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ABSTRACT
Automatic layout generation models can generate numerous design
layouts in a few seconds, which significantly reduces the amount of
repetitive work for designers. However, most of these models con-
sider the layout generation task as arranging layout elements with
different attributes on a blank canvas, thus struggle to handle the
case when an image is used as the layout background. Additionally,
existing layout generation models often fail to incorporate explicit
aesthetic principles such as alignment and non-overlap, and neglect
implicit aesthetic principles which are hard to model. To address
these issues, this paper proposes a two-stage content-aware layout
generation framework for poster layout generation. Our framework
consists of an aesthetics-conditioned layout generation module and
a layout ranking module. The diffusion model based layout genera-
tion module utilizes an aesthetics-guided layout denoising process
to sample layout proposals that meet explicit aesthetic constraints.
The Auto-Encoder based layout ranking module then measures the
distance between those proposals and real designs to determine the
layout that best meets implicit aesthetic principles. Quantitative and
qualitative experiments demonstrate that our method outperforms
state-of-the-art content-aware layout generation models.

CCS CONCEPTS
• Human-centered computing→ Interaction design process
and methods; • Computing methodologies→ Computer vi-
sion problems.
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1 INTRODUCTION
Automatic layout generation has become an essential tool in mod-
ern design and engineering. It offers a faster, more efficient, and
more accurate alternative, enabling designers to focus on the cre-
ative aspects of their work. Benefiting from the excellent generation
performance of deep generative models, recent automatic layout
generation models can generate numerous layouts in seconds. How-
ever, most current models [1, 3, 9, 15–17, 20–22, 27, 32] define the
layout generation problem as arranging elements with different
attributes on a blank canvas. Although this setting is suitable for
some traditional design situations, such as document typesetting or
web page layout, it is not ideal for the layout design of advertising
posters or magazine covers, where an image is used as background.
Content-aware layout generation, also known as visual-textual
presentation [33] layout generation, considers the task of placing
texts and embellishments on a background image. Following [36],
we generally call this kind of task poster layout generation. It is
challenging to generate high-quality poster layouts, since we need
to consider not only the relationships between layout elements, but
also the relationships between layout elements and the background
image.

In recent years, various methods have been proposed to address
the challenges posed by poster layout generation. Template-based
methods [14, 33] directly blend the text templates and the back-
ground image, which often fail to generate flexible and various lay-
out results due to the lack of highly professional design templates.
Early template-free poster layout generation methods [34] first use
a layout proposal algorithm to generate candidate text regions, then
use a deep scoring network to assess the aesthetic quality of the
candidate results. Due to the heavy computation, these methods
are only suitable for generating simple poster layouts. With the
development of deep learning, using deep generative models such
as VAEs [19] and GANs [7] to generate poster layouts has gained
more research interests [2, 8, 35, 36]. By learning the distribution of
real layouts, these models can generate decent poster layouts with-
out the need for templates or manually-designed rules. However,
current deep generative models still have obvious shortcomings or
room for improvement. First, most GAN-based methods [2, 35, 36]
directly use the visual features of background images as conditional
inputs to control the generation process. However, studies [4, 13]
have found that mode collapse [4] easily appears in these strongly
conditional generative models, which results in similar or degraded
samples. Second, these methods do not exploit existing layout aes-
thetic principles to control the generation process, which results
in the inability to guarantee the quality of the generated layouts.
Therefore, our research goal is to explore a new method that can
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fully utilize the generative power of deep generative models while
considering both explicit and implicit aesthetic principles.

Considering the superiority of the diffusion models in generation
quality and diversity, we choose LayoutDM [3] as our base layout
generation model. However, two major challenges need to be ad-
dressed before using it to generate poster layouts that meet aesthetic
principles. First, the existing diffusion models [6, 10, 11, 23, 28] lack
a mechanism that can utilize an explicit objective function, such
as overlap ratio and alignment metrics, to control the generation
process. Second, existing models neglect implicit aesthetic prin-
ciples such as canvas space allocation and page balance. How to
effectively model them remains an open problem.

