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ABSTRACT
Open-set Temporal Action Localization (OSTAL) is a critical and
challenging task that aims to recognize and temporally localize
human actions in untrimmed videos in open word scenarios. The
main challenge in this task is the knowledge transfer from known
actions to unknown actions. However, existing methods utilize
limited training data and overparameterized deep neural network,
which have poor generalization. This paper proposes a novel Gen-
eralized OSTAL model (namely GOTAL) to learn generalized rep-
resentations of actions. GOTAL utilizes a Transformer network
to model actions and a open-set detection head to perform action
localization and recognition. Benefitting from Transformer’s tem-
poral modeling capabilities, GOTAL facilitates the extraction of
human motion information from videos to mitigate the effects of
irrelevant background data. Furthermore, a sharpness minimiza-
tion algorithm is used to learn the network parameters of GOTAL,
which facilitates the convergence of network parameters towards
flatter minima by simultaneously minimizing the training loss value
and sharpness of the loss plane. The collaboration of the above
components significantly enhances the generalization of the repre-
sentation. Experimental results demonstrate that GOTAL achieves
the state-of-the-art performance on THUMOS14 and ActivityNet1.3
benchmarks, confirming the effectiveness of our proposed method.
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• Computing methodologies → Activity recognition and un-
derstanding.
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(a) Known action: Long Jump (b) Unknown action: Athletics

Long Jump

(c) ) Classification confidence for Athletics
by weak generalization model

Long Jump

(d) Classification confidence for Athletics
by strong generalization model

Figure 1: Open-set temporal action localization models need
strong generalization. (a) is a video of known action Long
Jump during training and (b) is a video of unknown action
Athletics during testing. Due to their similar backgrounds, as
(c) and (d) shown, the models with weak generalization tend
to classify the unknown action Athletics as a Long Jump with
high confidence, while models with strong generalization
are able to avoid this error.

1 INTRODUCTION
Temporal Action Localization (TAL), aiming to temporally recog-
nize and locate human actions in untrimmed videos, is a challenging
video understanding problem. With the remarkable advances in
video understanding [9, 19] and object detection [7, 8, 33], TAL
has been made significant breakthroughs. However, previous TAL
methods tend to fall short in reproducing their excellent perfor-
mance on the test set when applied in practical situations. This
is because most methods use the closed-set assumption that the
test set has only a predefined and limited number of categories.
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However, in practice, unknown human actions are inevitable to
appear in an open world. As a result, unknown actions are often
incorrectly classified as known actions, which increases the false
positive rate.

To relax the above closed-set condition, the Open-Set Temporal
Action Localization (OSTAL) [3] considers a realistic scenario where
test videos might include novel actions that were not present during
training. The aim of OSTAL is to not only temporally localize and
recognize the known actions but also reject the localized unknown
actions. The category number of known actions that are annotated
in standard datasets like THUMOS14 [30] and ActivityNet-1.3 [24]
are often very low (20 and 200 respectively) when compared to
the infinite number of actions that are present in the open world.
Recognizing an unknown action as unknown requires strong gen-
eralization. As shown in Fig.1, a model with weak generalization
may overfit the background, tending to recognize unknown actions
as known actions. Presently, prevailing models typically utilize
deep neural networks with numerous parameters, and learn the
parameters by minimizing the empirical error on the training set.
Although various techniques (such as batch normalization[26] and
Dropout[50]) are employed to prevent overfitting, deep learning
models demonstrate poor generalization when operating in open-
world scenarios. Increasing the number of training samples can
improve the generalization. Nonetheless, collecting video data and
manually annotating each frame of the video is time-consuming
and labor-intensive.

In order to improve the generalization of open-set temporal ac-
tion detection models, this paper proposes a novel Generalized
OSTAL model (namely GOTAL), a one-stage framework for the OS-
TAL task. Our framework is based on a Transformer network and a
open-set detection head. The former is used to model temporal ac-
tions, while the latter performs action localization and recognition.
Benefitting from the powerful temporal modeling capabilities of
the Transformer, GOTAL extracts human motion information from
videos to eliminate irrelevant information such as background. Note
here that, though the Transformer network has been employed in
closed-set scenarios (such as ActionFormer [59]), its application in
open-set scenarios has not been explored. As shown in our experi-
ments, ActionFormer does not perform well in open-set scenarios.
Since GOTAL is a heavily overparameterized model, the value of
the training loss provides few guarantees on model generalization
ability. Motivated by prior work connecting the geometry of the loss
landscape and generalization, GOTAL adopts the Sharpness-Aware
Minimization method (SAM) [20] to learn the network parame-
ters by simultaneously minimizing both the loss value and the
loss sharpness. SAM causes the parameters to converge towards
flatter minima and helps GOTAL achieve a better generalization
ability. Extensive experiments show that our method outperforms
state-of-the-art methods in realistic open-set scenarios.

In summary, our main contributions are as follows:

• We propose a novel one-stage framework (namely GOTAL)
for OSTAL tasks to improve the performance in the realistic
scenario by enhancing the generalization of the model.

• We present the first application of Sharpness-aware Mini-
mization to the challenging OSTAL task and justify its effec-
tiveness for improving the generalization of GOTAL.

