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ABSTRACT
Temporal Action Localization (TAL) aims to locate starting and end-
ing times of actions and recognize categories in untrimmed videos.
Significant progress has been made in developing deep models for
TAL. The success of previous methods relies on large-scale training
data with precise boundary annotations. However, fully accurate
annotations are unpractical to be obtained due to the ambiguities
of the action boundaries and the crowd-sourcing labeling process,
leading to a degradation in performance. In this work, we take the
first step into learning with inaccurate boundaries in TAL tasks.
Motivated by the fact that inaccurate boundary annotations harm
localization precision more than classification accuracy, we propose
to use classification as a guidance signal to improve localization
precision. Specifically, we introduce a pseudo-boundary generation
and refinement method (PbGaR). PbGaR first treats each action seg-
ment as a bag of instances to select the instances with more accurate
boundaries for training. Then these boundaries are refined via two
strategies for higher quality. The proposed method significantly
alleviates the degraded performance of TAL models under inaccu-
rate boundaries. Extensive experiments on two popular datasets
demonstrate the effectiveness of our method.
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• Computing methodologies → Activity recognition and un-
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1 INTRODUCTION
Due to its wide applications in surveillance, video retrieval [5]
and video anomaly detection [23], the task of Temporal Action
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Figure 1: Inaccurate boundary annotation illustration. TAL
methods suffer from inaccurate annotations. Our method
PbGaR generates a more precise boundary for training.

Localization (TAL) has drawn much attention in the computer vi-
sion communities. Remarkable progress has been made under the
fully-supervised setting in recent years. Under this setting, the suc-
cess of previous methods rely on large-scale video datasets like
ActivityNet-1.3 [1] and THUMOS14 [9] with precise boundary an-
notations. However, fully accurate annotations are unpractical to
be obtained in professional fields, thus limiting scalability and prac-
ticability in real-world scenarios. In TAL, noisy annotations refer to
inaccurate categories and boundaries. However, inaccurate bound-
aries is more common than that of categories’. As in some domains
such as sports competitions, the labeling of the start and the end
of an action is strict and difficult. One can recognize most action
categories by key frames alone, but needs to browse through all
frames to get the accurate boundaries of an action. However, many
annotators lack of expertise, leading to inaccurate action boundary
annotations. Besides, with the increasing video data, many datasets
are annotated by crowd-sourcing or volunteers within limited bud-
gets and resources [30]. This undoubtedly results in low-quality
annotations and further affects the training process of existing
models. Ultimately, this cause performance degradation of mod-
els. In view of these phenomena, handling inaccurate annotations
especially inaccurate boundaries is a critical and pressing task.

There are two main types of frameworks in temporal action lo-
calization, i.e. two-stage method and one-stage method. Two-stage
method generate candidate proposals at first, then take strategies to
recognize categories among proposals and further refine the predic-
tions. Recently, one-stage method has become the mainstream due
to its simplicity and efficiency. Such method classifies and localizes
actions simultaneously. Despite these facilitative work in TAL, the
quality of supervised learning models depends on the quality of
training datasets [15]. Inaccurate annotations can directly mislead
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models to learn or memorize wrong relations and thus limit the
abilities of these models and deteriorate the performance. No work
before has considered the impact of noisy annotations on TAL
model performance. In this work, for the first time, we step forward
the temporal action localization with noisy annotations. Consid-
ering the delicate requirements for boundary detection on TAL
tasks and the reality that boundary labeling is more error-prone,
we focus on tackling inaccurate boundary annotations.