In this paper, we propose a two-stage poster layout generation
framework that considers both explicit and implicit aesthetic prin-
ciples. Given an input background image and custom aesthetic
constraints, our framework tends to generate high-quality poster
layouts that satisfy both explicit and implicit design aesthetics. The
first stage aims to generate high-quality layout proposals with ex-
plicit aesthetic constraints through a layout generation module
based on LayoutDM [3]. Specifically, we incorporate explicit aes-
thetic constraints into the diffusion reverse process by utilizing
optimization in the latent space during our iterative layout denois-
ing process. Generated layout proposals are then used as inputs for
the second stage. The second stage aims to select layouts that meet
implicit aesthetic principles (such as better canvas space allocation
and page balance) through a layout ranking module. To this end,
we first extract the salient object from the background image using
a salient object detection (SOD) [31] network, and combine it with
the layout proposals generated in the first stage to construct novel
composite layouts. Then, an Auto-Encoder based layout ranking
module pretrained on real poster designs is used to rank these com-
posite layouts with the reconstruction loss. The key insight here is
that the Auto-Encoder can efficiently reconstruct human-designed
poster layouts which accurately meet layout aesthetic principles.
Therefore, if the composite layout is far from the distribution of the
real poster designs, the reconstruction loss will be relatively large.
For simplicity, we name the proposed layout generation framework
as CA-LayoutDM. Extensive experiments show that our method
outperforms state-of-the-art poster layout generation methods.

In summary, our main contributions are as follows:

• We propose a novel two-stage content-aware layout gener-
ation framework to generate poster layouts. Compared to
existing models, our method generates layouts that adhere to
aesthetic principles while maintaining quality and diversity.

• We propose a novel aesthetics-guided layout denoising pro-
cess conditioned on explicit aesthetic principles to generate
layout proposals, and an Auto-Encoder based layout ranking
module to select the layout that best satisfies overall layout
aesthetic principles.

• Extensive experiments demonstrate that our method outper-
forms state-of-the-art models in terms of visual quality on
both content-agnostic and content-aware metrics.

2 RELATEDWORK
Content-agnostic layout generation has been a long-standing re-
search topic, involving the arrangement of graphic layout elements

on a blank canvas. Early methods embed design rules into hand-
crafted energy functions [24, 25], but often fail to generate complex
and diverse layout results. LayoutVAE [16] and LayoutGAN [22]
are the first to introduce deep generative networks to layout gen-
eration, facilitating data-driven approaches to layout generation
tasks. Subsequent works [1, 9, 15, 20, 21, 27, 32] improve the quality
of generated layouts by developing different models based on gen-
erative networks such as VAEs [19] and GANs [7]. LayoutDM [3]
is a recently proposed layout generation model that leverages the
generative performance of diffusion models, and has improved
quality and diversity on content-agnostic layout generation. As
the development process continues, a research trend is to impose
more constraints on the models to get desired results. NDN [21],
for instance, represents the relative positional relationships of lay-
out elements as a complete graph and uses graph convolutional
neural networks to generate graphic layouts that satisfy these rela-
tionships. Similarly, CLG-LO [17] designs user-specific constraints
based on aesthetics and element relationships, improving the de-
gree of control over the results through constrained optimization in
the latent space. Finally, BLT [20] represents the layout as a discrete
sequence, generating layouts conditioned on the categories and
size of layout elements via iterative decoding operations.

Content-aware layout generation, on the other hand, requires
considering visual information in the background image when plac-
ing texts, logos, and embellishments on it. Early methods [14, 33]
rely on templates and heuristic rules designed by designers, which
can quickly synthesize layouts but lack diversity and versatility.
To overcome these shortcomings, template-free methods are de-
veloped. SmartText [34] generates text-anchor proposals for text
bounding boxes and then ranks them using a binary classifier based
scoring network. Vinci [8] uses a VAE to learn the multimodal dis-
tribution of product images and corresponding design sequences,
then samples from it. ContentGAN [35] and ICVT [2] extract vi-
sual features from images using a visual backbone, and CGL [36]
further considers the salient regions of the background. Essen-
tially, these three models are directly conditioned on the visual
features. ContentGAN relies on concatenating-based conditioning,
while ICVT and CGL utilize Cross-Attention based conditioning.
Although there are some improvements in terms of content-aware
metrics, such as saliency overlap, the coarse-grained and strongly
conditional nature of these approaches still leads to a noticeable
loss of diversity and quality in the generated results.