• Experiments show that our proposed method achieves state-
of-the-art open-set performance on THUMOS14 and Activi-
tyNet1.3 benchmarks.

2 RELATEDWORK
Temporal Action Localization. The objective of Temporal Action

Localization (TAL) is to temporally recognize and locate human
actions in untrimmed videos. The current TAL techniques can be
broadly categorized into two paradigms: two-stage and one-stage
approaches. In the two-stage approaches, class-agnostic temporal
proposals are first generated, followed by classification and bound-
ary refinement of each proposal. There have been several prior
studies that have concentrated on action proposal generation tech-
niques. Some of these methods include classifying anchor windows
[6, 18, 25] or detecting action boundaries [22, 35, 37, 60]. More re-
cent approaches to this problem make use of a graph representation
[1, 57]. Some other researchers have incorporated both proposal
generation and classification into a unified model[11, 48, 61]. One-
stage methods aim to localize actions in a single shot and do not
require action proposal generation. For example, Lin et al. [36] intro-
duced the first one-stage TAL by utilizing convolutional networks.
Lin et al. [34] proposed an anchor-free model. Recently, some stud-
ies have incorporated the Transformer in TAL tasks, leading to
significant improvements in detection performance. For example,
some works [38, 47, 52] utilize a DETR-like Transformer-based de-
coder to detect action. Others works utilize a Transformer-based
encoder [14, 59] to extract a representation of the video. However,
most of previous method assume that all action in videos belong
to pre-defined categories, making them unsuitable for application
in open-world scenarios. OpenTAL [3] is the only peer-reviewed
research work in the open-set temporal action localization, which
combines classification uncertainty and actionness to identify un-
known actions. In this paper, building on the progress made by
OpenTAL, we proposes improvements to the network’s generaliza-
tion.

Open-Set Recognition. In contrast to closed-set learning, which
assumes that only previously known classes are present during test-
ing, open-set learning considers the presence of both known and
unknown classes. Scheirer et al. [43] were the first to introduce the
concept of open-set recognition (OSR). They proposed a one-vs-rest
classifier based on binary SVM, which allows for the identification
of unknown samples. Subsequent studies by [28, 44] further devel-
oped the open-set framework to multi-class classifier. Bendale and
Boult [5] introduced a method for identifying unknown samples in
the feature space of deep networks. The proposed method, called
the OpenMax classifier, employs a Weibull distribution to estimate
the set risk. Current generative open OSR methods [13, 16, 21, 41]
employ generative adversarial networks (GANs) [23], generative
causal models, or mixup augmentation techniques to generate sam-
ples of unknown categories. Some literature [40, 51, 58] approaches
OSR from a reconstruction perspective by utilizing either VAE [32]
or self-supervised learning. These methods identify the unknown
by reconstructing the known class data representation. Recently,
probabilistic and evidential deep learning methods [2, 39, 56] that
estimate uncertainty have emerged as potential methods for im-
proving OSR performance. In this paper, we aim to the open-set
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temporal action localization problem which is more challenging
because of localization in open-word scenario.

Generalization of Deep Neural Network. The success of modern
deep neural networks (DNN) in achieving state-of-the-art perfor-
mance on a wide range of tasks has relied on heavier overparameter-
ization. It is essential to learn appropriate parameters to generalize
beyond the training set. In order to improve the generalization of
DNN, a panoply of methods for modifying the training process
have been proposed, including dropout [50], batch normalization
[26], data augmentation [15], etc. Although previous methods are
widely used in current DNN model, the generalization is insuffi-
cient when applied to the open-word scenario. Some researches
[17, 29, 31] have shown a connection between the geometry of
the loss landscape and generalization, which holds the promise of
facilitating novel methods [12, 20, 27] for model training that result
in improved generalization. For example, Foret et al. [20] proposed
Sharpness-Aware Minimization (SAM), which efficiently and ef-
fectively improves generalization ability by minimizing loss value
and loss sharpness simultaneously. Enlightened by these works,
this paper incorporates the current state-of-the-art generalization
method into the TAL model.

3 PROPOSED METHOD
Problem Formulation. An untrimmed video can be depicted as a

frame sequence X = {x1, x2, . . . x𝑇 }. A convolution backbone (e.g.
I3D [10], C3D [54]) is used to extract 1D temporal feature F0 =

{f1, f2, . . . f𝑇 } defined on discretized time steps 𝑡 = {1, 2, . . . ,𝑇 },
where𝑇 varies across videos. Action annotations in videoX consists
𝑁 action instances Y = {y1, y2, . . . , y𝑁 }. Each action instance y𝑖 =
(𝑠𝑖 , 𝑒𝑖 , 𝑐𝑖 ) is defined by its starting time 𝑠𝑖 , ending time 𝑒𝑖 and its
action label 𝑐𝑖 , where 𝑠𝑖 , 𝑒𝑖 ∈ [1,𝑇 ], 𝑐𝑖 ∈ {1, . . . ,𝐶} (𝐶 is the number
of pre-defined categories). The goal of temporal action localization
is to predict proposals with class scores, starting time and ending
time Ŷ = {ŷ1, ŷ2, . . . , ŷ𝑀 }, which cover Y as precisely as possible.

