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Abstract—Multi-agent reinforcement learning (MARL) is a
promising tool to solve the Multi-Agent Path Finding (MAPF)
task, which aims to find conflict-free paths for multiple agents,
one for each agent, from a start position to a goal position. It uses
global information to learn a mechanism for cooperation among
agents by maximising the cumulative team rewards, which are
often very sparse. However, the sparsity of rewards implies that
agents have to blindly explore all possible paths, which makes
MARL methods difficult to converge in complex environments. To
address this issue, this paper proposes a novel Curriculum based
Path-finding Learning (CPL) under the framework of curriculum
learning, which allows agents to start with simple skills and
to learn cooperative strategies stage-by-stage for more efficient
training. Specifically, CPL divides the training process into three
stages and speeds up the learning by changing the difficulty of the
tasks from easy to hard. Experiments on random obstacle grid
worlds show that our proposed method performs significantly
better in terms of success rate and makespan than state-of-the-
art learning-based methods.

Index Terms—Multi-agent path finding; Multi-agent reinforce-
ment learning; Curriculum learning

I. INTRODUCTION

Multi-agent path finding (MAPF) is an NP-hard problem
[1] that describes how a group of agents move from their start
positions to goal positions in an environment with obstacles. It
arises in many real-world applications of multi-agent systems,
such as warehouse robots [2], office robots [3], aircraft-towing
vehicles [4], etc. The objective of the MAPF task is to plan a
set of conflict-free paths, one for each agent, and to minimise a
global cost function. The common cost functions include sum-
of-cost (i.e. the sum of the number of time steps for all agents
to reach their destinations.) or makespan (i.e. the time until
all agents have reached their destinations). A major challenge
of MAPF is to avoid frequent collisions and blockages, as
multiple agents interact with each other. Many search-based
methods perform well in finding collision-free solutions using
global information in simple environments, but poorly in
terms of real-time performance and scalability. Specifically,
the classical planners have to re-plan all paths even when
the scene changes slightly, and the computational complexity
of the methods is exponential to the number of agents. It is
intractable to apply these classical methods in real-time and
large-scale tasks.

*This work was supported in part to Dr. Liansheng Zhuang by NSFC
under contract No.U20B2070 and No.61976199. Dr. Liansheng Zhuang is
the corresponding author.

Recently, a great amount of work focus on learning-based
methods for better real-time performance and scalability.
Learning-based methods generally model a MAPF task as
a decentralized partially observable Markov decision process
(Dec-POMDP) [5] and use reinforcement learning to solve
this sequential decision problem. Unlike search-based methods
that require global information to compute complete paths
for all agents, learning-based methods only require local
information and allow each agent to plan the optimal one-
step path given its current observation. However, because
each agent’s observation is localised, distributed learning-
based approaches usually result in poor cooperation among
agents [6]. For the purpose of achieving cooperation, existing
methods try to utilize extra (or global) information either in
their online planning phase or in their training phase. In the
former case, agents receive information about the observations
from other agents by means of communication during the
execution [7]–[9]. But in practice, such methods still suffer
from communication delays and communication jamming. The
other case is to use the global information during the training
to learn a mechanism for cooperation, while the individual
local observations of agents are used for decision making
during the execution [10]–[12]. Multi-agent reinforcement
learning (MARL) is a representative approach in this case.
The centralized training with decentralized execution (CTDE)
paradigm, which uses global information during the training
while allowing agents to make decisions independently during
the execution, is gaining more and more attention [13], [14].
In general, such approaches have more independent decision-
making processes and in practice offer better robustness than
the former approaches.