3 OUR METHOD
3.1 Problem Formulation
A poster layout l consists of several layout elements with geometric
parameters and attributes. It can be depicted as a variable-size set:

l = {(𝑔1, 𝑓1), (𝑔2, 𝑓2), ..., (𝑔𝑖 , 𝑓𝑖 ), ..., (𝑔𝑁 , 𝑓𝑁 )}

where 𝑁 is the number of elements in the layout,𝑔𝑖 = [𝑥𝑖 , 𝑦𝑖 ,𝑤𝑖 , ℎ𝑖 ]
is a vector representing the geometric parameters (center coordi-
nates and size) of 𝑖-th element in the layout, 𝑓𝑖 is the attributes of
𝑖-th element, which might be category labels or other features. We
use sequences g = (𝑔1, 𝑔2, ..., 𝑔𝑁 ) and f = (𝑓1, 𝑓2, ..., 𝑓𝑁 ) to represent
the geometric parameters and attributes of all elements in a layout
respectively. Given a background image bg and a layout attributes
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Figure 1: The architecture of our content-aware poster layout generation framework. It consists of a layout generation module
and a layout ranking module. Layout generation module takes the network architecture of LayoutDM [3].

sequence f as input, our goal is to generate decent element geome-
try parameters g to construct a high-quality and visually-pleasing
poster layout.

3.2 Architecture Overview
Figure 1 illustrates the architecture of our content-aware layout
generation framework. It consists of two primary components: a
layout generation module and a layout ranking module. The DDPM-
based [12] layout generation module has the same architecture as
LayoutDM [3]. It generates layout proposals conditioned on user-
specific aesthetic constraints and the provided element attributes.
The layout ranking module is a transformer-based Auto-Encoder
that assesses the generated layout proposals considering both the
layout elements and the input background image.

Formally, denote the layout generation module, user-specific aes-
thetic constraints, and element attributes in the layout as 𝑃𝐺 , 𝑐𝑜𝑛𝑠𝑡
and f respectively. 𝑃𝐺 generates𝑀 layout proposals conditioned
on 𝑐𝑜𝑛𝑠𝑡 and f :

{g10, g
2
0, · · · , g

𝑖
0, · · · , g

𝑀
0 } = 𝑃𝐺 ({g𝑖𝑇 }

𝑀
𝑖=1, f, 𝑐𝑜𝑛𝑠𝑡) (1)

where𝑀 is the number of the generated proposals, g𝑖
𝑇
is the random

Gaussian noise used to generate 𝑖-th layout proposal, and g𝑖0 is the
generated geometric parameters of all the layout elements in 𝑖-
th proposal. Then, we use the layout ranking module to rank the
proposals:

{(g𝑗0, f, sal)}
𝑀
𝑗=1 = 𝐿𝑅𝑎𝑛𝑘𝑒𝑟 ({(g𝑖0, f, sal)}

𝑀
𝑖=1) (2)

where 𝐿𝑅𝑎𝑛𝑘𝑒𝑟 is our layout ranking module, sal is the saliency
map of the input background image. We have the following layout
rank order after layout ranking:

𝑟𝑎𝑛𝑘 (g10, f, sal) < 𝑟𝑎𝑛𝑘 (g20, f, sal) · · · < 𝑟𝑎𝑛𝑘 (g𝑀0 , f, sal) (3)

where g𝑗0 ∈ {g𝑖0}
𝑀
𝑖=1, 𝑗 = 1, 2, · · · , 𝑀 , we ultimately select the layout

proposal with the highest rank, i.e., (g10, f) as our final result.