Representation for Action Localization. Our method exploits an
anchor-free representation for the localization of action, previously
described in literature [34, 59]. It classifies every moment as an
action category or the background and performs a regression of
the distance between that time step and the onset and offset of the
action. We define the output at time 𝑡 as ŷ𝑖 = (𝑝 (𝑐𝑡 ), 𝑑𝑠𝑡 , 𝑑𝑒𝑡 ), where
𝑝 (𝑐𝑡 ) contains 𝐶 values. Each value represents a binomial variable
that indicates the probability of action category 𝑐𝑡 ∈ {1, 2, . . . ,𝐶} at
time 𝑡 . Moreover, 𝑑𝑠𝑡 and 𝑑

𝑒
𝑡 correspond to the distance between the

current time 𝑡 and the onset and offset of the action, respectively.
Here, 𝑑𝑠𝑡 , 𝑑

𝑒
𝑡 > 0. Action localization results can be directly obtained

from ŷ𝑖 = (𝑝 (𝑐𝑡 ), 𝑑𝑠𝑡 , 𝑑𝑒𝑡 ) using:
𝑐𝑡 = arg max𝑝 (𝑐𝑡 ), 𝑠𝑡 = 𝑡 − 𝑑𝑠𝑡 , 𝑒𝑡 = 𝑡 + 𝑑𝑒𝑡 . (1)

Method Overview. In Fig. 2, we provide an overview of our pro-
posed GOTAL. The method revolves around a one-stage temporal
action detection framework incorporating a backbone network,
feature pyramid, and detection head. The backbone network lever-
ages a convolution-based deep neural network (such as I3D [10] or
TwoStream [49]) to extract video features. Next, the feature pyra-
mid is created by the temporal action encoder with Transformer,
which employs a self-attention mechanism to effectively model

long-term dependencies of actions. Finally, the open-set detection
head is utilized on the pyramid features to locate action boundaries
and identify categories. We now detail the specifics of our model.

3.1 Temporal Action Encoder with Transformer
Initially, our model encodes an input video, X = {x1, x2, . . . , x𝑇 },
into a temporal feature F0 = {f1, f2, . . . , f𝑇 } by using a backbone
network, with f𝑖 ∈ R𝐷 . Afterwards, a transformer encoder maps the
temporal feature to the output feature pyramid F = {F1, F2, . . . , F𝐿}.

Backbone network. We adopt I3D [10] as our backbone, consid-
ering its proven success in achieving high performance in action
recognition and its widespread use in previous action detection
methods. For the input video X = {x1, x2, . . . , x𝑇 }, the I3D net-
work extracts the video feature for every continuous K frame as
follows: f𝑖 = 𝐸I3D (x𝑖 , . . . , x𝑖+(𝐾−1) ), where f𝑖 ∈ R𝐷 . Prior studies
suggest that optical flow leads to enhanced model performance;
hence, we employ two I3Ds to independently calculate RGB fea-
tures (fRGB

𝑖
) and optical flow features (fFlow

𝑖
). We then proceed to

concatenate these features (f𝑖 = [fRGB
𝑖

, fFlow
𝑖

]) to obtain the output
of the backbone network (F0 = {f1, f2, . . . , f𝑇 }).

Transformer Encoder. The Transformer encoder employs F0 as
its input. The self-attention mechanism is at the heart of the Trans-
former. Self-attention obtains attention weights by calculating the
similarity scores between itself and other features. These weights
are then used to weight and sum up the corresponding features.
For F0 ∈ R𝑇×𝐷 , comprising of 𝑇 time steps and a 𝐷 dimensional
feature, we project it using W𝑄 ∈ R𝐷×𝐷𝑞 , W𝐾 ∈ R𝐷×𝐷𝑘 , and
W𝑉 ∈ R𝐷×𝐷𝑣 to extract the feature representations of Q, K, and V,
known as the query, key, and value respectively, while satisfying
𝐷𝑘 = 𝐷𝑞 . The Q, K, and V are computed by:

Q = F0W𝑄 , K = F0W𝐾 , V = F0W𝑉 . (2)

The output of self-attention is given by:

V′ = softmax(QK
𝑇√︁

𝐷𝑞
)V, (3)

whereV′ ∈ R𝑇×𝐷 and softmax refers to a row-wise softmax normal-
ization function. To add more expressiveness to the self-attention
mechanism, a multiheaded self-attention (MSA) approach is often
employed. In MSA, several self-attention operations run in parallel,
and the output of each attention head is concatenated, resulting
in V′

𝑚𝑢𝑙𝑡𝑖
= concat( [V′

1,V
′
2, . . . ,V

′
𝑚]) where V′

𝑖
corresponds to the

output of the 𝑖𝑡ℎ attention head.
The Transformer Encoder comprises 𝐿 Transformer layers, each

composed of alternating multiheaded self-attention (MSA) and
multi-layer perceptron (MLP) blocks. Additionally, LayerNorm is
applied before every MSA or MLP block, and a residual connection
is added after each block. Figure 3 depicts an illustration of the
Transformer block. The feature pyramid can be computed by the
following equations:

F̄𝑙 = 𝛼𝑙MSA(LN(F𝑙−1)) + F𝑙−1, 𝑙 = 1, . . . , 𝐿,

F̂𝑙 = 𝛼𝑙MLP(LN(F̄𝑙 )) + F̄𝑙 , 𝑙 = 1, . . . , 𝐿,
(4)
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Head

Localization

Conv1D
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Uncertainty

Sharpness-aware Minimization

Feature Pyramid
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Conv1D

Transformer 
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Figure 2: Illustration of the proposed GOTAL. Firstly, untrimmed videos are fed into a convolution-based backbone network
(such as I3D) to generate the temporal feature. Next, a feature pyramid is created by the Transformer encoder (Sec. 3.1).
Lastly, each pyramid feature is fed into the open-set detection head to perform action localization and recognition (Sec. 3.2).
Additionally, a sharpness-aware minimization algorithm is utilized to train the network parameters (Sec. 3.3).

LayerNorm

Multi-Head 
Attention

LayerNorm

MLP



Temporal Features

𝐿 ×

Figure 3: Transformer Encoder

Here, F𝑙−1 ∈ R𝑇 𝑙−1×𝐷 , and F̄𝑙 , F̂𝑙 ∈ R𝑇 𝑙×𝐷 . Furthermore, 𝑇 𝑙 is the
temporal length of the 𝑙-th layer feature, and 𝑇 𝑙−1/𝑇 𝑙 denotes the
downsample ratio, which is typically set to 2. Additionally, 𝛼𝑙 and
𝛼𝑙 , both in R𝐷 , are learnable weights initialized to 0. These weights
aid in optimizing the Transformer network [53].

To add positional information to self-attention, we augmented
the self-attention calculation process with three 1D convolutional
layers as following:

Q = Conv𝑄 (F0)W𝑄 , K = Conv𝐾 (F0)W𝐾 , V = Conv𝑉 (F0)W𝑉 .

(5)
To obtain heterogeneous pyramid features, the stride of the con-
volution in Eq. 5 is adjusted in the Transformer encoder, resulting
in a series of 𝐿 down-sampled features F = {F1, F2, . . . , F𝐿} after
passing through 𝐿 Transformer layers.

3.2 Open-Set Detection Head
The Open-Set Detection Head converts pyramid features F into
an output sequence of Ŷ = {ŷ1, ŷ2, . . . , ŷ𝑀 }. Following previous

method [3], the decoder is a trident head that includes three mod-
ules - action classification with uncertainty, actionness prediction,
and localization. The head is realized using a lightweight 1D con-
volution network that is attached to each pyramid feature. And the
parameters are shared across all levels.

Classification. In contrast to traditional Temporal Action Local-
ization (TAL) methods, our approach requires estimation of classifi-
cation uncertainty to detect unknown actions. We employ evidence
deep learning (EDL) [2, 45] in our method as it is an efficient tech-
nique to measure classification uncertainty. EDL assume a Dirichlet
distributionDir(p|𝛼) over the categorical probability p ∈ R𝐶 , where
𝛼 ∈ R𝐶 is the Dirichlet strength. The main idea of EDL is to predict
𝛼 directly using deep neural networks. The model is trained by
minimizing the negative log-likelihood of data {𝑥𝑖 , 𝑦𝑖 }, which is
given by the following equation:

ℓ
(𝑖 )
EDL =

𝐶∑︁
𝑗=1

𝑡𝑖 𝑗 (log(𝑆𝑖 ) − log(𝛼𝑖 𝑗 )),

ℓEDL =
1
𝑁

𝑁∑︁
𝑖=1

ℓ
(𝑖 )
EDL

(6)

where 𝑡𝑖 𝑗 ∈ {0, 1} is one-hot form of label 𝑦𝑖 , and 𝑡𝑖 𝑗 = 1 only when
𝑦𝑖 = 𝑗 , and 𝑆𝑖 =

∑
𝑗 𝛼𝑖 𝑗 is the total strength over 𝐶 classes. We

adopt z𝑖 to represent the output of the neural network. Following
this, the evidence e𝑖 ∈ R𝐶+ of each category is obtained by using
the below formula:

e𝑖 = exp(z𝑖 ). (7)
According to evidence theory [46], the expected probability of each
class is represented by E[p𝑖 ] = 𝛼𝑖/𝑆𝑖 . Here, 𝛼𝑖 = e𝑖 +1. Additionally,
the classification uncertainty is characterized as 𝑢𝑖 = 𝐶/𝑆𝑖 .