Though having achieved excellent performance, the CTDE
methods still have some problems in solving MAPF tasks.
In MAPF, however, valuable team rewards are always very
sparse. For example, all agents receive a positive team reward
only when the entire MAPF task is completed, i.e. when
all agents avoid collisions and reach their destinations. This
results in a training process where all agents have to blindly
explore all possible paths before completing the task once.
Moreover, in a multi-agent environment, especially a complex
one, the probability of all the agents reaching their respective
destinations in a blind exploration is very low, making training
difficult to converge. In fact, unlike other cooperative multi-
agent environments, MAPF can be explicitly broken down into
several sub-tasks, each performed by a single agent. Therefore,
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the common dense individual rewards can be used to guide
agents through individual sub-tasks, getting a feasible strategy
more quickly for completing the team task. Unfortunately,
existing methods based on CTDE often ignore the dense
individual rewards. As a result, typical CTDE methods usually
perform poorly for complex MAPF tasks.

Motivated by the above insights, this paper proposes a novel
Curriculum based Path-finding Learning (CPL) for MAPF
tasks under the CTDE paradigm. In order to have better
learning efficiency in complex environments, our CPL is based
on the curriculum learning framework [15] in which agents
start with simple single-agent path-finding skills and then pro-
gressively learn cooperative strategies by network parameter
inheritance. To this end, CPL divides the training process
into three stages to perform the learning tasks from easy to
difficult, just like a human. The first stage motivates an agent to
complete single-agent tasks by individual rewards. The second
stage motivates agents to complete their respective path-
finding tasks in a multi-agent environment still by individual
rewards. The third stage motivates agents to cooperate with
each other and complete the entire team task by team rewards.
Although the team rewards here remain sparse, the first two
stages allow agents to quickly find paths with high values,
thus resolving the difficulties in exploration. In addition, CPL
has good generalisation, as it trains on randomly generated
training maps and performs well on test maps that have never
been seen before.

Our main contributions can be summarized as follows:
• We propose a novel CPL framework for the MAPF

task under the CTDE paradigm to learn a cooperation
mechanism of agents and to guarantee the advantages of
distributed decision-making.

• We propose to counter the exploration problem posed
by sparse team rewards via curriculum learning, thus
improving the efficiency of training.

• We conduct experiments on 20*20 random obstacle grid
worlds with different obstacle densities and different
numbers of agents, to show that CPL outperforms state-
of-the-art learning-based methods in terms of success rate
and makespan, especially in crowded environments.

II. RELATED WORK

Over the last few decades, many methods have been pro-
posed to solve the MAPF tasks, which can be divided into two
categories, search-based methods and learning-based methods.

A. Search-based methods

Search-based methods generally search in a specific state-
space to find an optimal or bounded sub-optimal solution. A
common straight-forward derived state-space is denoted as the
k-agent state-space where the states are the different ways to
place k agents at different positions in the map, one agent per
position. Operators between states are all non-conflicting com-
binations of actions (including wait) that can be taken by the
agents. A* is a general-purpose algorithm that is well suited
to searching k-agents state-space to solve MAPF. A* with an

admissible heuristic is proved as an optimal solver, where a
simple admissible heuristic is to sum the individual heuristics
of the single agents such as Manhattan distance. However, A*
for MAPF has a major drawback in that the size of the state-
space is exponential in the number of agents. A prominent
example of A*-based sub-optimal algorithm is Hierarchical
Cooperative A* (HCA*) [16]. In HCA* the paths of agents
are planned one at a time according to some predefined order.
Once a path to the goal is found for the first agent, that path is
written into a global reservation table. Besides, M* [17] and its
enhanced variant ODrM* [18] are also A*-based algorithms.
M* dynamically changes the dimensionality and the branching
factor based on conflicts. The dimensionality is the number of
agents that are not allowed to conflict.

