g., self-ensembling [16], which can be
treated as a robust baseline model for domain adaptation.
To consider the joint distribution of features and categories,
we treat the features and labels as pair data. Given the pair
data, the joint alignment module utilizes the minimax game
to update the feature extractor F and domain classifier D1 for
aligning the source and target domains, as shown in Figure 2.
For the margin-based generative module, we apply the gener-
ator G to generate the realistic and large category margin fake
images that cannot be distinguished by the discriminator D2
and student network S. Since the fake images are different
from the source images, the student network S is optimized
by maximizing and minimizing the category margin for true
images and fake images, respectively. The category margin
is defined as the difference between the predicted probability
of ground-truth class and the largest probability in prediction
vector except the ground-truth class. The student network S
will continue to learn more discriminative features of the

source images in order to distinguish the fake images from
the real source images. By jointly optimizing the joint align-
ment module and margin-based generative module, the feature
extractor can align the features for source and target domains
and enhance the feature discrimination.

The main contributions can be summarized as follows:
• We demonstrate that considering the joint distribution

of features and categories is an effective way to align
the source and target domains than merely using the
distribution of features.

• We prove that using the generated fake images to enlarge
the discrepancy among categories can boost the perfor-
mance of domain adaptation.

• The evaluations on three benchmarks, e.g., small image
datasets, VisDA-2017 [17], and Office-31 [18], verify the
effectiveness of our proposed model.

II. RELATED WORK

In this section, we give a brief review of the related work
with our model in domain adaptation, semi-supervised learning
and discrimiantive feature learning.

A. Domain Adaptation

Recently, a lot of methods have been proposed for
domain adaptation, which can be divided into three groups:
statistical-based methods, adversarial learning methods and
reconstruction-based methods.

1) Statistical-Based Methods: Since the data distributions of
the source domain and target domain are different, calculating
statistics of feature distribution can be used to minimize the
domain discrepancy. For example, some methods [9], [19]–
[22] utilize the Maximum Mean Discrepancy (MMD) to align
the high-dimensional features in the source and target domains.
DAN [23] proposes a multiple kernel variant of MMD for
generalizing deep convolutional neural network to the domain
adaptation scenario. JAN [9] aligns the joint distributions of
multiple domain-specific layers across domains based on a
Joint Maximum Mean Discrepancy (JMMD) criterion. Deep
CORAL [24] aligns the source and target domains based
on the second-order statistics. Furthermore, the higher-order
moment is proposed to align the source and target domains
with Central Moment Discrepancy (CMD) [25]. Different from
the above methods, RTN [26] applies a residual function to
model the domain shift, and Maximum Classifier Discrepancy
(MCD) [27] uses the difference of two separate classifiers to
embed the domain invariant features.

2) Adversarial Learning Methods: With the great success
of Generative Adversarial Networks (GAN) [28] in image
generation, adversarial learning [29] has been applied in
domain adaption to align the source and target domains.
DANN [11] utilizes the minimax game between feature extrac-
tor and domain classifier to infer the domain invariant feature.
Domain classifier attempts to distinguish the source and target
features, and feature extractor attempts to confuse domain clas-
sifiers by generating the domain-invariant features. MSTN [12]
considers the category information and aligns the centroids
of each category between the source and target domains.
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DMRL [30] jointly conducts category and domain mixup
regularizations on pixel level to improve the effectiveness of
models. Recently, the consistency-based methods [31], [32]
have achieved good performance and apply cluster assumption
in domain adaptation to learn more stable and discriminative
features. Batch Spectral Penalization (BSP) [33] considers the
relation between transferability and discriminability by the
largest singular value of batch features. MDD [13] extends the
H�H distance to margin disparity discrepancy, which can be
transformed into an adversarial learning algorithm for domain
adaptation.