3.3 Salient Object Detection
We use a pretrained salient object detection network F3Net [31] to
detect the position of the salient element in the background image.
F3Net takes the background image bg as input and output a gray
image sal whose pixel values represent the degree of saliency.

3.4 Layout Generation
We train our layout generation module following the instruction in
layoutDM and use the DDIM [30] sampler to further speed up the
sampling process, reducing the original 1000-step iteration to 50
steps. This leads to the following iterative denoising process:

g𝜏𝑡−1 =
√
𝛼𝜏𝑡−1 (

g𝜏𝑡 −
√︁
1 − 𝛼𝜏𝑡 𝝐

𝜃
𝜏𝑡
(g𝜏𝑡 , f)√

𝛼𝜏𝑡
) +

√︁
1 − 𝛼𝜏𝑡−1𝝐

𝜃
𝜏𝑡
(g𝜏𝑡 , f)

(4)
where 𝜏 is a subsequence of [1, 2, · · · ,𝑇 ] of length 𝑆 , 𝛼1:𝑇 ∈ (0, 1]
is a decreasing sequence to parameterize the Gaussian transitions
described in [30], and 𝜖𝜃𝜏𝑡 (g𝜏𝑡 , f) is a conditional noise predictor
modeled by a neural network.

Unlike the native reverse diffusion process, we guide the denois-
ing process with explicit aesthetic constraints to further improve
the quality of the sampled layout proposals. To this end, we first
define an objective function 𝐹 to model the user-specific aesthetic
constraints. 𝐹 should be a scalar function differentiable with respect
to g, which consists of a series of differentiable constraint terms:

𝐹 (g, f) = 𝑤𝑎𝑅𝑎𝑙𝑖𝑔𝑛 (g, f)−𝑤𝑢𝑅𝑢𝑛𝑑 (g, f)+𝑤𝑜𝑅𝑜𝑣𝑟𝑙𝑝 (g, f)+𝑤𝑠𝑅𝑠𝑎𝑙 (g, f)
(5)

where 𝑅𝑎𝑙𝑖𝑔𝑛 , 𝑅𝑢𝑛𝑑 and 𝑅𝑜𝑣𝑟𝑙𝑝 are the functions that compute the
Alignment, Underlay-overlap and Overlap metrics. 𝑅𝑠𝑎𝑙 is a func-
tion that computes the overlap between layout elements and the
background salient element. We describe the methods to compute
these terms in Sec. 4.1.2.𝑤𝑎 ,𝑤𝑢 ,𝑤𝑜 and𝑤𝑠 are the corresponding
weights. These weights are hyperparameters fixed to 1, 0.6, 0.1 and
0.3, respectively in all the experiments.
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(a) Aesthetics-guided layout denoising (b) Architecture of the layout ranking module

Figure 2: a) Illustration of the aesthetics-guided layout denoising. We perform optimization in the 𝝐-space at each denoising
step to make the result satisfy explicit aesthetic constraints. b) Architecture of our Auto-Encoder based layout ranking module.

Then, we take 𝐹 as the objective function and perform gradient
descent in the 𝝐-space at each denoising step, so as to generate
samples that ultimately minimize 𝐹 . In particular, we have:

ĝ0 =
g𝜏𝑡 −

√︁
1 − 𝛼𝜏𝑡 𝝐√
𝛼𝜏𝑡

(6)

𝐹 (𝝐, 𝝐0, f) = 𝐹 (ĝ0, f) + ∥𝝐 − 𝝐0∥2 (7)

𝝐 = 𝝐 − ∇𝝐𝐹 (𝝐, 𝝐0, f) (8)

where 𝐹 is the differentiable objective function we defined, 𝝐0 is
the output of noise predictor at time step 𝜏𝑡 , and 𝝐 are initialized
with 𝝐0. We take several gradient descent steps at each denoising
step, and continue the denoising process using formula 4 with the
modified 𝝐 . Intuitively, we estimate g0 using formula 6 at each
denoising step 𝑡 , and then perform gradient descent in the 𝝐-space,
to search for a 𝝐 with a smaller estimated 𝐹 value. Regularization
term ∥𝝐 − 𝝐0∥2 is used to keep the sampling process following the
original diffusion flow, preventing degrading the layout quality.