Motivated by weakly-supervised TAL [7, 27] and object detec-
tion [14], we propose a method to improve the degraded perfor-
mance of TAL models under low-quality boundary annotations.
Inspired by the fact that compared with localization, classification
precision suffers slightly from inaccurate annotated boundaries,
we propose leveraging classification as a guidance signal for local-
ization based on multiple instance learning (MIL) [3]. Specifically,
every labeled action is treated as a bag of intances (i.e. a bag of
action proposals with same action segment). Our target is to se-
lect the most accurate instance from each bag to generate pseudo
boundaries and then replace the original inaccurate boundary an-
notations for training. Our method called PbGaR basically consists
of two parts, i.e. pseudo-boundary generation module and pseudo-
boundary refinement module. The former is to generate instances
with more accurate pseudo-boundaries based on MIL and the lat-
ter aims to further enhance the quality of pseudo-boundaries. The
proposed mothod can improve the robustness of existing TAL mod-
els when dealing with inaccurate noisy boundary annotations. We
construct noisy datasets based on two benchmark THUMOS14 and
ActivityNet-1.3 and conduct experiments. Extensive experimental
results prove the effectiveness of our proposed method.

Our main contributions can be summarized as follow:

• This paper proposes a novel framework for Temporal Action
Localization with inaccurate boundary annotations. To our
best knowledge, this paper is the first attempt to deal with
this setting.

• By carefully generating and refining more accurate pseudo
boundaries for training, our proposed method can consider-
ably improve the performance in different degrees of noisy
data, thus boost the robustness of existing TAL models.

• Extensive experiments on public benchmarks ActivityNet-
1.3 and THUMOS14 show that our proposedmethod achieves
remarkable improvement.

2 RELATEDWORK
2.1 Fully-Supervised TAL
Fully-Supervised Temporal Action Localization is a process where
temporal boundaries and categories of action instances are avail-
able for training. There are mainly two kinds of frameworks in
fully-supervised TAL, i.e. one-stage method and two-stage method.
Two-stage method generates candidate proposals at first, then take
strategies to recognize categories among proposals and further re-
fine the predictions. One-stage method has become the mainstream
recently for its simplicity and efficiency. ActionFormer [31], as one
of the representative methods , without using proposals, classified
every moment into action categories and simultaneously regress-
ing their corresponding boundaries. Additionally, it introduced

a Transformer-based [26] network to extract multiscale features,
which significantly boosted its performance. TriDet [19] improved
on the structure of Transformer and proposed to model relative
probability distribution of boundaries, thus going a step further in
localization accuracy. The above approaches assume that all of the
training data in untrimmed videos are accurate and clean, which im-
pedes their application to real scenario. Our paper takes a rigorous
perspective, focuses on how TAL models do their best when facing
with inaccurate annotations, especially inaccurate boundaries.

2.2 Weakly-Supervised TAL
Weakly-Supervised Temporal Action Localization is amore resource-
efficient setting that has become popular recently. In training pro-
cess, only video-level classification labels are available. Untrimmed-
Net [27] firstly introduced Multiple Instance Learning (MIL) [3] to
this task.MIL assumes that all instances (i.e. frames in an untrimmed
video) belong to a bag that is either positive or negative. In other
words, considering a video as a bag consists of frames, MIL-based
method would assign the video-level labels on a set of instances
(frames). Subsequently, many derivative work [7, 10, 11, 17] fol-
lowed the MIL-based framework and advanced the development of
weakly-supervised TAL. The newest method [17] replaced segment-
based MIL framework with proposal-based one to tackle the in-
consistent objectives between training and testing stages. Notably,
our work differs from weakly-supervised TAL in that we focus on
settling TAL models with frame-level annotations rather than being
provided with only video-level classification annotations. Although
we also formulate TAL as a MIL problem, we regard each action
in the video as the concept of bag instead. Besides, our bag can be
constructed in a dynamic way to better correct noisy boundaries.

2.3 Learning with noisy data
Work in image domain, especially image classification and object
detection, is closely related to video-understanding tasks. There
has been a series of studies [8, 12, 15, 28, 30, 33] on noisy data in
image tasks. Some methods [18, 21] designed re-weighting strate-
gies to adaptively assign different weights to noisy samples and
clean samples. Another major line to minimize the impact of cor-
rupted labels is loss correction. Common methods along this line
use a confusion matrix [25], design extra inference steps to correct
corrupted labels [6, 16, 22] or replace hard labels with soft labels for
unclear boundaries [4, 8, 29]. In addition to the two main directions
of resolution mentioned above, Liu et al. [14] proposed to correct
the inaccurate annotations to facilitate the object detectors in a
MIL-based framework. Most existing image tasks focus on noisy
classification label, but for video domain, due to the complexity and
diversity of action instances, misclassification is considerably less
common than localization [15], thus making annotators prone to
inaccurate boundaries. In this paper, we are the first to step further
towards TAL with inaccurate boundary problem. The uniqueness of
localization in untrimmed videos makes this task more challenging
and valuable.