Actionness. In videos that contain unknown actions, the mixture
of the pure background and the unknown action makes it unsuffi-
cient to distinguish between them only through classification and
uncertainty. Therefore, predicting the Actionness that indicates the
likelihood of a sample being a foreground action is critical. We use
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𝑎𝑖 ∈ [0, 1] to represent the Actionness score predicted for the input
𝑥𝑖 by the model. The training loss of Actionness is calculated using
the following binary cross-entropy (BCE) loss:

ℓACT = − 1
|P̂ |

∑︁
𝑎𝑖 ∈ P̂

log𝑎𝑖 −
1
|N̂ |

∑︁
𝑎𝑖 ∈N̂

log(1 − 𝑎𝑖 ) (8)

Here, P̂ and N̂ represent the sets of positive and negative sam-
ple, respectively. The positive set P̂ = {𝑎𝑖 |𝑦𝑖 ⩾ 1} comprises data
belonging to known classes whereas the negative set N̂ is diffi-
cult to determine because the unlabelled samples contain both
pure background and unknown actions. This intrinsically is a semi-
supervised learning problem referred to as positive-unlabelled (PU)
learning [4]. In this study, we utilized a simple heuristic method
to select negative samples. The unlabelled samples are denoted as
Û = {𝑎𝑖 |𝑦𝑖 = 0}. We sort the Û in ascending order and select the
top-K samples to form the most likely negative set N̂ . The BCE
loss function serves to distance probable pure background samples
from positive actions.

Localization. As for action boundary localization regression, our
approach follows the standard anchor-free paradigm. The localiza-
tion module examines every moment 𝑡 on each of the 𝐿 levels of
the pyramid and predicts the distance to the onset and offset of
an aciton (𝑑𝑠𝑡 , 𝑑𝑒𝑡 ). The localization module is trained using GIoU
loss [42]. The prediction at moment 𝑡 is represented as 𝑙𝑡 = (𝑑𝑠𝑡 , 𝑑𝑒𝑡 ),
and its corresponding ground truth is denoted as 𝑙𝑡 = (𝑑𝑠𝑡 , 𝑑𝑒𝑡 ). The
GIoU loss function can be computed as follow:

ℓLOC =
1
|P |

∑︁
𝑡 ∈P

(1 − GIoU(𝑙𝑡 , 𝑙𝑡 )) (9)

where P is the set of positive samples, defined as P = {𝑡 |𝑦𝑡 ⩾ 1}.

IoU-aware Uncertainty Calibration. Although the loss functions
specified in Eqs. 6, 8 and 9 are accomplishing for a complete OSTAL
task, the classification module’s acquired uncertainty is unsatisfac-
tory. Firstly, the loss function for classification in Eq. 6 is calculated
only on positive samples, which do not utilize background samples.
Secondly, the uncertainty is not directly constrained. Intuitively,
an action proposal with a high temporal overlap with the ground
truth location should contain more evidence and thus have low
uncertainty. Thus, we calibrate uncertainty using IoU as follows:

ℓCali =
𝑀∑︁
𝑡

−𝑤𝑙𝑡 ,𝑙𝑡 log(1 − 𝑢𝑡 ) − (1 −𝑤𝑙𝑡 ,𝑙𝑡
) log(𝑢𝑡 ). (10)

Here, the weight 𝑤 is a clipped form of the IoU between the pre-
dicted and ground truth locations:

𝑤𝑙𝑡 ,𝑙𝑡
= max(𝛾, IoU(𝑙𝑡 , 𝑙𝑡 )) (11)

where 𝛾 is a small non-gegative constant. According to the cross-
entropy loss in Eq. 10, proposals with low IoU, such as those with
poor localization quality or proposals of background and unknown
action, will be encouraged to have hight uncertainty. This approach
makes the uncertainty more reasonable.

Algorithm 1: Training procedure
Data: Training data S ≜ ∪𝑛

𝑖=1{(x𝑖 , y𝑖 )}, Batch size 𝑏,
Learning rate 𝜂, Disturbance 𝜌 , Epoch 𝑇 .

Result: Trained model parameters 𝜃𝑇
1 Initialize parameter 𝜃0;
2 for 𝑡 ∈ 1, . . .𝑇 do
3 Sample batch B = {(x1, y1), . . . , (x𝑏 , y𝑏 )};
4 Compute loss ℓ (𝜃 ) of current batch by Eq. 14;
5 Compute gradient ∇𝜃 ℓ (𝜃 );
6 Compute 𝜖 (𝜃 ) by Eq. 12 ;
7 Update parameters 𝜃 ′ = 𝜃 + 𝜖 (𝜃 ) and compute loss ℓ (𝜃 ′);
8 Compute gradient g = ∇𝜃 ′ ℓ (𝜃 ′);
9 Update parameters 𝜃𝑡+1 = Adam(𝜃𝑡+1, g, 𝜂);

10 end

3.3 Sharpness-Aware Minimization
Current TAL methods’ success in achieving amazing performance
has relied on deep neural networks with a large number of parame-
ters. However, simply minimizing loss functions on the training set
is not sufficient to achieve satisfactory generalization, especially in
the more complex open-set scenario. We propose use Sharpness-
Aware Minimization (SAM) [20] to optimize out model. The mo-
tivation behind the SAM is the fact that there is a correlation be-
tween the geometry of the loss plane and the generalization ability.
Specifically, flat local minima often have stronger generalization ca-
pabilities. Building on this idea, the SAM simultaneously minimizes
the loss value and loss sharpness, enabling the network parameters
to converge to flatter local minima and ultimately improving the
model’s generalization ability.