We iteratively perform 𝑆 aesthetics-guided denoising steps to
generate a g0, and repeat this process𝑀 times to obtain𝑀 layout
proposals. These proposals serve as the input for our layout rank-
ing module. We illustrate the aesthetics-guided layout denoising
process described above in Figure 2a and Algorithm 1.

3.5 Layout Ranking
The layout ranking module ranks the layout proposals generated
by the layout generation module by measuring the distribution dis-
tance between generated layouts and high-quality human designs.
We first take a threshold operation to get the binarized saliency
mask salmask from the saliency map sal.

salmask𝑖 𝑗 =
{

1 sal𝑖 𝑗 > 𝑡ℎ𝑟𝑒𝑑

0 sal𝑖 𝑗 ≤ 𝑡ℎ𝑟𝑒𝑑
(9)

we use the minimum bounding rectangular to bound the saliency
mask, and use the geometric parameters of the bounding box and
a new category to define a special type of layout element e𝑠𝑎𝑙 =
(𝑔𝑠𝑎𝑙 , 𝑓𝑠𝑎𝑙 ). We add the salient element e𝑠𝑎𝑙 into the original layout
proposal l to construct a novel composite layout l∗ = (g∗, f∗), which

Algorithm 1: Aesthetics-guided layout proposal sampling

Require: pretrained layoutDM with a layout denoiser 𝝐𝜃𝑡
Input: Objective function 𝐹 regarding user-specific

aesthetic constraints, layout attributes f , proposal
numbers𝑀 , gradient step number 𝐺𝑟𝑎𝑑𝑠𝑡𝑒𝑝

Output: Layout proposals set P with𝑀 proposals
P = ∅;
for 𝑖 = 1, 2, · · · , 𝑀 do

g𝑇 ∼ N(0, I);
for 𝑡 = 𝑆, · · · , 1 do

𝝐 = 𝝐0 = 𝝐𝜃𝜏𝑡 (g𝜏𝑡 , f);
for 𝑟 = 1, 2, · · · ,𝐺𝑟𝑎𝑑𝑠𝑡𝑒𝑝 do

ĝ0 =
g𝜏𝑡 −

√
1−𝛼𝜏𝑡 𝝐√
𝛼𝜏𝑡

;
Take gradient descent step:

𝝐 = 𝝐 − ∇𝝐𝐹 (𝝐, 𝝐0, f)
end

g𝜏𝑡−1 =
√
𝛼𝜏𝑡−1 (

g𝜏𝑡 −
√
1−𝛼𝜏𝑡 𝝐√
𝛼𝜏𝑡

) +
√︁
1 − 𝛼𝜏𝑡−1𝝐 ;

end
P = P ∪ (g0, f);

end
return P

not only contains element information, but also contains salient
object information in the background image.

l∗ = {(𝑔𝑠𝑎𝑙 , 𝑓𝑠𝑎𝑙 ), (𝑔1, 𝑓1), (𝑔2, 𝑓2), ..., (𝑔𝑖 , 𝑓𝑖 ), ..., (𝑔𝑁 , 𝑓𝑁 )} (10)

Following the above composite layout representation, we build a
novel composite layout dataset based on the real poster dataset.
After creating the composite layout dataset, we train a transformer-
based Auto-Encoder on it. The Auto-Encoder is optimized to learn a
compressed representation of the distribution of composite layouts,
including both background salient object and layout elements. The
architecture of the layout ranking module is illustrated in Figure 2b.

Our layout ranking module takes inspiration from autoencoder-
based out-of-distribution detection (OOD) methods [5, 29, 37]. It is
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Table 1: Comparison with content-agnostic methods. The values of Balance are multiplied by 1000x for visibility. “Occ.” means
the ratio of non-empty layouts generated by models.