3) Reconstruction-Based Methods: Image reconstruction
has been widely used to encoder useful information in unsu-
pervised learning. Therefore, it is natural to apply unsu-
pervised reconstruction for domain adaptation. DRCN [14]
obtains discriminative and transferable features via super-
vised classification of labeled source data and unsuper-
vised reconstruction of unlabeled target data. DSN [15]
separates feature space into domain-private subspace and
domain-share subspace to keep the individual characteristics
of each domain, and reconstructs the input sample by using
both the private and share representations. CyCADA [34]
proposes Cycle-Consistent Adversarial Domain Adaptation to
adapt representations at both the pixel-level and feature-level
while enforcing semantic consistency.

B. Semi-Supervised Learning

We next introduce two types of methods widely used in
semi-supervised learning, such as GANs for semi-supervised
learning and Self-ensembling for semi-supervised learning.

1) GANs: With the success of generative adversarial net-
works (GANs) in image generation, GAN is also used in
semi-supervised learning. For example, Feature Matching [35]
replaces the binary discriminator with (K + 1)-class classifier,
where K is the number of categories. The (K + 1)-class
classifier classifies the labeled images into the first K source
classes, and also classifies the unlabeled images as any of
the first K classes. Since the generated fake images do not
belong to any source classes, they should be classified as the
(K + 1)-th class. By generating images located in low-density
areas with a “bad” GAN, the method [36] can achieve better
generalization by pushing decision boundary through these
regions. MarginGAN [37] uses the adversarial learning of
margin to generate “bad” images to increase the tolerance of
incorrect pseudo labels.

2) Self-Ensembling: Self-ensembling has achieved great
success in semi-supervised learning. Temporal Ensem-
bling [38] maintains an exponential moving average of label
predictions of each training sample and makes subsequent pre-
dictions consistent with the average. Instead of averaging label
predictions, Mean Teacher [39] keeps the weights in teacher
network being an exponential moving average of the weights
in the student network, and constrains the student network to
have the consistent outputs with the teacher network under
different perturbations. SE [16] integrates the mean-teacher
model to domain adaptation and achieves good performance.

C. Discriminative Feature Learning

Some methods [20], [40]–[43] pay efforts to learn more
discriminative features for representation learning. CAN [20]
proposes Contrastive Domain Discrepancy to measure the dif-
ference between conditional data distributions across domains
to obtain discriminative target features for domain adaptation.
DML [40] utilizes two metric learning stages with different
objectives for feature learning. D-CNN [41] imposes a metric
learning regularization term on the CNN features to enhance
the discrimination of the proposed model. RIFD-CNN [42]
adds a rotation-invariant and Fisher discrimination regularizer
to achieve rotation-invariance, small within-class scatter and
large between-class separation for object detection. CAT [43]
proposes Cluster Alignment with a Teacher to incorporate the
discriminative clustering structures in both domains.

D. Discussion With Previous Work

Although the previous methods [9], [11], [31] have achieved
great performance in domain adaptation, they only consider the
marginal distribution between the source domain and the target
domain. Different from the previous methods, the proposed
Margin-based Adversarial Joint Alignment (MAJA) approach
considers other two major additional constraints: joint align-
ment module and margin-based generative module. Firstly,
the joint distribution of features and categories is considered in
joint alignment module to align the source and target domains.
Secondly, the margin-based generative module can enlarge the
discrepancy among categories via adversarial learning between
the true images and the generated fake images.

III. METHODOLOGY

Domain adaptation aims to classify images belonging to the
target domain with the help of the labeled source images. Note
that the target domain has the same categories as the source
domain, but has a different data distribution. Formally, defining
the datasets as D = {Ds,Dt }, where Ds = {Xs ,Ys} is the
source dataset, and Dt = {Xt ,Yt } is the target dataset. X and
Y denote the images and corresponding labels, respectively.
Based on the assumption that the source categories and target
categories are the same, domain adaptation is to infer the
category label Yt for the image Xt by making full use of
the source dataset Ds .