Another optimal MAPF solver not based on k-agent state-
space is Conflict Based Search (CBS) [19]. CBS consists
of two parts: the high-level of CBS searches the constraint
tree (CT), where each CT node contains a set of constraints
imposed on the agents derived from conflicts occurring in
ancestral nodes, and a single solution consistent with these
constraints. The search process selects a CT node with the
lowest cost of the solution, and then verifies whether there
are still collisions among agents. If so, a new CT child node
is generated and a new constraint is added to the child node.
Then, the low-level of CBS is where the optimal path is solved
for each agent independently, given the constraints of a CT
node, using a basic search method like A*. Moreover, many
variants derived from CBS are still popular today. Enhanced
CBS (ECBS) [20] introduces the focal A* method to select CT
nodes by always choosing the node that is currently closest to
the target among all nodes to be expanded with suboptimality
guarantee. Explicit Estimation CBS (EECBS) [21] maintains a
value function using online learning to filter the fraction of all
CT nodes that still have high value and satisfy the sub-optimal
conditions. Flexible EECBS (FEECBS) [22] follows the way
the high-level of EECBS searches for CT nodes and improves
on the low-level solves for paths subject to constraints and
bounded suboptimality.

Search-based methods tend to have sophisticated theoretical
guarantees, so they return high-quality solutions. However, the
search space of these methods grows exponentially with the
number of agents, so these methods are not suitable for large-
scale situations. In addition, search-based methods solve each
task independently with no reusable parts. In other words,
even if the scene changes slightly, for example by moving
the start position of an agent in the map, the entire task must
be re-solved. This is a fatal problem in practice, as real-world
scenarios always change very frequently.

B. Learning-based methods

Recently, more and more work applies deep learning, partic-
ularly deep reinforcement learning, to MAPF tasks. Learning-
based methods generally model the MAPF task as a Dec-
POMDP [5], letting agents learn with a well-designed reward
function to reach destinations without any collisions. To enable
cooperation among agents, one approach is to introduce local
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Fig. 1. The training process for CPL.

communication. Agents are informed of the personal infor-
mation of surrounding agents to facilitate long-horizon path-
finding and cooperation. DHC [7] formalizes the multi-agent
environment as a graph and allows agents to communicate
with neighbors via graph convolution. It treats each agent
independently and leverages single-agent Q-learning for multi-
agent partially observable Markov game. PICO [8] includes
two phases, implicit priority learning phase and prioritized
communication learning phase. In the implicit priority learn-
ing, PICO aims to build an assisted imitation learning task
that predicts the local priority of each agent by imitating
classical coupled planner (e.g., ODrM*). In the prioritized
communication learning, the obtained local priorities are used
to generate a time-varying communication topology consisting
of agent clusters, where these priorities are considered as the
weights of an ad-hoc routing protocol. These communication-
based approaches are indeed intuitive, but in practice they also
suffer from communication delays, communication jamming
and other problems.

Another approach is to use global information to associate
all the agents together for cooperation during the training.
PRIMAL [10] combines reinforcement learning and imitation
learning to learn fully distributed policies for each agent.
PRIMAL chooses the centralized planner ODrM* as the
expert that coordinates all agents during the imitation learning
episode, whose behavior the agents learn to imitate, allowing
them to learn coordinated behaviors, and randomly selects
at the beginning of each episode whether it will involve
reinforcement learning or imitation learning. MATS [11] em-
ploys the multi-step ahead tree-search strategy in single-agent
reinforcement learning and imitation learning scheme to fit the

results of the tree search strategy to solve the MAPF problem.
ME-MADDPG [12] adopts the framework of multi-agent deep
deterministic policy gradient to directly map partially observed
information to motion commands for multiple agents, and
introduces a strategy named mixed experience to train more
brilliant agents that can adapt to more complex environments.

A key point of learning-based methods is that the deci-
sions of agents are decentralised, i.e. each agent has its own
computing power and plans its own path by receiving only
local observations. This not only makes the computational
complexity not to grow exponentially with the number of
agents, but also avoids the problem of having to re-plan
when changes occur. However, with a distributed premise,
it is difficult to tell whether an agent’s decision is selfish
or cooperative. A completely selfish agent considers only its
own goal and ignores the behaviour of other agents, often
leading to a large number of collisions and blockages. While a
completely cooperative agent benefits from avoiding collisions
with other agents, which may lead to losing its own goal.
Therefore, how to learn collaborative strategies efficiently
without losing individual goals is an important topic in solving
MAPF with learning-based methods.