Models Occ.↑ Overlap↓ Underlay Ovlp↑ Alignment↓ FID↓ Saliance Ovlp↓ Balance↓
LayoutTranformer [9] 100 0.0156 0.9516 0.0049 5.34 0.175 73.8
VTN [1] 99.9 0.0130 0.9698 0.0047 10.3 0.190 70.8
LayoutGAN++ [17] 100 0.0404 0.9859 0.0015 25.91 0.159 73.7
LayoutDM [3] 100 0.0176 0.9728 0.0033 5.6 0.158 74.6
Ours 100 0.0102 0.9922 0.0027 13.62 0.092 58.5
Real Data 100 0.0004 0.9946 0.0035 0.68 0.026 59.6

Table 2: Comparison with content-aware methods.

Models Occ.↑ Overlap↓ Underlay Ovlp↑ Alignment↓ FID↓ Saliance Ovlp↓ Balance↓
ContentGAN [35] 93.4 0.0397 0.8626 0.0071 26.64 0.165 71.4
CGL [36] 99.7 0.0256 0.9413 0.0098 36.24 0.077 62.8
Ours 100 0.0102 0.9922 0.0027 13.62 0.092 58.5
Real Data 100 0.0004 0.9946 0.0035 0.68 0.026 59.6

trained to reconstruct in-distribution samples (high-quality human-
designed poster layouts), which allows it to effectively reconstruct
inlier data samples while distorting out-of-distribution samples
that violate implicit aesthetic principles for poster layouts. Thus,
reconstruction loss is an appropriate metric for measuring the
distribution distance between generated layouts and high-quality
human-designs. We rank the layout proposals, with layouts having
lower reconstruction loss receiving a higher rank.

3.6 Training and Inference
We train our layout generation module following the instruction
in LayoutDM [3] and optimize random term 𝐿𝑡 , which are the KL
divergences between 𝑝𝜃 (g𝑡−1 |g𝑡 , f) and forward process posteri-
ors. We train our layout ranking module using the reconstruction
loss on both continuous domains (geometric parameters) and dis-
crete domains (element category attributes). The loss function is
constructed as follows:

𝐿𝑟𝑒𝑐 (Θ) = ∥g∗ − g∗𝑟𝑒𝑐 ∥2 + 𝜆𝑐𝑒 ·𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (f∗, f∗𝑟𝑒𝑐 ) (11)

where Θ is the trainable parameters of our layout ranking module,
g∗ and f∗ are the geometric parameters and attributes of all the
elements in the composite layout l∗ defined in Sec. 3.5, g∗𝑟𝑒𝑐 and f∗𝑟𝑒𝑐
are the reconstructed values. 𝜆𝑐𝑒 is the hyper-parameter to weigh
the cross-entropy loss term.

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Dataset. CGL [36] dataset collects posters from e-commerce
platforms. It comprises 60K advertising posters collected from vari-
ous product categories such as cosmetics, electronics and clothing.
The layout elements are manually classified into four categories
(logos, texts, underlays and embellishments) and annotated with
a bounding box to present their position. We use 51,818 poster-
layout pairs for training, 8,730 pairs for validation and 1,000 pure
product images for testing. Note here that other public datasets like
Crello [32] and Magazine [35] only contain visual information

for image-type elements, which is different from our setting where
an image is used as the background. Thus, all of our experiments
are performed on the CGL dataset.

4.1.2 Metrics. We employ four content-agnostic metrics (Overlap,
Underlay Overlap, Alignment, FID) and two content-aware metrics
(Saliency Overlap, Balance) to evaluate the quality of the generated
layouts. Overlap and Alignment [36] are widely used metrics to
evaluate the quality of the layout. In poster layouts, the underlay
elements often overlap with text elements, and embellishment el-
ements need not align with other elements. Therefore, we omit
related computations as in CGL [36]. Underlay Overlap [36] com-
putes the maximum overlap ratio of an underlay element with every
element from other categories. FID [18] measures the distribution
distance between two collections of layouts. We follow the method
in [18] and train a classifier to compute FID. Saliency Overlap
calculates the intersection area of all elements within the layout
and the saliency map of the background image. We normalize the
value with the area of the union of all elements. Balance measures
the compositional balance of a composite layout. We calculate the
average 𝐿2 distance between the center of a canvas and the center
of gravity of the layout elements.