3 METHOD
An untrimmed video 𝑉 can be represented by a set of features X =

{𝑥1, 𝑥2, . . . , 𝑥𝑇 }, where T denotes the number of instances. Fully-
Supervised TAL consists of two sub-tasks, i.e. classification and
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Figure 2: The overall framework of the proposed PbGaR. Features of the untrimmed video are fed into detectors. Based on the
output by detector, our pseudo-boundary generation module treats every inaccurate GT (orange blocks) as a bag of instances
(green lines). We select the most positive instance (pink lines) to generate the pseudo boundary. A refinement module consisted
of two strategies (i.e. bag reconstruction and memory bank) is applied to further enhance the quality of pseudo boundaries
(green blocks). Pseudo boundaries will be used for training detectors.

localization. It aims to detect all action labels 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑁 }
in the video based on the input video features X. Each label 𝑦𝑖 =
(𝑠𝑖 , 𝑒𝑖 , 𝑐𝑖 ) represents start, end and its action category. During train-
ing, every video V has its segment-level annotations 𝑦 = (𝑠, 𝑒, 𝑐) ∈
R𝐶 , whereC represents the number of ground-truth. Fully-supervised
TAL undoubtedly suffers from inaccurate boundary annotations.
Inspired by the fact that compared with localization, classification
precision suffers slightly from inaccurate annotated boundaries, we
propose to use classification branch as a guide to correct mislabeled
boundaries. In the following, we elaborate on our method PbGaR
for TAL with inaccurate boundary annotations. As illustrated in Fig-
ure 2, PbGaR consists of two modules, including pseudo-boundary
generation module and multi-step pseudo-boundary refine module.
The former utilizes classification as a guide to generate instances
with pseudo-boundary that are more accurate than noisy ground-
truth ones based on Multiple Instance Learning [3]. The latter is to
further improve the quality of pseudo-boundaries by refining and
extending action instances.
3.1 MIL-based Pseudo-boundary Generation

Preliminaries. A typical MIL-based method [17, 27] in weakly-
supervised TAL treats each video as a bag of instances (frames)
and performs feature extraction on it. Then extracted features are
used to calculate confidence score for determining whether frames
belong to action or background. Formally, for an untrimmed video
containing multiple action categories, video-level action labels de-
noted as 𝑦 ∈ {0, 1}𝐶 are given. In order to correspond action cate-
gories to specific moments, each video is represented as a bag of
instances. MIL use classification loss as the signal to choose suitable
instances.

Problem Formulation. In our method, unlike the MIL in weakly-
supervised TAL, we treat each segment (action or background) in
the video as a bag rather than the entire video. A bag is labeled
negative only if all instances in it are negative. Put differently, once

Figure 3: Pseudo-boundary generation module. As the action
detectors output class confidence scores and boundary pro-
posals, our first module utilize the output to generate a more
accurate pseudo boundary based on MIL.

a instance is positive, the bag would be labeled positive. Formally,
let 𝐵𝑖 denotes the 𝑖𝑡ℎ bag in the video 𝑉 , the 𝑗𝑡ℎ instance in bag
𝐵𝑖 is denoted as 𝑦𝑖 𝑗 . We treat annotated action segments as posi-
tive bags 𝐵+