III. METHODOLOGY

A. Overview

As shown in Fig.1, our CPL consists of three curriculums,
which are arranged from easy to difficult. The coloured squares
in the figure represent the agents and the coloured stars
represent the goal positions corresponding to the agents of
the same colour. In each curriculum, the agents take the
network inputs from the environment, output the values of the
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actions in the current state via the Q-value network, and then
generate an ϵ-greedy policy for selecting the next action based
on that values. Each curriculum lasts several episodes as the
training process progresses. At the end of each curriculum,
the parameters of the current Q-value network are retained
and the curriculum moves on to the next one. Under the CPL
framework, agents start with simple path-finding skills and
gradually learn to assess team values to generate cooperative
strategies.

Note here that, in CPL, each curriculum is under the frame-
work of reinforcement learning. The necessary components of
reinforcement learning, such as the state embedding and the
reward function, are described in sections B and C, as all
curriculums use these components in the same way. Besides,
the differences between the curriculums, in the data generated
by the environment and the way the gradients are updated, are
described in detail in section D.

B. Input embedding

The input to an agent’s Q-value network, denoted as ob-
servation state o, can be divided into three parts. First, we
consider the MAPF task in a partially-observable discrete grid
world like that mentioned in PRIMAL [10]. It is difficult
for agents to know information about the entire grid world
in practice, so they make decisions based on information
observed in a fixed-size window centered on themselves. To
allow agents to efficiently extract the observation in the finite
window, we decompose it into four channels, each of which
is a two-dimensional matrix of the same size as the window.
The first channel is a binary matrix that identifies obstacles.
The second channel marks where other agents are located
in the window. The third channel marks the goal location
of other agents in the second channel, used to predict the
moving direction of the neighbors. The fourth channel marks
the agent’s own goal location. If the above goals are not in the
window, the projection of the position in the window would
be given.

Second, in addition to the observation in the finite window,
an agent also needs the information about its goal. For this
purpose, we include in the input a vector and a scalar, repre-
senting the direction of its goal and the Euclidean distance to
its goal, respectively.

Third, we also include the index of an agent as part of the
input. This is because we allow multiple agents to share the
same Q-value network parameter, but make different agents to
behave differently even with the same Q-value network. We
input each agent’s index as a one-hot vector to the network, as
shown in curriculum 2 and curriculum 3 in Fig.1. For single-
agent case in curriculum 1, the index part of the input is filled
with zeros to keep the shape of the input tensor.

C. Reward function

MAPF environments involve multiple sub-tasks, each per-
formed by a single agent. Existing learning-based methods
typically motivate agents to complete each sub-task by indi-
vidual rewards [8], [10], [23]. However, such a reward function

being simply used may ignore cooperation among agents.
Therefore, path-finding tasks defined in a multi-agent setting
require a well defined team reward function [13], [14] in
order to incentivise cooperative policies by rewarding good
performance on individual sub-tasks, while penalising non-
cooperative greedy policies that may benefit individual agents
but fail the global objective.

The team reward, given by Rte(o, a), where o is the
joint observation state and a is the joint action, is usually
associated with the overall task-related joint performance of
all agents. We ultimately accomplish the entire MAPF task by
maximising cumulative team rewards. We set our team reward
function according to the reward function in PRIMAL [10].
At a certain time step, the team reward received by the whole
team is equal to the sum of the rewards received by each of
the agents in PRIMAL. That is, each agent’s action will count
as part of the team reward for that time step. An agent that
makes a general move counts a reward of -0.3, an agent that
stay still off the goal counts a reward of -0.5, and an agent
that collides with other agents counts a reward of -2. When the
entire MAPF task is completed, the team will receive a team
reward of value +20 ∗ k, where k is the number of agents.