In this work, we propose a novel Margin-based Adversarial
Joint Alignment (MAJA) method to align the source and
target domains. As shown in Figure 2, the proposed MAJA
consists of two components: joint alignment module and
margin-based generative module. MAJA is implemented by
adding the proposed joint alignment module and margin-based
generative module upon the existing domain adaptation meth-
ods, i.e, self-ensembling. The self-ensembling model, which
can be treated as the baseline method for domain adaptation,
is applied to boost the representations by constructing the
consistency constraints for unlabeled target images. Based on
the self-ensembling module, the joint alignment module is
proposed to align the source and target domains by considering
the joint distribution of features and categories. Furthermore,
the Margin-based generative module is applied to enlarge
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the feature discrepancy among categories with the help of
generated fake images. In the following, we give a detailed
description of each component.

A. Self-Ensembling

Recently, the self-ensembling methods have been obtained
powerful performance in semi-supervised learning [35], [36],
and also work well in domain adaptation [37]. Therefore,
we treat the self-ensembling model as the baseline domain
adaptation method in this work. The self-ensembling model
consists of two types of networks: student network S and
teacher network T . The network architecture of the teacher
network is the same as that of the student network. During
training, self-ensembling only updates the weights of the
student network, and the weights of the teacher network are
updated by the exponential moving average of the weights
in the student network. Assuming θs(k) and θt (k) are the
weights of the student network and teacher network at step
k, respectively. The updating of the weights of the teacher
network can be formulated as follows,

θt(k) = μθt (k − 1) + (1 − μ)θs(k), (1)

where μ is a smoothing coefficient hyperparameter.
Given the labeled source dataset Ds , self-ensembling opti-

mizes the student network S by minimizing the supervised
classification loss Lcls :

Lcls = − E
(x,y)∼Ds

[y� logS(x)], (2)

where x and y are the source image and the corresponding
label.

The unlabeled target images and their augmentations are
fed into the student and teacher networks to extract the feature
descriptions, respectively. Self-ensembling further constructs a
constraint that the outputs of unlabeled target sample xt and its
augmentation x̄t should be consistent. Therefore, we minimize
the consistency constraints by:

Lcon = E
x∼Xt

[||S(x) − T (x̄)||2], (3)

where S(x) and T (x̄) denote the outputs of student network
and teacher networks, respectively.

B. Joint Alignment Module

The joint alignment module aims to align the source and
target domains by considering the joint distribution of features
and categories. As a consequence, we need to generate the
feature space and category space for each image. Therefore,
we divide the student network and teacher network into two
sub-components: feature extractor F and classifier network C.
Given the images xs and xt , we apply the feature extractor F to
extract the source and target features F(xs) and F(xt ), which
are further fed into the classifier C to predict its category.
The obtained category probabilities are denoted as C(F(xs))
and C(F(xt)). Since the ground-truth label for target images
xt is unavailable, we can generate its pseudo label ŷt by
choosing the class with the highest probability. The goal of

joint alignment module is to align the source domain and
target domain with the joint distribution P(F(x), y) between
features F(x) and category y. For the labeled source sample
xs , we utilize the corresponding label ys to construct the joint
distribution Ps(F(xs), ys). For the unlabeled target sample xt ,
we utilize the pseudo label ŷt to obtain the joint distribution
Pt (F(xt ), ŷt ).

Given the source dataset Ds and target dataset Dt ,
we firstly generate the joint distribution sample sets As

and At for source and target domains, respectively. The
source joint distribution sample set As is defined as
As = {(F(x1

s ), y1
s ), (F(x2

s ), y2
s ), . . . , (F(xns

s ), yns
s )}, where

ns is the number of source images, and yi
s is the label.

Similarly, the target joint distribution sample set At =
{(F(x1

t ), ŷ1
t ), (F(x2

t ), ŷ2
t ), . . . , (F(xnt

t ), ŷnt
t )}, where nt is the

number of target images, and ŷi
t is the pseudo label. After

obtaining the As and At , the domain classifer D1 is trained to
distinguish these two joint distributions. The objective of the
domain classifier is formulated as Eq. (4):

LD1 = −{ E
js∼As

[log(D1(js)] + E
jt∼At

[log(1 − D1(jt)]}, (4)

where js and jt represent the joint distribution samples
(F(x), y) in As and At , respectively.