𝑖
, instances in it refer to action proposals. Background

segments are treated as negative bags 𝐵−
𝑖
. The video is formulated

as 𝑉 = {𝐵+0 , 𝐵
+
1 , . . . , 𝐵

+
𝑚, 𝐵−

0 , 𝐵
−
1 , . . . , 𝐵

−
𝑘
}. Our goal is to select the

most positive instance 𝑦∗
𝑖
= {(𝑠∗

𝑖
, 𝑒∗
𝑖
, 𝑐𝑖 )} in the positive bag 𝐵𝑖

with unchanged classification label 𝑐𝑖 but more precise boundaries
{𝑠∗
𝑖
, 𝑒∗
𝑖
}, i.e. generating a pseudo boundary. We then tab it as a new

action annotation for model training. The process of generating 𝑦∗
𝑖

in bag 𝐵𝑖 is denoted as 𝑔(𝐵𝑖 , 𝜃 ) with parameter 𝜃 .

Pseudo-boundary Generation. As in Figure 3, detectors output
classification scores and boundary proposals. Based on MIL, we
use classification labels predicted by detectors as a guide to build
different bags, and instances are action proposals related to the same
gt segments. Then we learn to select the most positive instances in
each bag. As the initial inaccurate ground-truth boundaries provide
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a prior of ambiguous action localization, intuitively, we jointly
consider it and the selected action instance from the bag to generate
pseudo boundaries for training.

Generally, this module contains two steps. In the first step we
obtain the most positive instance 𝑦∗

𝑖
through 𝑔(𝐵𝑖 , 𝜃 ). 𝑔(𝐵𝑖 , 𝜃 ) takes

instances in the bag 𝐵𝑖 as input and outputs a confidence score in
the range of [−1, +1]. Index 𝑘 of 𝑦∗

𝑖
is obtained from the formula:

𝑘 = argmax𝑔(𝐵𝑖 , 𝜃 ) . (1)

The second step is to generate the final 𝑦𝑝𝑠𝑒
𝑖

by considering the
initial action annotation 𝑦0

𝑖
as a complementary. The final new

action annotation 𝑦𝑝𝑠𝑒
𝑖

is generated as follows:

𝑦
𝑝𝑠𝑒

𝑖
= 𝜔 (𝑔(𝐵𝑖 , 𝜃 )) · 𝑦∗𝑖 + (1 − 𝜔 (𝑔(𝐵𝑖 , 𝜃 ))) · 𝑦0𝑖 . (2)

Here 𝜔 is a mapping function that adaptively assigns weights to 𝑦∗
𝑖

and 𝑦0
𝑖
. Considering our goal is to generate as high quality pseudo

boundaries as possible, 𝜔 (·) needs to satisfy two conditions. Firstly,
as it indicates the confidence of instances, when 𝑔(𝐵𝑖 , 𝜃 ) outputs
large value, higher weight should correspondingly be assigned to
𝑦∗
𝑖
. Secondly, when 𝑔(𝐵𝑖 , 𝜃 ) is very close to 1, 𝜔 (·) needs to balance

the weight between 𝑦∗
𝑖
and 𝑦0

𝑖
rather than sharply favoring 𝑦∗

𝑖
.

Thus, a bounded exponential function is adopted to fulfill the two
conditions above:

𝜔 (𝑝) = min(𝑝𝛼 , 𝛽), (3)
where 𝛼 and 𝛽 are hyper-parameters and 𝑝 ∈ [0, 1].

We adopt a standard hinge loss to train the MIL-based pseudo-
boundary generation module. The loss function is defined as:

𝐿g (𝐵𝑖 , 𝜃 ) = max(0, 1 − 𝑏𝑖 max𝑔(𝐵𝑖 , 𝜃 )) (4)

𝑏𝑖 ∈ 1,−1 is a label attached to each bag 𝐵𝑖 to indicate whether this
bag has any positive instance or not.