Notice that such team rewards are actually sparse that the
team is only rewarded when the entire task is completed.
This leads to difficulties in exploration as the reinforcement
learning method struggles to find a high-value trajectory
during the training. In this work, we also remain individ-
ual rewards to help with the exploration in the first two
curriculums. The individual rewards, given by Rin(o, a) =
(Rin

1 (o1, a1), R
in
2 (o2, a2), . . . , R

in
k (ok, ak)), are independently

received by each agent at each time step. In order to make the
individual rewards work to guide exploration, we have slightly
modified the rewards in PRIMAL to make them more dense.
Instead of receiving a reward of +20 when completing the
entire MAPF task, an agent receives a reward of +20 earlier
when it completes its own goal. Our final individual rewards
for each agent are shown in Table I.

TABLE I
THE INDIVIDUAL REWARD.

Individual Action Reward
Move to the goal at the first time +20.0

Agent collision -2.0
Common move -0.3

Stay off the goal -0.5
Stay on the goal 0.0

D. Curriculum Learning

The optimization goal of multi-agent reinforcement learning
is to maximize the cumulative team rewards. However, the
team rewards are quite sparse in the MAPF task, as defined
in Section C. An appropriate approach is to utilise dense
individual rewards to assist with training. The curriculums in
CPL are set up to exploit individual rewards, allowing agents
to learn cooperative team strategies stage by stage, starting
from simple individual values.
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a) Curriculum 1 - Single-Agent Path Finding: In the
first stage, all training data is generated by a single agent in
obstacle grid worlds. The agent feeds the observation, the goal
information and the agent index (all zero) to a deep Q-value
network (DQN) [24] which outputs action values. The network
structure is the same as the agent network used in PRIMAL
[10], consisting of linear layers, convolutional layers and an
LSTM layer, as shown in the left part of Fig.2. Then, we
calculate the TD error between the individual reward and the
network output as a loss function for network training:

L1 = [(Rin + γmax
at+1

Q̃(ot+1, at+1|θ))− Q̃(ot, at|θ)]2. (1)

Rin is the individual reward received at the current time step.
γ is the discount factor. Q̃(ot, at|θ) is the estimated action
value output by the network given the network parameter θ,
and the superscript t denotes the time step. Curriculum 1 is
easy to learn and is designed to teach the agent the basic
skill of moving towards the destination while avoiding static
obstacles.

b) Curriculum 2 - Multi-Agent Path Finding: In the
second stage, instead of using the training data generated by
a single agent, we directly place k agents required for the
application in the grid worlds, generating path-finding data
where agents may collide with each other. To be able to
exploit the skills learned in curriculum 1, the Q-value network
parameter θ for curriculum 2 is inherited directly from the
Q-value network at the end of training in curriculum 1. In
this stage, we still do not consider the task of cooperation
among agents. We use the subscript i on the individual-related
variables such as reward, observation state and action to denote
the agent index, and the loss function for this stage is:

L2 =

k∑
i=1

[(Rin
i + γmax

at+1
i

Q̃i(o
t+1
i , at+1

i |θ))− Q̃i(o
t
i, a

t
i|θ)]2.

(2)

In effect, each term of the summation is a TD error made
by each agent based on the its network output Q-value and
its received individual reward. Curriculum 2 focuses on the
skills of path-finding and collision avoidance in a multi-agent
environment. At this point, each agent’s strategy remains
selfish, as they only act to achieve their own goal for the
reward. However, with dense individual rewards, the agents
discover those trajectories that accomplish their goals quickly,
alleviating the exploration problem that sparse rewards would
pose, in preparation for the next stage.

c) Curriculum 3 - Cooperative Multi-Agent Path Finding:
In the third stage, we use the data generated by the same
environment as in the second stage. So this stage inherits not
only the network parameters learned in curriculum 2, but also
the replay buffer in curriculum 2. In this stage, our goal is
to evaluate the value of the agents’ joint actions to the team
Qteam(o, a) and to select the strategy that makes the most
team value. Qteam is related to Qi by Qteam =

∑k
i=1 wiQi.