By fixing the trained domain classifier D1, we next optimize
the feature extractor F to make the domain classifier D1 not be
able to distinguish the source joint distribution Ps(F(xs), ys)
and target joint distribution Pt (F(xt ), ŷt ), which can align the
visual spaces for source and target domains. The objective can
be formulated as follows,

LFJ A = − E
(F(xt ),ŷt )∼At

[log(D1((F(xt ), ŷt ))]. (5)

By combining Eq. (4) and Eq. (5), the joint alignment
module optimizes the feature extractor F and domain classifier
D1 with a minmax game,

min
F

max
D1

LJ A = E
js∼As

[log(D1(js)]
+ E

(F(xt ),ŷt )∼At

[log(1 − D1((F(xt ), ŷt ))]. (6)

Finally, when the target feature distribution is similar to the
source feature distribution, the target pseudo labels obtained
by the classifier would be correct, which can further make the
domain classifier not distinguish the source joint distribution
and the target joint distribution.

C. Margin-Based Generative Module

Although existing methods can effectively align the source
feature space and target feature space, the feature spaces
of different categories are easily confused. In this work,
we propose a margin-based generative module to enlarge
the discrepancy among categories. In the following, we first
define Category Margin, and then introduce the margin-based
generative module.
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Fig. 2. An overview of our Margin-based Adversarial Joint Alignment method. xs , xt , and x̄t represent source sample, target sample, and augmented target
sample, respectively. MAJA consists of two modules: joint alignment module and margin-based generative module. For the joint alignment module, we firstly
obtain the pseudo label ŷt for target sample xt through the student network S . Next, the source joint distribution sample (F(xs ), ys ) and the target joint
distribution sample (F(xt ), ŷt ) are fed into the domain classifier D1 to distinguish two domains. Furthermore, the feature extractor F is optimized to fool
the domain classifier D1. For the margin-based generative module, the generator G is applied to generate the fake images that cannot be distinguished by
the discriminator D2 and the student network S . By fixing the trained generator G, the discriminator D2 is updated to distinguish the fake images and the
source images. Finally, the student network S is optimized to increase the category margin of the source images and decrease the category margin of the fake
images. The teacher network T is used to supervise the student network for the unlabeled target sample xt through different data augmentations.

1) Category Margin: Given a sample (x, y), where x and
y are the image and label, the category margin is defined as
the difference between the y-th predicted probability and the
largest predicted probability except the y-th class. Formally,
the category margin is defined as:

C M(x, y) = py(x) − max
m �=y

pm(x), (7)

where py(x) denotes the predicted probability of the y-th class
for the image x , and C M(x, y) is the corresponding category
margin. The larger margin, the more confident that the sample
(x, y) is correctly classified. The margin close to 0 indicates
that the predicted probability for x is uncertain.

We can increase the category margin by minimizing the
cross entropy of the prediction:

Len = −y� log p(x). (8)

Furthermore, using the inverse cross entropy of the predic-
tion can reduce the category margin,

Lien = −y� log(1 − p(x)), (9)

where y represents one-hot vector of y and p(x) indicates the
prediction probability vector of x.

2) Category Margin in Generative Module: The
Margin-based generative module is divided into three
components: generator G, discriminator D2, and student
network S. The generator G is used to generate realistic
and large category margin fake images that help to adjust
the decision boundary and enlarge the discrepancy among
categories. The discriminator D2 aims to distinguish the
source images and fake images. Optimizing the student

network S aims to increase the margin for the source images
and decrease the margin for fake images. By performing the
adversarial learning among generator G, discriminator D2, and
network S, the generated source features are discriminative
enough.

For the discriminator D2, it aims to distinguish source
images xs and fake images x̂s generated by the generator G.
By assigning the labels for source images and fake images as
1 and 0, the discriminator D2 can be optimized as follows,

LD2 =−{ E
x∼Xs

[log(D2(x))]+ E
z∼Pz

[log(1 − D2(G(z)))]}, (10)

where Pz denotes a simple distribution, e.g., normal or uniform
distribution.