3.2 Multi-step Pseudo-boundary Refinement
The action instances generated by pseudo-boundary generation
module play an important role of new annotations for training
detectors. However, they are roughly generated based on the origi-
nal inaccurate ground-truth annotations and the predictions from
the detector. Thus, the quality cannot be guaranteed. Objectively,
instances in the same bag have similar properties, i.e. their clas-
sification feature and temporal localization are closely related to
each other. Besides, our new pseudo boundary is a tradeoff be-
tween the initial annotation and the instance selected in the bag
by Eq.2. Accordingly, in this section we propose a multi-step re-
finement module that progressively enhance the quality of the
pseudo-boundaries via two strategies.

As we construct the initial bag based on the original ground truth
and generate pseudo boundaries, a natural idea arises is that con-
tinuing construct new positive bags with these generated pseudo
boundaries and repeating the construction until reaching termina-
tion condition. This inspires our first strategy, i.e. bag reconstruc-
tion strategy. To achieve more efficient reconstruction, we improve
the quality of the candidate instances in bags. As illustrated in Fig-
ure2, for the 𝑗𝑡ℎ instance 𝑦𝑖 𝑗 = (𝑠 𝑗 , 𝑒 𝑗 , 𝑐𝑖 ) in bag 𝐵𝑖 , features are
sampled at the interval {𝑠 𝑗 , 𝑒 𝑗 } via interpolation and aggregated
by a fully-connected layer. Boundaries of these instances are then
refined and calibrated based on the features. Then we perform bag
reconstruction. As in Figure4, new bags are iteratively constructed.

Figure 4: Bag Reconstruction. New positive bags with gener-
ated pseudo ground truth are constructed until reaching the
termination condition.
After 𝑁 times iterations of construction, for bag 𝐵𝑖 there will be
a construction sequence {𝐵0

𝑖
, 𝐵1

𝑖
, . . . , 𝐵𝑁

𝑖
}. Note that negative bags

are not involved in this strategy. Consequently, 𝐵𝑁
𝑖

is used to opti-
mize the generation module and the loss in Eq.4 is further expressed
as:

𝐿g ({𝐵𝑛𝑖 , 𝜃 }) =
∑︁
𝑛

𝐿g (𝐵𝑛𝑖 , 𝜃 ), (5)

where 𝑛 ∈ {0, 1, . . . , 𝑁 } only if bag 𝐵𝑖 is positive.
The second strategy called memory bank is to improve the

pseudo boundary quality in the generation process described in
Eq.(2). After bag reconstruction, pseudo-boundary generation mod-
ule generates annotations {𝑦𝑝𝑠𝑒0 , 𝑦

𝑝𝑠𝑒

1 , . . . , 𝑦
𝑝𝑠𝑒

𝑖
} with more accu-

rate boundaries for each bag. These annotations are stored in the
memory bank and further used with 𝑦0

𝑖
in Eq.2 to provide better lo-

calization prior in the next training epoch. Let 𝐵𝑖 denote the 𝑖𝑡ℎ bag,
𝑦
𝑝𝑠𝑒 (𝑘−1)
𝑖

represents annotations generated in the 𝑘 − 1𝑡ℎ epoch.
In the 𝑘𝑡ℎ epoch, we perform a weighted average of 𝑦𝑝𝑠𝑒 (𝑘−1)

𝑖
and

𝑦0
𝑖
. Therefore, Eq.2 evolves into:

𝑦0
′

𝑖 = 𝛾 · 𝑦0𝑖 + (1 − 𝛾) · 𝑦𝑝𝑠𝑒 (𝑘−1)
𝑖

,

𝑦
𝑝𝑠𝑒 (𝑘 )
𝑖

= 𝜔 (𝑔(𝐵𝑖 , 𝜃 )) · 𝑦∗𝑖 + (1 − 𝜔 (𝑔(𝐵𝑖 , 𝜃 ))) · 𝑦0
′

𝑖 .
(6)