We use a mixing network to fit the weights wi in the formula.
In addition, we make our method able to extract decentralised
policies for distributed execution. For consistency, it is neces-
sary to ensure that the global argmax operation performed on
Qteam yields the same result as a set of argmax operations
performed on each Qi:

argmax
a

Qteam(o, a) =

argmaxa1
Q1(o1, a1)
...

argmaxak
Qk(ok, ak)

 . (3)

This allows each agent to participate in distributed execution
by selecting greedy actions only for its Qi. Such monotonicity
can be enforced by a constraint on the relationship between
Qteam and each Qi:

∂Qteam

∂Qi
≥ 0,∀i ∈ {1, . . . , k}. (4)
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TABLE II
THE COMPARISON OF ALGORITHMS IN DIFFERENT ENVIRONMENTS

Methods 8 Agent (0%, 10%, 20%, 30% Obstacle Densities)
CA↓ CO↓ SR↑ MS↓ CR↓ TM↓

CPL 0.3 0.6 1.2 3.2 0.0 0.0 0.0 0.0 100 99 94 65 25 31 45 124 0.02 0.02 0.03 0.03 111 121 150 282
PRIMAL 1.9 3.0 3.0 6.0 0.0 0.0 0.0 0.0 93 90 48 15 35 63 149 234 0.06 0.05 0.02 0.03 221 233 345 565

PICO 0.6 0.6 1.3 2.3 0.0 0.0 0.0 0.0 100 96 55 25 27 42 135 205 0.02 0.01 0.01 0.01 124 143 290 463

Methods 16 Agent (0%, 10%, 20%, 30% Obstacle Densities)
CA↓ CO↓ SR↑ MS↓ CR↓ TM↓

CPL 2.8 3.7 5.3 16.1 0.0 0.0 0.0 0.0 100 95 81 22 27 41 84 213 0.10 0.09 0.06 0.08 221 249 374 780
PRIMAL 6.6 8.3 11.6 17.6 0.0 0.0 0.1 0.1 92 88 50 3 57 72 176 249 0.11 0.12 0.07 0.07 482 510 766 1396

PICO 3.0 3.9 5.0 8.0 0.0 0.0 0.0 0.0 100 95 57 7 31 49 145 240 0.10 0.08 0.03 0.03 251 299 526 1292

Methods 32 Agent (0%, 10%, 20%, 30% Obstacle Densities)
CA↓ CO↓ SR↑ MS↓ CR↓ TM↓

CPL 11.9 17.4 30.3 45.6 0.0 0.0 0.0 0.0 100 92 50 0 32 58 159 256 0.38 0.30 0.19 0.18 471 564 1032 3603
PRIMAL 26.2 30.5 47.3 98.3 0.0 0.4 1.6 2.1 92 72 9 0 54 108 245 256 0.49 0.28 0.19 0.38 958 1094 2227 3431

PICO 14.8 20.6 36.3 83.4 0.0 0.2 1.3 1.6 100 75 19 0 38 97 225 256 0.39 0.21 0.16 0.33 551 774 1713 3176

Methods 64 Agent (0%, 10%, 20%, 30% Obstacle Densities)
CA↓ CO↓ SR↑ MS↓ CR↓ TM↓

CPL 84 109 101 109 0.0 0.0 0.0 0.0 80 20 0 0 92 218 256 256 0.91 0.50 0.39 0.43 1230 2204 7630 8566
PRIMAL 116 171 342 635 0.1 2.3 8.0 36.1 75 7 0 0 111 242 256 256 1.04 0.71 1.34 2.48 2419 3680 6611 9157