For the student network S, it is used to increase the
margin of source images and decrease the margin of fake
images. Since the source images have the ground-truth labels,
we minimize the cross-entropy of the prediction probability to
increase the margin,

LScls = − E
(x,y)∼Ds

[y� logS(x)]. (11)

For the fake images generated by the generator G, there is no
ground-truth labels. We thus take the class having the highest
probability as the pseudo label, and further reduce the margin
by minimizing the inverse cross entropy between prediction
probability and the pseudo label,

LSien = − E
z∼Pz

[ŷ�
f log(1 − S(G(z))], (12)

where ŷ f is the pseudo label one-hot vector.
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For the generator G, it fools the discriminator D2 and the
student network S to generate the realistic fake images. Given
the discriminator D2, the generator G randomly samples from
the distribution Pz to generate fake images that cannot be
distinguished by the discriminator D2. Therefore, the objective
is:

LGG AN = − E
z∼Pz

[log(D2(G(z)))]. (13)

By fixing the student network S, we optimize the generator
G to constrain that the probability output of the student
network has large margin,

LGen = − E
z∼Pz

[ŷ�
f logS(G(z)]. (14)

By combining the above objective functions, the margin-
based generative module optimizes Eq. (15) via a minimax
problem,

min
G

max
D2,S

LMG

= E
x∼Xs

[log(D2(x))] + E
z∼Pz

[log(1 − D2(G(z)))]

+ E
(x,y)∼Ds

[y� logS(x)] + E
z∼Pz

[ŷ�
f log(1 − S(G(z)].

(15)

D. Training Procedure

The final model is the combination of the joint alignment
module and the margin-based generative module. We itera-
tively update each component of the final model, e.g., feature
extractor F , classifier C, generator G, domain classifier D1,
and discriminator D2.

We firstly update the feature extractor F and the classifier
C by minimizing the following equation,

min
F ,C

LF&C

= E
x∼Xt

[||C(F(x)) − T (x̄)||2] − E
(x,y)∼Ds

[y� log C(F(x))]
− E

(F(xt),ŷt )∼At

[log(D1((F(xt ), ŷt )))]

− E
z∼Pz

[ŷ�
f log(1 − C(F(G(z))))]. (16)

Next, we update the generator G to fool the discriminator
D2 and the student network S,

min
G

LG = −{ E
z∼Pz

[log(D2(G(z)))] + E
z∼Pz

[ŷ�
f logS(G(z))]}.

(17)

Since the domain classifier D1 is used to distinguish the
joint distributions in the source domain and target domain,
which can be optimized with Eq. (18),

min
D1

LD1 =−{ E
js∼As

[log(D1(js))]+ E
jt∼At

[log(1 − D1(jt))]}.
(18)

Finally, we optimize the discriminator D2 to distinguish
source images and fake images generated by the generator
G with Eq. (19),

min
D2

LD2 =−{ E
x∼Xs

[log(D2(x))]+ E
z∼Pz

[log(1 − D2(G(z)))]}.
(19)

By iteratively performing the above update steps, we can
obtain the final feature extractor F and classifier C that can
be applied to classify the target images.

IV. EXPERIMENTS

A. Dataset

We conduct the evaluations on three benchmarks to demon-
strate the effectiveness of our proposed method, e.g., Small
image datasets, VisDA-2017, and Office-31.

1) Small Image Datasets: For Small image datasets,
we choose SVHN [52], MNIST [53], CIFAR-10 [54],
STL [55], Syn Digits [2], GTSRB [56] and Syn-Signs [57]
for evaluations. SVHN is the Street View House Numbers
Dataset, whose images are collected from the house number
photographed in Google Street View. MNIST is a well-known
greyscale hand-written digit dataset created by the National
Institute of Standards and Technology (NIST). Unlike the
previous digital dataset, CIFAR-10 is a 10-class dataset of real
objects, including airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. We remove the “frog” class in
CIFAR-10 for unsupervised domain adaptation. STL contains
the same categories as CIFAR-10 except for “Monkey”. Syn-
Digits is a synthetic counterpart of the SVHN dataset, and
GTSRB is a German traffic sign dataset containing 43 traffic
signals. Syn-Signs is a synthetic image dataset based on
GTSRB.