4.1.3 Implement details. We use Pytorch [26] to implement our
models. We employ a 50-step DDIM sampler when generating pro-
posals. During the aesthetics-guided layout denoising process, we
use an Adam optimizer with a learning rate of 0.01 and take five
gradient descent steps at each time step. The number of layout
proposals𝑀 is set to 32 in all the experiments. Our layout ranking
module contains a symmetric encoder and decoder, each having 8
Transformer layers with an atten dim of 512. 𝜆𝑐𝑒 is set to 1 × 10−3.

4.2 Quantitative Evaluation
To quantitatively compare the generation performance of ourmethod
with state-of-the-art layout generation models, we implement Con-
tentGAN [35], VTN [1], LayoutTranformer [9] and CGL [36] based
on official codes and technical details in their papers. Moreover,
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Figure 3: Qualitative comparison results. “Trans.” denotes “LayoutTransformer” and “GANpp.” denotes “LayoutGAN++”.

we reimplement two additional layout generation models, Layout-
GAN++ [17] and LayoutDM [3], as our baseline models. Note here
that LayoutDM, LayoutGAN++ and our framework are conditional
and are designed to have element attributes in a layout as addi-
tional conditional input. At test time, We align these three models

with other unconditional models by randomly sampling element
attributes from the layouts in the validation set.

4.2.1 Comparison with content-agnostic methods. The quantitative
comparisons with content-agnostic methods are reported in Table 1.
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Figure 4: Diversity performance.We show four samples given
the same layout element attributes as conditional input. Lay-
outs generated by LayoutDM are shown for reference.

From this table, we can observe: 1) Our method outperforms exist-
ing content-agnostic models on Overlap and Underlay Overlap, and
achieves plausible results on Alignment. This demonstrates that our
method tends to generate layouts that satisfy explicit aesthetic con-
straints better, benefiting from the aesthetics-guided layout denois-
ing in the layout generation module. 2) Our method outperforms
content-agnostic methods by a large margin on Saliency Overlap
and Balance metrics, this validates the effectiveness of our method
in modeling aesthetic rules such as saliency non-overlap and page
balance accurately. 3) Our method performs slightly weaker on the
FID metric, particularly when compared to LayoutDM, which is our
layout generationmodule. This is because ourmethod generates lay-
outs that satisfy explicit and implicit aesthetic constraints through
optimization and ranking, which likely results in less distribution
coverage than content-agnostic methods.

4.2.2 Comparison with content-aware methods. The quantitative
comparisons with content-aware methods are reported in Table 2.
This table shows the following: 1) Our method significantly out-
performs the other two methods on content-agnostic metrics. This
proves that our method generates higher quality layouts, thanks
to its robust generation ability, aesthetics-guided layout sampling,
and layout ranking. 2) Our method achieves comparable results on
Balance and slightly inferior results on Saliency Overlap compared
to the SOTA model CGL. This is likely because we only consider
the saliency information of the background image and do not fully
leverage the visual information and semantic information contained
in an RGB image using a visual backbone, as CGL does.

4.3 Qualitative Results
4.3.1 Generation quality comparison. The quantitative comparison
results are shown in Figure 3. One can see that: 1) Compared with
content-agnostic methods (first four rows), content-aware methods
(last three rows) generate more harmonious and coherent layout re-
sults that blend seamlessly with the underlying background images.
For instance, text elements are positioned in a way that does not
occlude the salient object in the background, such as people or prod-
ucts, thus enhancing the overall aesthetic appeal of the generated

Table 3: Ablation of primary components in our framework.
“w/o R” and “w/o G” denotes model without layout ranking
module and without aesthetics conditioning. “Full” denotes
our full model. “None” denotes LayoutDM.