3.3 PbGaR Training
Training. Our method focuses on providing better performance

for TAL detectors in inaccurate training data. It is not limited to spe-
cific TAL detectors. In the training stage, as a bootstrap of bag con-
struction, we first train the base detectors (e.g. ActionFormer[31])
for 𝐸 epochs. Detectors output the probability of action categories
and boundary proposals. Based on the output, instances are ob-
tained to construct our initial bags. We adopt an IoU threshold to
distinguish which instances are positive. After that, most positive
instances are selected to generate pseudo boundaries via Eq.6. Then
we apply the pseudo-boundary refinement module to obtain the
refined candidate instances with a more accurate estimation of the
action location. The same process can be performed with memory
bank for multiple steps until the quality of instances is converged,
i.e. bag reconstruction. The total training loss of our method is:

𝐿 =
∑︁
𝑖

(𝐿cls + 𝜆reg1(𝐵𝑖 )𝐿reg + 𝜆g𝐿g), (7)
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Table 1: Comparison with state-of-art methods on THUMOS14 test set under four boundary noise levels. The average mAPs are
computed under the IoU thresholds [0.3:0.1:0.7]. Best results are in bold.

Model Method 10% 20% 30% 40%
0.5 0.7 Avg. 0.5 0.7 Avg. 0.5 0.7 Avg. 0.5 0.7 Avg.

Noisy Model

ReAct[20] 54.9 31.4 52.6 53.5 27.6 50.8 51.6 24.1 48.7 47.4 17.8 44.1
TemporalMaxer[24] 69.7 41.8 65.7 67.9 39.2 64.2 65.4 32.0 61.0 61.5 25.5 56.7
ActionFormer[31] 68.2 41.3 65.1 68.1 36.3 63.4 65.1 29.6 59.5 59.6 23.0 54.5
+PbGaR 69.2 42.6 65.5 68.7 41.4 65.2 67.6 37.4 63.9 64.6 31.9 60.7
TriDet[19] 71.2 43.5 66.8 68.6 39.3 64.5 64.4 29.9 59.7 60.5 23.1 55.2
+PbGaR 71.1 42.6 66.9 69.3 40.6 65.9 67.9 37.5 63.7 65.5 32.6 60.7

Clean Model ActionFormer[31] 70.9 43.9 66.8 70.9 43.9 66.8 70.9 43.9 66.8 70.9 43.9 66.8
TriDet[19] 72.7 46.5 68.5 72.7 46.5 68.5 72.7 46.5 68.5 72.7 46.5 68.5

Table 2: Comparison with state-of-art methods on ActivityNet1.3 test set under two boundary noise levels. The average mAPs
are computed under the IoU thresholds [0.5:0.05:0.95]. Best results are in bold.

Model Method 20% Boundary Noise level 40% Boundary Noise Level
0.5 0.75 0.95 Avg. 0.5 0.75 0.95 Avg.

Noisy Model

ActionFormer[31] 53.96 36.46 5.25 35.20 51.98 32.25 5.73 32.11
+PbGaR 54.15 36.86 5.68 35.22 54.17 35.35 3.09 34.13
TriDet[19] 54.18 37.14 5.64 35.49 51.80 31.86 4.33 31.49
+PbGaR 54.31 37.18 5.60 35.67 53.98 35.49 2.45 34.10

Clean Model ActionFormer[31] 54.79 37.79 8.31 36.61 54.79 37.79 8.31 36.61
TriDet[19] 54.89 38.08 8.34 36.92 54.89 38.08 8.34 36.92

Specially, the loss function has three terms. 𝐿cls is for instance
classification, we adopt focal loss[13] to train it. 𝐿reg is a DIOU
loss[32] for boundary regression. 1(𝐵𝑖 ) is an indicator function
that denotes whether a bag 𝐵𝑖 is positive or not. 𝐿g is for training
the MIL based pseudo-boundary generation process, which is given
in Eq.5. 𝜆reg and 𝜆g are both balance coefficients.

4 EXPERIMENTS
4.1 Settings

Datasets. Since modern temporal action localization datasets
are delicately annotated and contain few inaccurate boundary an-
notations. To evaluate the performance of our proposed PbGaR
method, we simulate noisy boundaries by perturbing the clean
ones on two on two common used datasets, THUMOS14[9] and
ActivityNet1.3[1]. THUMOS14 is comprised of 412 videos with 200
for training and 212 for validation, including 20 action categories.
ActivityNet 1.3 contains 20,000 videos covering 200 action cate-
gories. It is divided into three subsets, 50% is training set, 25% is
validation set and the rest is test set.