PICO 91 128 280 591 0.4 8.8 38.4 130.3 83 13 0 0 94 225 256 256 0.96 0.57 1.09 2.31 1473 2621 5342 7714

We use an architecture consisting of an agent network, a
mixing network and a set of hypernetworks [25] to represent
Qteam. Fig.2 illustrates the overall setup. All agents share a
single agent network with the same network structure as in the
previous two curriculums. The current individual observation
state oi is input at each time step and the individual action
values Qi is output. The mixing network is a feed-forward
neural network that takes the output of the agent network
as input and mixes it monotonically to produce the value
of Qteam. To enforce the monotonicity constraint of (4), the
weights of the mixing network are restricted to non-negative
values. The weights of the mixing network are generated by
separate hypernetworks. Each hypernetwork takes the global
state s as input to generate a layer of weights for the mixing
network, where the global state s is a multi-channel two-
dimensional matrix describing the global grid world. Each
hypernetwork includes a series of the same convolution and
pooling layers as the agent network, and a linear layer followed
by an absolute activation function, to ensure that the weights
of the mixing network are non-negative. The output of the
hypernetwork is then a vector which is reshaped into a matrix
of appropriate size. The bias is generated in the same way,
but is not restricted to non-negative values. The final bias is
generated by a 2-layer hypernetwork with ReLU nonlinearity.
The loss function for the approximator is:

L3 =[(Rte + γmax
at+1

Q̃team(ot+1, at+1, st+1|θ, ϕ))

− Q̃team(ot, at, st|θ, ϕ)]2,
(5)

where ϕ is the parameter of the hypernetworks. Curriculum 3
makes use of the global state to calculate the TD error between
the team reward and the team value, ultimately maximising
the cumulative team rewards. Due to Equation (3), the agents
can select the actions that maximise the individual values in a
distributed manner. This is a paradigm of centralized training
with decentralized execution.

IV. EXPERIMENT

A. Experiment Settings

In this section, we conduct experiments in typical random
obstacle grid worlds with reference to the setup in PICO [8].
Importantly, to emphasise the generalisation of our methods,
all training and test grid worlds are generated randomly, rather
than doing reinforcement learning on a specific map. In the
training phase, the size of the grid world is fixed at 20 × 20,
and the size of the observation window is fixed at 11 × 11. The
content of the world for each epoch is random. Specifically,
the obstacles are randomly generated in the world according
to a certain probability (or density), and the start position and
the goal position of each agent are randomly generated in
a random piece of connected area in the world. To measure
the performance of the methods under different settings, the
number of agents varies in four cases: 8, 16, 32, and 64,
and the density of obstacles varies in four cases: 0%, 10%,
20%, and 30%. In the test phase, 100 different grid worlds
are randomly generated with the same number of agents and
obstacle density as in the training phase. The final comparison
with baselines is based on agents’ average performance across
all these test grid worlds.

In this work, representatives of learning-based methods,
PRIMAL and PICO, are chosen as baselines. PRIMAL [10]
is a centralized training with decentralized execution method
that uses search-based method ODrM* [18] as a global expert
planner to guide agents in imitation learning, combined with
reinforcement learning. PICO [8] is a communication-based
method, which learns to predict the local priority of each
agent by imitation learning and generates a time-varying
communication topology based on the obtained local priorities.
For all of these methods, including ours, the maximum length
of individual paths planned by agents is limited to 256. The
performance is evaluated on 6 different measurements as
follows:
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• Collision with agents (CA) - Number of collisions with
other agents.

• Collision with obstacles (CO) - Number of collisions with
static obstacles.

• Success rate (SR) - Rate of successful solutions for the
entire team.

• Makespan (MS) - The time span to complete the entire
task.

• Collision rate (CR) - CA / MS.
• Total moves (TM) - Number of non-still actions taken by

all agents.
We train our networks using a single thread and a single

GPU for days. We train curriculum 1 and curriculum 2 for
5000 episodes each, and train curriculum 3 until convergence.
For the discount, we set that γ = 0.95. For the ϵ-greedy policy,
we set that ϵ = 0.05. Moreover, we use a learning rate of 5e-4,
a batch size of 32, and a replay buffer size of 5000.

B. Results Analysis

Table.II shows the comparison results of CPL and baselines
on 6 measurements under different settings of obstacle density
and number of agents. The number of agents varies in four
cases: 8, 16, 32, and 64, and the density of obstacles varies in
four cases: 0%, 10%, 20%, and 30%. The measurements with ↑
stand that bigger is better, and the measurements with ↓ stand
that smaller is better. In each column, the bolded numbers
stand for the best results over all methods.