2) VisDA-2017: VisDA-2017 dataset is a large-scale cross-
domain dataset, which contains 280K images from twelve cat-
egories. We use the training set as the source domain and the
validation set as the target domain. The source domain includ-
ing 152,397 images is synthetic 2D renderings of 3D models
generated from different angles and with different lighting
conditions. The target domain consisting of 55,388 images is
collected from COCO [58].

3) Office-31: Office-31 is a well-known domain adapta-
tion dataset which contains 31 categories in three domains:
Amazon, Webcam, and DSLR. The Office-31 dataset con-
tains 4,110 images, of which Amazon (A) domain contains
2,817 images, Webcan (W) domain contains 795 images, and
DSLR contains 498 digit SLR pictures.

B. Implementation Detail

For small image datasets, we utilize a 12-block residual
network [59] with Shake-Shake regularization [60] as the
backbone network similar to MarginGAN, and replace the last
fully-connected (FC) layer with the task-specific FC layer as
classifier C. The generator G and discriminator D2 are derived
from the infoGAN [61]. For domain classifier D1, we use three
fully connected layers: (fea_dim + n_class) → 500 → 500
→ 1, where fea_dim and n_class represent the dimensions
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TABLE I

COMPARISON WITH THE EXISTING METHODS ON SMALL IMAGE DATSETS. THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD

TABLE II

COMPARISON WITH THE EXISTING METHODS ON VISDA-2017. THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD

of feature and label, respectively. Batch Normalization is
inserted in fully connected layers. For SVHN ↔ MNIST,
CIFAR-10 ↔ STL, Syn-Digits → SVHN tasks, we resize the
images to 32 × 32. For Syn-Signs → GTSRB task, we resize
images to 40 × 40. We utilize the same policy “CT+TF”
as described in SE [16], where “CT” represents confidence
thresholding and “TF” means using translation and horizontal
flip augmentation. We adopt SGD optimizer with learning
rate of 0.05, momentum of 0.9, weight_decay of 0.0002, and
nesterov of True for feature extractor F and classifier C. We
use Adam optimizer with learning rate of 0.0002, beta1 of
0.5 and beta2 of 0.999 for generator G, domain classifier D1,
and discriminator D2. We set smoothing coefficient hyper-
parameter μ in exponential moving average between student
network and teacher network is 0.99.

For VisDA-2017, we use ResNet-101 [59] pre-trained on
ImageNet [62] as the backbone network, and replace the last
FC layer with the task-specific FC layer as classifier. We resize
all images to 160 × 160. We adopt Adam optimizer with
learning rate of 0.0001 for feature extractor F and classifier
C. The optimizers of generator G, domain classifier D1, and
discriminator D2 are same as in small image datasets. For
Office-31, We adopt ResNet-50 pre-trained on ImageNet as
the backbone network. Other experiment settings of Office-
31 are same as in VisDA-2017.

C. Comparison With Existing Methods

In this section, we make the comparison between the
proposed method and existing methods on three benchmarks,
and summarize the results in Table I, Table II and Table III.

1) Small Image Datasets: For the small image datasets,
the MAJA is implemented based on SE, named SEMA.
We compare SEMA with the existing methods, including
RevGrad [2], DCRN [14], G2A [44], ADDA [45], ATT [46],
SBADA-GAN [47], ADA [48], SE [16], VADA [31],
SWD [49] and MMEN [50]. The detailed results are shown
in Table I. From Table I, we can find that the proposed SEMA
model achieves the best performance except SVHN → MNIST
and Syn-Digits → SVHN settings. The reason is that the target
images have a small domain gap with the source images and
the baseline SE model obtains the high performance, e.g.,
99.55% and 96.66% for the setting of SVHN → MNIST
and Syn-Digits → SVHN, respectively. Since the fake images
influence the parameters of BN layer in backbone network,
which could have negative impacts for the predictions of the
target samples. Therefore, using the generated fake images
may degrade the performance, leading to the SEMA obtain a
worse performance than SE. We also observe that the proposed
SEMA obtains an obvious improvement upon the challenging
settings, e.g., obtaining 2.71% and 2.33% improvement for the
CIFAR-10 → STL and STL → CIFAR-10 tasks, respectively.