Specifically, let 𝜃 represent the parameters of the model at the
current training epoch and ℓ represent the model’s loss on the
training set. Firstly, calculate the gradient of the loss function at 𝜃
and appropriately scale it to obtain the parameter disturbance:

𝜖 (𝜃 ) = 𝜌
∇𝜃 ℓ (𝜃 )

| |∇𝜃 ℓ (𝜃 ) | |2
, (12)

where 𝜌 is a hyperparameter that controls the magnitude of the
parameter perturbation. Then, update the parameters of the model
as 𝜃 ′ = 𝜃 + 𝜖 (𝜃 ). The SAM gradients of loss ℓ at 𝜃 is calculated by:

∇𝜃 ℓSAM (𝜃 ) ≈ ∇𝜃 ℓ (𝜃 ) |𝜃+𝜖 (𝜃 ) . (13)

Once the SAM gradients ∇𝜃 ℓSAM (𝜃 ) is obtained, the model’s pa-
rameters can be updated using commonly used optimizers such as
SGD and Adam.

3.4 Training and Inference
The total training loss is the weighted sum of losses defined by Eqs.
6, 8, 9 and 10:

ℓ = 𝜂ℓEDL + ℓACT + ℓLOC + ℓCali (14)

where 𝜂 is a hyperparameter to balance loss. During the training
process, the SAM algorithm is used to optimize the model’s pa-
rameters. Algorithm 1 provides the pseudo-code for the training
procedure.
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In the inference, the untrimmed video is fed into a trainedGOTAL
model, which generates proposals comprising of a classification
label 𝑐𝑖 , an uncertainty score 𝑢𝑖 , an actionness score 𝑎𝑖 and an
action location 𝑙𝑖 = (𝑑𝑠

𝑖
, 𝑑𝑒
𝑖
). Here, an uncertainty threshold 𝜏 and

actionness threshold 𝛽 are predefined. A positively localized action
(𝑎𝑖 ⩾ 𝛽) can be accepted as known class 𝑐𝑖 if𝑢𝑖 ⩽ 𝜏 , else it is rejected
as the unknown. The entire inference procedure is effective and
has a transparent process that can be easily explained.

4 EXPERIMENT
4.1 Datasets
To evaluate the performance of our experiments were conducted on
two commonly used datasets, THUMOS14 [30] and ActivityNet1.3
[24]. The THUMOS14 dataset is comprised of 412 videos, with 200
in the training set and 212 in the validation set, including 20 action
categories. ActivityNet1.3 contains approximately 20,000 videos
with 200 action categories, divided into three subsets consisting
of 50% training set, 25% validation set, and test set. Following the
setting of previous work [3], we randomly select 3/4 of the THU-
MOS14 training set categories as known and others as unknown,
repeating this procedure to generate three open-set splits. Addition-
ally, ActivityNet1.3 was adopted as another open-set testing dataset.
Due to the overlap in categories with THUMOS14, 14 semantically
overlapping categories in ActivityNet1.3 were manually removed.

4.2 Implementation Details
We use the two-stream I3D [10] network as the backbone to extract
video features, which is pretrained on Kinetics. For THUMOS14
dataset, input to the I3D consist of 16 consecutive frames, a slid-
ing window with a stride of 4 is utilized, and 1024-D features are
extracted before the last fully connected layer. The two-stream
features are further concatenated (2048-D). The Adam optimizer is
employed with an initial learning rate of 10−4 and a weight decay
of 10−4. Additionally, using cosine learning rate decay, the model
is trained for 70 epochs with a linear warm-up of 5. The batch size
is 2. We apply Soft-NMS as the post-processing algorithm, with a
threshold set to 0.5. The Transformer Encoder is configured with
𝐿 = 6 layers and a downsample ratio of 2. In the Open-Set Detec-
tion Head, the magnitude of the parameter perturbation is set to
𝜌 = 0.0005, and the loss weight 𝜂 was 1.

For the ActivityNet1.3 dataset, similar to THUMOS14, we use Ki-
netics pre-trained two-stream I3D network to extract video features
by inputting consecutive 16 frames. The stride of the sliding win-
dow is set to 16. Following previous works [35, 37], the extracted
features are downsampled into a fixed length of 128 through linear
interpolation. All other implementation details are consistent with
THUMOS14 dataset.

4.3 Evaluation Metrics
The evaluation metrics include closed-set and open-set metrics.
The closed-set metric is the mean Average Precision (𝑚AP) com-
monly used in previous works. Following previous OSTAL work
[3], open-set evaluation metrics include the Area Under the Re-
ceiver Operating Characteristic (AUROC) and the Area Under the
Precision-Recall (AUPR). These metrics are used to evaluate the
performance of detection the unknown from the known action
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Figure 4: PR andOSDR curves onTHUMOS14 split I. Numbers
in the brackets are AUPR or OSDR values.

for positively localized actions. Additionally, the False Alarm Rate
at True Positive Rate of 95% (FAR@95) is reported to address the
practical operational meaning. The obove open-set metrics evalu-
ate the performance of rejecting unknown actions, but they were
unable to evaluate the multi-class classification performance of
known classes. Therefore, literature [3] proposed the Open-Set De-
tection Rate (OSDR), which is defined as the area under the curve
of Correct Detection Rate (CDR) and False Positive Rate (FPR). The
CDR indicates the fraction of known actions that are positively
localized and correctly classified into their known classes, while
the FPR denotes the fraction of unknown actions that are positively
localized but falsely accepted as an arbitrary known class. A higher
OSDR indicates better performance. Results for both THUMOS14
and ActivityNet1.3 are reported at a tIoU threshold of 0.5.