Following [14], we simulate noisy action boundaries by perturb-
ing clean ones. Specially, let (𝑐𝑥, 𝑙) denote the center 𝑥 and duration
of an action. We randomly shift and scale an action boundary as
follows: {

𝑐𝑥 = 𝑐𝑥 + Δ𝑥 · 𝑙,
𝑙̂ = (1 + Δ𝑙 ) · 𝑙,

(8)

where Δ𝑥 and Δ𝑙 follow the uniform distribution𝑈 (−𝑟, 𝑟 ), 𝑟 refers
to the boundary noisy level. We simulate boundary noise levels
varying from 10% to 40% and perform Eq.8 on every action boundary
in the training data.

Implementation Details. Our method PbGaR is implemented on
ActionFormer[31] and TriDet[19] which are two latest state-of-the-
art TAL models. Pre-trained I3D[2] is used as backbone. PbGaR is
applied after 5 training epochs. We empirically set 𝛼 to 0.5 and 𝛽

to 0.75 in Eq.3. The number of bag reconstruction 𝑁 in refinement
module is set to 2. The loss weight 𝜆reg and 𝜆g are selected from
{0.01, 0.1, 1} depending on datasets and nosiy level. The memory
bank is activated after 11 epochs and 𝛾 is set to 0.2 in Eq.6. The rest
settings are kept unchanged.

Evaluation Metrics. We evaluate our method using the standard
TAL metric, i.e. the mean Average Precision(mAP) at differnet tem-
poral intersection over union (tIoU) thresholds for all datastes. Mean
average precision (mAP) measures the average precision across all
action categories for a given temporal intersection over union (tIoU)
threshold. We also report average mAP over several tIoU thresholds.

4.2 Main Results
We compare ourmethodwith several state-of-the-art approaches[19,
20, 24, 31] on THUMOS14[9] and ActivityNet1.3[1]. We denote
Clean-Model and Noisy-Model as models trained under clean and
noisy training data with the default setting. Our intention here is
to validate that our method is robust to noisy data and significantly
mitigates the performance degradation of TAL models encountered
with inaccurate training data.

Results on the THUMOS14 dataset. Table1 shows the comparison
results on the THUMOS14 test set. For the existing representative
models[19, 20, 24, 31] listed, we observe that inaccurate boundary
annotations significantly deteriorate the detection performance of
the vanilla model. Our approach, in contrast, demonstrates greater
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Table 3: Analysis of the effectiveness of two main compo-
nents. Experiments are conducted on THUMOS14 dataset.

Method PBG PBR Noise Level
10% 20% 30% 40%

1 65.09 63.43 59.47 54.54
2 ✓ 65.34 63.54 62.01 58.47
3 ✓ ✓ 65.52 65.22 63.87 60.67

robustness to inaccurate action boundaries and alleviates degraded
performance by a significant margin especially under high noise
levels. For example, under 30% noise level, our method on Action-
Former can boost the detection performance of 4.4%. With an mAP
of 65.5% (+5.0%) at tIoU=0.5 and anmAP of 32.6% (+9.5%) at tIoU=0.7,
our method markedly boost the performance of TriDet under 40%
noise level. The results indicate that the pseudo-boundaries gener-
ated and refined by our method can provide more precise supervi-
sion signals for model training.

Results on the ActivityNet1.3 dataset. The comparison results
on ActivityNet1.3 dataset are reported in Table2. Our approach
achieves considerable improvements over the vanilla model. For
example, under 40% noise, the ActionFormer suffers from obvious
performance drop, e.g., drops from 36.6% to 32.11% under 40% noise.
With our PbGaR, it achieve a 2.02% improvement in performance.
Even in the case of low noise level, our method is still effective. For
example, it enhances the accuracy of the ActionFormer at tIoU=0.95
under 20% noise. Our method also assists TriDet in alleviating a
0.18% performance decline. However, a contradiction arises at dif-
ferent noise levels. At 20% level, our method maintains a stable
performance at tIoU=0.95, while drops at 40% level. We attribute it
to our method makes a tradeoff between mAP at specific tIoU and
average mAP. It focuses more on those segments where the bound-
ary annotation is absolutely wrong. For instance, the improvement
is obvious at tIoU=0.5 and tIoU=0.75 under 40%.