2) VisDA-2017: Since the images belonging to the Small
image datasets have small scales, we further evaluate the
SEMA on a large scale VisDA-2017 dataset. We compare
SEMA with RevGrad [2], DAN [23], JAN [9], MCD [27],
ADR [51], SE [16], and summarize the related results
in Table II. Note that the baseline Self-ensembling (SE) wins
the first place in the VisDA-2017 competition. By aligning the
joint distribution of the source domain and the target domain,
and enlarging the discrimination of the feature space, SEMA
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TABLE III

COMPARISON WITH THE EXISTING METHODS ON OFFICE-31. THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD. THE “A”, “D”, AND “W” ARE THE
ABBREVIATION OF “AMAZON”, “DSLR”, AND “WEBCAM”, RESPECTIVELY

TABLE IV

ABLATION EXPERIMENTS ON OFFICE-31. THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD. THE ABBREVIATION “SE”, “JA”, AND “MG”
REPRESENTS THE SELF-ENSEMBLING MODEL, JOINT ALIGNMENT MODULE, AND MARGIN-BASED GENERATIVE MODULE, RESPECTIVELY.

“MAJA” IS THE PROPOSED MODEL.“+” DENOTES THE COMBINATION OPERATION

obtains a higher performance than Self-ensembling (SE), e.g.,
improving the performance from 84.3% to 84.6%.

3) Office-31: Office-31 consists of three domains: Amazon
(A), Webcam (W), DSLR (D), and contains six domain
adaptation tasks: A → D, D → A, W → A, D → W,
W → D, and A → W. For Office-31, we also treat the
Contrastive Adaptation Network (CAN) as baseline to com-
bine the proposed Margin-based Adversarial Joint Alignment
module, named CAMA. Since the results of CAN varies
greatly, we reimplement CAN with the released code and
obtain the average results of CAN. We compares SEMA and
CAMA with existing methods, and summarize the related
results in Table III. As shown in Table III, CAMA obtains the
best performance and adding the proposed MAJA module can
further boost the performance upon the baseline, e.g., SEMA
obtains 1.2% improvement compared with SE, and CAMA
achieve higher performance than CAN by 0.5%.

Based on the above comparison and analysis, we can
conclude that considering the joint distribution of feature and
category information can enlarge the discrepancy of feature
spaces and boost the performance of domain adaptation.

D. Ablation Study

As discussed above, the proposed model consists of two
critical components: joint alignment module and margin-based
generative module. We thus evaluate the effect of each com-
ponent.

1) Effect of Joint Alignment Module: The joint alignment
module aims to align the joint distribution of features and
categories. We first evaluate the effect of joint alignment
module, and summarize the results in Table IV. In Table IV,
“SE” represents the self-ensembling model, “JA” indicates the

joint alignment module, “SE+JA” means the combination of
the self-ensembling model and the joint alignment module.
From Table IV, we can observe that considering the joint
distribution can further boost the performance, e.g., “SE+JA”
model obtains 0.6% improvement upon the “SE” model. The
improvement can demonstrate the necessity and effectiveness
of joint alignment module for aligning the source and target
domains.

In joint alignment module, we claim that using the joint
distribution of features and categories is superior to merely
using the distribution of features. We thus conduct experi-
ments D→A and W→D to verify the effectiveness of joint
distribution. As shown in Table V, “SE+JA” obtains a higher
performance than “SE+MA” which represents incorporating
marginal alignment module to the self-ensembling model,
e.g., improving the performance from 69.3% to 70.4% and
98.9% to 99.1%, respectively. The higher performance shows
that aligning joint distribution is superior to align marginal
distribution. From Table V, we also observe that the “SE+MA”
obtains only 0.2% improvement upon the “SE” model in
D→A task. Compared with the slight improvement obtained
by “SE+MA”, the large improvement for “SE+JA”, e.g., 1.3%
improvement, can further demonstrate the effectiveness of
using the joint distribution for domain adaptation.