4.4 Comparison with State-of-the-arts
To evaluate the performance of the proposed GOTAL, we compared
it against the following baselines:

• OpenMax: This method uses OpenMax [5] in testing to
append the softmax scores with unknown class.

• EDL: This method is similar to [2], EDL is used to replace the
traditional cross-entropy loss for uncertainty quantification.

• ActionFormer[59]: It is the state-of-the-art method for
closed-set TAL. To adapt it for open-set scenarios, we take
the one minus the sigmoid confidence score as the probabil-
ity of unknown actions.

• OpenTAL [3]: This algorithm is currently the best OSTAL
method, which deploys convolution-based temporal action
encoder and the same open-set detection head as our GOTAL.

We separately train our models on three different splits of the
THUMOS14 training set and evaluate them on both THUMOS14
and ActivityNet1.3 datasets. Our experimental results are presented
in Table 1.

On THUMOS14, the proposed GOTAL outperforms the state-
of-the-art baselines by a significant margin in all open-set metrics.
For example, on THUMOS14 split I, the proposed method achieves
an AUPR score of 71.96%, which is significantly better than the
state-of-the-art ActionFormer method’s score of 64.25%. As for
closed-set performance (mAP), we observe a slight decline, such as
from 64.88% of ActionFormer to 63.62% of GOTAL on THUMOS14

1992



Learning Generalized Representations for Open-Set Temporal Action Localization MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

Table 1: Results on THUMOS14 and ActivityNet1.3. Models are trained on three splits of THUMOS14 training set and tested
on both THUMOS14 and ActivityNet1.3. All results are reported at a tIoU threshold of 0.5, and the mAP is provided as the
reference of the TAL results on THUMOS14 closed set. † indicates that the results are reported in the study by [3].

Methods Data THUMOS14 ActivityNet1.3 mAP
FAR@95(↓) AUROC AUPR OSDR FAR@95(↓) AUROC AUPR OSDR

OpenMax[5]†

I

- 49.25 27.40 5.29 - - - - -
EDL[2]† - 68.30 39.98 36.08 - - - - -
OpenTAL[3] 52.11 83.26 58.55 51.01 53.04 84.73 80.16 51.04 36.97
ActionFormer[59] 48.97 85.08 64.25 80.73 20.73 96.31 98.60 89.58 64.88
GOTAL 48.67 88.32 71.96 84.04 18.61 96.40 98.34 90.27 63.62

OpenMax[5]†

II

- 53.34 36.12 21.35 - - - - -
EDL[2]† - 69.64 47.02 43.35 - - - - -
OpenTAL[3] 69.01 78.01 59.58 52.38 65.52 81.51 78.39 53.28 41.69
ActionFormer[59] 40.30 85.26 64.84 82.17 21.36 95.38 98.38 90.48 63.21
GOTAL 33.09 89.26 74.61 86.80 25.19 94.45 96.93 90.96 62.49

OpenMax[5]†

III

- 53.81 28.26 21.07 - - - - -
EDL[2]† - 57.45 27.15 38.05 - - - - -
OpenTAL[3] 48.64 83.36 47.60 49.75 50.47 86.13 76.78 49.99 42.54
ActionFormer[59] 44.85 84.30 49.29 76.52 17.05 96.69 98.52 86.83 71.53
GOTAL 46.38 85.59 58.50 78.47 17.04 97.06 98.61 87.43 67.25

split I. We will conduct an ablation study to investigate the reason
behind this decrease.

OnActivityNet1.3, bothGOTAL andmost of the baselines achieve
high performance on open-setmetrics. For example, GOTAL achieves
an AUPR of 98.34% on split I, which is much higher than OpenTAL.
We think there are two reasons for this. First, the unknown ac-
tions in ActivityNet1.3 are not easily recognized as known actions
by the trained model on THUMOS14 due to the significant differ-
ences between the two datasets. Second, methods using transformer
encoders have higher performance, indicating that their stronger
expressive ability can improve open-set performance.

The experimental results on the two datasets show that the di-
vision of the dataset affects performance. For example, the OSDR
reaches 86.80% on THUMOS14 of split II, but only 78.47% on THU-
MOS14 of split III. Overall, these results clearly demonstrate the
superior performance of GOTAL in the task of open-set temporal
action localization (OSTAL).

4.5 Ablation Study
We conduct abaltion experiments on THUMOS14 split I to validate
the effectiveness of our method. All results are evaluated at a tIoU
threshold 0.5.