Ovrlp↓ Und.↑ Align.↓ FID↓ Sal.↓ Balance↓
None 0.0176 0.9728 0.0033 5.6 0.158 74.6
w/o R 0.0094 0.9873 0.0022 12.05 0.139 75.2
w/o G 0.0117 0.9778 0.0034 11.70 0.096 59.5
Full. 0.0102 0.9922 0.0027 13.62 0.092 58.5

layouts. This is because content-aware methods can capture the
relationships between layout elements and background images. 2)
Among the content-aware methods, our proposed approach demon-
strated superior performance in generating high-quality layouts,
especially in terms of alignment, when compared to the state-of-
the-art CGL method. Additionally, our method outperformed Con-
tentGAN in generating more visually pleasing layouts. Overall, the
results validate the effectiveness and superiority of our approach.

4.3.2 Diversity performance. The diversity of generation results
is essential in evaluating layout generation methods, as designers
may want to generate diverse and high-quality layouts for refer-
ence. However, we discover that the SOTA poster layout generation
method CGL [36] produces no diversity results. CGL can only gen-
erate one unique layout result when given a specific background
image. In contrast, our approach is capable of generating a wide
range of diverse layout results, as demonstrated in Figure 4. Specif-
ically, we generate multiple layout results conditioned on the same
layout element attributes randomly sampled from the validation
set. As shown, our method maintains high-quality results while
also incorporating desired diversity.

4.3.3 Layout proposals with different ranks. To demonstrate the
effectiveness of our layout ranking module, we present layout pro-
posals with varying ranks given the same input background image
in Figure 5. We observe that the highly-ranked layout proposals
effectively highlight the salient object, maintain the balance of the
page, and preserve the overall quality. However, the lowly-ranked
proposals often occlude the salient object in the background, in-
dicating the importance of our proposed layout ranking module.
The second stage, with layout ranking, improves the adherence
to aesthetic principles of the layout results. The original advertis-
ing poster layout dataset contains well-balanced and aesthetically
pleasing layouts where the salient object in the background is
not occluded. Hence, layout proposals that closely resemble these
human-designed layouts rank highly.

4.4 Ablation Study
We conducted ablation studies to demonstrate the effect of two
key components in our framework: the aesthetics-conditioned lay-
out generation module and the layout ranking module. To verify
the effect of the layout generation module, we replace the first
stage with native layout sampling. To verify the effect of the layout
ranking model, we skip the second stage and only generate one
layout proposal. Quantitative results are presented in Table 3. We
discover that the aesthetics conditioning significantly enhances
explicit aesthetic metrics such as overlap and alignment, while the
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Figure 5: Layout proposal examples. We show the three proposals with the highest ranks and the lowest ranks.

Figure 6: Relationship-constrained layout generation. First row: layout samples generated using our method with relationship
constraints. Second row: layout samples generated using native DDIM sampler.

layout ranking module further improves the model’s performance
on content-aware metrics.

4.5 Extended Layout Generation Tasks
Our layout generation module can incorporate not only aesthetic
constraints, but also other user-specific constraints. Inspired by
NDN [21] and CLG-LO [17], we use a complete graph to represent
the relative positional relationships between elements in a poster
layout. Then we design an objective function 𝐹𝑙𝑜𝑐 to calculate the
loss when the specified relationships are unsatisfied. The results
are shown in Figure 6. We can see that, in most cases, the results
generated by the relationship-guided layout sampling perfectly
adhere to the given constraints of relative element positions. In
contrast, the native sampling exhibits greater randomness.

5 LIMITATIONS
When modeling the relationships between layout elements and
background, our method solely considers the background’s saliency
information, failing to leverage its semantic information fully. It’s

also worth noting that our method is much slower than other ap-
proaches. This is because our method has to run the neural network
multiple times and perform additional optimization and ranking.

6 CONCLUSION
In this paper, we propose a novel two-stage content-aware lay-
out generation framework. We first parameterize layouts and de-
tect the salient object in the input background images. Then we
employ a diffusion model based layout generation model to gen-
erate layout proposals conditioned on aesthetic constraints and
element attributes. Finally, we rank the generated proposals to se-
lect the result that best satisfies aesthetic principles. Quantitative
and qualitative results demonstrate that our method outperforms
the state-of-the-art content-aware layout generation methods.
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