2) Effect of Margin-Based Generative Module: Margin-
based generative module aims to enlarge the feature dis-
crimination with the help of the generated fake images.
We then evaluate the effect of margin-based generative
module, and summarize the results in Table IV. “MG”
denotes the model with margin-based generative module,
“SE+MG” means the combination of self-ensembling model
and margin-based generative module. From Table IV, we can
see that adding the margin-based generative module can
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TABLE V

COMPARISON ON D → A AND W → D. “SE”, “MA”, AND “JA” REP-
RESENTS THE SELF-ENSEMBLING MODEL, MARGINAL ALIGNMENT

MODULE, AND JOINT ALIGNMENT MODULE, RESPECTIVELY. “+”
DENOTES THE COMBINATION OPERATION

Fig. 3. The visualization of features about SE and SEMA in
CIFAR-10→STL(C→S) and Amazon→Webcam(A→W) task. Red and blue
dots represent the source features and target features, respectively. We can
observe that the proposed SEMA can enlarge the discrepancy among cate-
gories and align the source and target features.

boost the performance, e.g., “SE+MG” improves the mean
performance from 83.8% to 84.2%. The higher performance
proves that using margin-based generative module can obtain
more discriminative features in the target domain. Further-
more, combining joint alignment module and margin-based
generative module obtains the highest performance compared
with merely using one, e.g., SEMA obtains 0.6% and 0.8%
improvement upon the “SE+JA” and “SE+MG” models,
respectively. Therefore, we can conclude that the joint align-
ment module and margin-based generative module are two
complementary components, and combining them is a reason-
able choice for domain adaptation.

3) Visualization: We further illustrate the effectiveness of
the proposed method by visualizing the features in CIFAR-
10→STL and Amazon→Webcam task. For the visualization,
we firstly apply the feature extractor F to generate the corre-
sponding visual descriptions, and then utilize T-SNE [64] to
visualize the feature distributions in Figure 3. From Figure 3,
we can observe that using the adversarial learning between
the generated images and the source images, and aligning the
joint distributions of the source domain and target domain,
the target features of different classes aligned with the source
features are more discriminative.

Fig. 4. Generated fake images in VisDA-2017 dataset.

Fig. 5. The mean category margin of the predictions about SE and SEMA
in the source and target domain for CIFAR-10→STL task.

One core of the margin-based generative model is that we
apply the GAN to generate some fake images used to enhance
the feature discrimination. We thus visualize the generated
fake images of VisDA-2017 dataset as shown in Figure 4. It
can be seen that the generated images are realistic and cannot
be distinguished belonging to any category. Therefore, these
fake images can be utilized to adjust the decision boundary
and constrain the source features of each category to be far
away from each other.

4) Category Margin: To demonstrate that the proposed
MAJA module can enlarge the category margin of source and
target categories, we calculate the mean category margin of the
predictions about the model with and without MAJA module
in the source and target domain for CIFAR-10 → STL task.
From Figure 5 we can see that, the mean category margin of
SEMA module is higher than that of SE in both the source and
target domains, which proves that using the MAJA module can
boost the performance after enlarging the category margin.

V. CONCLUSION

In order to deal with the challenges in domain adapta-
tion, we propose a Margin-based Adversarial Joint Align-
ment (MAJA) method. We propose a joint alignment module,
by considering the joint distribution of feature and categories
to align the joint distributions of source and target domains.
Furthermore, we use margin-based generative module to boost
the discrimination of the feature space by enlarging the dis-
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crepancy among categories. The evaluations on three bench-
marks prove the effectiveness of our method.

In this work, we only consider the interaction between
the generative module and the source domain. In the future,
we will integrate the generative module into the target domain
to obtain better experimental results.
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