In terms of CA, the number of agent collisions of CPL
was close to PICO most of the time and significantly lower
than PRIMAL, suggesting that the collision avoidance skills
trained in curriculum 2 still work in the later stage of training.
In terms of CO, the number of obstacle collisions of CPL is
consistently 0, as the action space in CPL states that collisions
with static obstacles are illegal actions. In terms of SR, CPL
has a significantly higher success rate than the other two
baselines, especially in environments with large number of
agents and high obstacle density. The key to success in com-
plex environments is the simple-to-hard learning approach of
CPL, which is in line with the human intuition for learning to
complete a difficult task. In terms of MS, the solutions of CPL
always have higher quality, i.e. agents are able to complete
path-finding tasks more quickly. This is because the goal of
maximising cumulative team rewards as defined in CPL is
more in line with the optimisation goal of MAPF tasks than
other baselines based only on individual rewards. In terms of
CR, CPL performs mediocrely, because the ratio relationship
between the number of collisions and the time makespan is not
reflected in the cumulative team rewards. If CR is to be used as
an indicator, CPL will need to incorporate this consideration in
the future. In terms of TM, which measures the total overhead
of agent movement in practice, CPL also performs well.

C. Ablation Studies

To further analyze the effectiveness of the curriculum learn-
ing, we conduct ablation studies to verify the impact of the
progressive curriculums on the performance of the algorithm.

(a) Comparison between CPL and non-CPL on CA

(b) Comparison between CPL and non-CPL on SR

(c) Comparison between CPL and non-CPL on MS

Fig. 3. The results of the ablation experiments.

Specifically, we propose a method that does not include the
first two curriculums, denoted non-CPL, in which the training
process starts directly from curriculum 3 and trains the agent
network, the mixing network and the hypernetworks from
scratch by team rewards.

We conduct experiments on random grid worlds with a
high obstacle density of 30% and a number of agents of 8
to compare the performance of CPL with its ablated version.
The comparison results are shown in Fig.3. First, as shown
in Fig.3(a), the number of agent collisions of CPL explodes
just after the 5000th episode, caused by the transfer from
the curriculum 1 single-agent environment to the curriculum
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2 multi-agent environment. Thereafter, the numbers of agent
collisions of both methods remain at roughly the same level,
as they have the same optimization objective in the final stage.
Second, as shown in Fig.3(b), the success rate of CPL rises
rapidly in the first stage (the 0th-5000th episodes) and also
starts to rise around the 3000th episode in the second stage
(the 5001th-10000th episodes). Moreover, even after entering
the third stage, the success rate of CPL is higher than that
of non-CPL with the same total number of episodes, which
verifies that the first two curriculums in CPL speed up the
learning. Finally, as shown in Fig.3(c), CPL also outperforms
non-CPL in makespan, achieving a lower path cost. The results
fully verify the significance of the curriculums in CPL for
improving training efficiency.

V. CONCLUSION

This paper proposes CPL based on the CTDE paradigm
and the curriculum learning framework to solve MAPF tasks.
CPL retains the advantages of learning-based methods, i.e.
distributed decision-making, and enables agents to acquire
collaborative skills during the training. To counter the explo-
ration problem posed by sparse team rewards and to improve
training efficiency, CPL takes advantage of the fact that MAPF
has explicit sub-tasks and leverages curriculum learning to
transfer from simple sub-tasks to the original task by network
parameter inheritance for more complex environments. The
training process is divided into three stages, with the training
objectives being single-agent path finding, multi-agent path
finding and cooperative multi-agent path finding, respectively.
Agents learn strategies for completing individual goal sub-
tasks from dense individual rewards and then learn strate-
gies for maximising the team return from team rewards.
Experiments show that CPL outperforms other state-of-the-
art learning-based methods in terms of both success rate
and makespan, especially in environments with high obstacle
density and agent number. There are also ablation experiments
in high obstacle density environments that demonstrate the
significance of curriculum learning used in CPL for improving
the learning speed.
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