Ablation study on each component. To investigate the effective-
ness of the primary components of GOTAL, we start from a baseline
using convolution encoder and then gradually replace convolution
encoder with our Transformer Encoder (TransE) and integrate SAM.
The results are shown in Fig. 2. It is evident that both TransE and
SAM significantly boost the open-set performance, and our GOTAL
achieves the best open-set performance. It is worth noting that
SAM causes a minor decrease in closed-set performance.

Table 2: Ablation study on each component. The starting
point is a baseline using convolution encoder. We gradually
replace convolution encoder with our Transformer Encoder
(TransE) and add SAM.

TransE SAM FAR@95(↓) AUROC AUPR OSDR mAP

46.25 82.28 55.29 77.48 57.29
✓ 49.21 85.81 66.01 82.12 65.45
✓ ✓ 48.67 88.32 71.96 84.04 63.62

Ablation study on the magnitude of the parameter perturbation.
The hyperparameter 𝜌 controls the magnitude of the parameter
perturbation in SAM algorithm. In order to analyze its influence
on performance, we vary it across {0, 5e-5, 5e-4, 5e-3, 5e-2} during
training and present the results in Table 3. Our results show that the
method first improves and then deteriorates open-set performance,
peaking at 𝜌 = 5𝑒 − 4 with the highest performance. However,
mAP drops once SAM is applied, indicating that improving the
generalization of the network by SAM may negatively impact the
closed-set performance. We guess that if the closed set task already
has enough generalization, too much enhancement of generaliza-
tion may lead to underfitting.

Influence of SAM Algorithm on Convergence. We investigate the
effect of the SAM algorithm on convergence. We train the OSTAL
with SAM and without SAM separately for 75 epochs on THU-
MOS14 split I, and test the performance on the epochs 35, 45, 55,
65, 70, and 75. The results are shown in Figure 5. The results show
that using SAM slows down convergence, but the most open-set
metircs can converge to better results. Moreover, for the model
without SAM, as training progressed, the open-set performance
decreased, indicating overfitting of the model, while the closed-set
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Table 3: Ablation study on the magnitude of the parameter
perturbation 𝜌 .

𝜌 FAR@95(↓) AUROC AUPR OSDR mAP

0 48.05 87.44 70.51 83.24 65.03
5e-5 45.31 88.01 70.29 83.89 63.32
5e-4 48.67 88.32 71.96 84.04 63.62
5e-3 49.50 87.59 69.58 83.64 60.51
5e-2 64.01 79.67 52.19 74.33 48.20

Figure 5: Convergence curves.

performance (mAP) were stable. This shows that the generaliza-
tion of the open-set model is more important than the closed-set.
The model using the SAM algorithm is not easy to overfit, which
shows that the SAM algorithm can improve the generalization of
the model.

Ablation study on the convolution of Transformer Encoder. Our
Transformer Encoder is different from the raw Transformer archi-
tecture [55]. Specifically, we introduce convolution layers in the
MSA module, as shown in Equation 5. We conduct ablation experi-
ments to investigate the effectiveness of these convolution layers,
the results are shown in Table 4. The results indicate that the perfor-
mance of open-set is minimally influenced by these convolutional
layers. However, after removing them, the closed-set performance
(mAP) deteriorates, which suggests that convolutional layers are
primarily responsible for localizing the action boundaries while
having a lesser impact on the action recognition.

Visualization of results. The visualization results of GOTAL and
the baselines are presented in Figure 6. The three selected videos
are from THUMOS14 dataset, and the models are trained on split
I. The results indicate that GOTAL outperforms the baselines in
rejecting the unknown actions (black segments in the 1st and 2nd

Table 4: Ablation study on the convolution of Transformer
Encoder.

FAR@95(↓) AUROC AUPR OSDR mAP

w/ Conv 48.67 88.32 71.96 84.04 63.62
w/o Conv 40.03 88.73 71.22 84.70 62.84

0.0 24.2 48.3 72.5 96.6 120.8

Ground Truth

OpenTAL

ActionFormer

GOTAL

0.0 44.9 89.9 134.8 179.8 224.7

Ground Truth

OpenTAL

ActionFormer

GOTAL

0.0 17.5 35.1 52.6 70.2 87.7

Ground Truth

OpenTAL

ActionFormer

GOTAL

Figure 6: Visualization of results. The black color represents
unknown classes, while other colors represent known classes.
The 𝑥-axis is the timestamps (seconds).

figures) and recognizing the known actions (colored segments in
3rd figure).

5 CONCLUSION
This paper focuses on the Open-set Temporal Action Localization
(OSTAL) task, which requires simultaneous recognition and lo-
calization of human actions while rejecting unknown actions in
untrimmed video under open-word scenarios. The primary objec-
tive of the OSTAL model is to transfer knowledge from known
actions to unknown ones, thereby requiring a strong generalization
ability of the model. To this end, a novel one-stage OSTAL frame-
work called GOTAL is proposed to learn the generalization of the
representation of actions. The GOTAL utilizes the Transformer ar-
chitecture to model temporal actions and employs a sharpness min-
imization algorithm to learn network parameters. Our experiments
on the THUMOS14 and ActivityNet1.3 benchmarks demonstrate
that GOTAL achieves state-of-the-art performance on open-set
metrics, confirming its effectiveness.
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