4.3 Ablation Study
We conduct ablation experiments on THUMOS14 dataset to validate
the effectiveness of two modules in our method and we also analyse
parameter sensitivity and the two strategies of PBR in this part.

Analysis on main components . To investigate the effectiveness
of the two components of PbGaR, we start from the vanilla Action-
Former on noisy data and then gradually add the two modules of
our method on it. The results are shown in Table 3. The first row is
the vanilla ActionFormer trained under different boundary noise
levels. As we gradually add PBG and PBR module into training, it
is evident that both modules boost the performance under different
noisy levels of training data. For the PBG module, training under
our MIL formulation improve the mAP performance of Action-
Former across various boundary noise levels. For instance, the PBG
module achieves 2.54% and 3.93% improvements under 30% and
40% box noise level. The second module PBR further enhances the
quality of pseudo boundaries, especially under high noise levels.
We observe that the impact of PBR is minor under low boundary
noise levels. This is likely attributed to the relatively high quality of
the action instances in bags when the noise level is low. The results
demonstrate that both modules contribute greatly to our method.

Table 4: Ablation on the starting epoch 𝐸 of PBG. Experiments
are conducted on THUMOS14 dataset under 30% noise.

E 0.3 0.5 0.7 Avg.
1 81.28 65.42 33.18 61.61
6 81.73 65.76 34.00 62.01
10 81.16 66.46 32.82 61.65
20 80.70 66.09 31.84 61.41

Table 5: Analysis on two strategies of PBR. Experiments are
conducted on THUMOS14 dataset under 30% noise.

BR MB 0.3 0.5 0.7 Avg.
81.73 65.76 34.00 62.01

✓ 81.08 67.39 37.77 63.39
✓ 81.10 66.36 34.52 62.22

✓ ✓ 82.05 67.60 37.39 63.87

Ablation on the starting epoch of PBG module. The starting epoch
of our first module determines when to generate pseudo boundaries
and thus affects the quality of pseudo boundaries. We train 35
epochs (containing warmup 5 epochs) ActionFormer with PBG on
THUMOS14 dataset under 30% noise. We present results for the
choice of the starting epoch 𝐸 of PBG in Tab4. We observe our PBG
module can produce stable improvement and the optimal value is
obtained at 6.

Analysis on two strategies of PBR. We validate the effectiveness
of the two strategies in pseudo-boundary refinement module: bag
reconstruction (BR) and memory bank (MB). To verify the effective-
ness of these two strategies, we add the PBG module and use only
one refinement strategy from PBR to ActionFormer. Experiments
are conducted on THUMOS14 under 30% noise level. As shown in
Table5, the first row is the result that we add our first PBG module
to ActionFormer. The remain three rows demonstrate that either
bag reconstruction or memory bank can benefit the performance of
TAL models trained under noisy data. This demonstrates that both
strategies improve the quality of the generated pseudo boundaries
from first module and the combination of them is a preferred option
that can better utilize the capabilities of the TAL model.

5 CONCLUSION
In this paper, we focus on learning with inaccurate boundaries
in Temporal Action Localization task. By using classification as a
signal, we propose a PbGaR method to deal with the performance
degradation of TAL models under noisy boundary annotations. The
PbGaR firstly generates more accurate pseudo boundaries for train-
ing models and then improve the quality of pseudo boundaries via
our refnement module. Extensive experiments on two benchmarks
demonstrate that PbGaR effectively cooperate with modern TAL
detectors and obtain promising performance with inaccurate action
boundary annotations.
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