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Abstract—Domain adaptation aims to transfer knowledge from
a label-rich source domain to an unlabeled target domain. A
common strategy is to assign pseudo-labels to unlabeled target
samples for performing representation learning. However, most
existing methods only apply the source-guided classifier to generate
the source-biased pseudo-labels for self-training, leading to biased
target representations. Moreover, the generated pseudo-labels
ignore the manifold assumption that neighboring samples are
likely to have the same labels. To address the above problem, we
formulate a novel structural knowledge to assign target-oriented
and manifold-guided pseudo-labels for unlabeled target samples.
The structural knowledge consists of cluster-based knowledge and
locality-based knowledge. The cluster-based knowledge denotes
the label consistency between the target samples and the non-
parametric target cluster centers, making the pseudo-labels target-
oriented. The locality-based knowledge constrains the target
sample and its neighbors to satisfy the manifold assumption. As
the neighbors contain the source and target samples, the source
and target locality-based knowledge are utilized to boost the
descriptions. With the structural knowledge, we propose a novel
Dual Structural Knowledge Interaction (DSKI) framework for
domain adaptation. For generating aligned and discriminative
features, knowledge consistency constraint and instance mutual
constraint are proposed in DSKI. Evaluations on three benchmarks
demonstrate the effectiveness of the Dual Structural Knowledge
Interaction, e.g., 74.9%, 87.7%, and 90.8% for Office-Home,
VisDa-2017, and Office-31, respectively.

Index Terms—Domain adaptation, structural knowledge, dual
structural knowledge interaction.
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I. INTRODUCTION

DOMAIN adaptation intends to learn a well-performing
model from a fully-labeled source domain and applies it to

an unlabeled target domain. Since domain adaptation obtains the
satisfactory performance in target domain without the demand
of the target labels, it has received much attention in real-world
scenarios. The critical issue of domain adaptation is how to align
the source and target representations to reduce domain bias. Re-
cently, a lot of methods have been proposed to explicitly align
data distribution, e.g., statistical-based methods [1], [2], [3], [4]
and adversarial-based methods [5], [6], [7], [8], [9].

Since pseudo-labeling methods [10], [11], [12] are effec-
tively used for semi-supervised learning, a lot of methods [13],
[14], [15], [16] apply the pseudo-labeling for domain adaptation,
i.e., assigning pseudo-labels to the unlabeled target samples for
self-training. These methods obtain pseudo-labels by picking
up the maximum class probability based on the implicit source
cluster-based prior, whose predicted probability is denoted as
the similarity between its feature and the implicit source clus-
ter centers, as shown in Fig. 1(a). For example, DSBN [13]
and PFAN [15] treat the parameters of the classifier inferred
with the labeled source samples as the implicit source clus-
ter centers to predict the target probability for pseudo-labeling.
However, the pseudo-labels generated by merely considering
the implicit source cluster-based prior contain many incorrect
labels for the following two reasons: 1) the implicit source
cluster centers are biased against the target samples due to
the domain gap between the source and target domains; 2)
the implicit source cluster-based prior ignores the manifold as-
sumption that neighboring samples are likely to have the same
labels.

To address the above problem, we formulate a novel structural
knowledge to obtain the target-oriented and manifold-guided
pseudo-labels for unlabeled target samples, consisting of
cluster-based knowledge and locality-based knowledge. The
cluster-based knowledge denotes the label consistency between
the target sample and the target cluster center. To reduce the bias
of the cluster center, we formulate non-parametric centers by
considering the target features and their predicted probabilities.
Moreover, the target sample and its neighbors are likely to have
the similar labels based on the manifold assumption. Therefore,
the locality-based knowledge is constructed by considering the
correlation between the target sample and its selected neighbors,
i.e., the higher similarity, the higher confidence with the same
labels. Furthermore, as the neighbors contain the source and
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Fig. 1. (a) Conventional pseudo-labeling methods only consider the similarity
between the target sample and implicit source cluster center. (b) The proposed
method aggregates the cluster-based knowledge, target locality-based knowl-
edge, and source locality-based knowledge together to obtain structural knowl-
edge for pseudo-labeling. The nearest center is presented for convenience.

target samples simultaneously, the source and target
locality-based knowledge can provide valuable clues for predict-
ing the target probability. Therefore, the locality-based knowl-
edge consists of the source and target locality-based knowledge.
By considering cluster-based knowledge and locality-based
knowledge jointly, using the structural knowledge can obtain a
robust probability of each target sample, as shown in Fig. 1(b).

With the structural knowledge, we propose a novel Dual
Structural Knowledge Interaction (DSKI) framework for do-
main adaptation, as shown in Fig. 2. To increase the diversity of
structural knowledge of unlabeled target samples, we apply the
weak augmentation and strong augmentation strategies to aug-
ment the target samples for inferring the weak and strong spaces.
Furthermore, two types of structural knowledge are aggregated
and interacted between the weak and strong feature spaces.
Specifically, for constructing the cluster-based knowledge, we
utilize Memory Bank [17] to store the non-parametric class cen-
ters of the target domain considering the probabilities produced
by the classifier. The label consistency is constrained between
each target sample and the target class centers. Moreover, for
constructing the source and target locality-based knowledge,
we also utilize Memory Bank [17] to store the source and target
descriptions of the source samples and the augmented target
samples, and contrain each target sample and its neighbors
to have similar label. With the memory bank of each space,
we aggregate the cluster-based knowledge and locality-based
knowledge to obtain the weak and strong structural knowledges.
Since both structural knowledges describe the same target sam-
ple, the knowledge consistency constraint is applied to align two
types of structural knowledge for target representation learning,

i.e., the weak (strong) structural knowledge is used to optimize
the strong (weak) feature space. Besides, we also apply the
instance mutual constraint to promote the discrimination of
target representations.

The contributions of this work are summarized as follows:
� We introduce a novel structural knowledge to capture the

cluster-based knowledge and locality-based knowledge for
assigning high-quality pseudo-labels to the target samples.

� By considering the introduced structural knowledge, a
novel Dual Structural Knowledge Interaction (DSKI)
framework is proposed for domain adaptation.

� Evaluations on three benchmarks demonstrate the effec-
tiveness of the introduced structural knowledge and the
Dual Structural Knowledge Interaction, e.g., obtaining the
mean accuracy of 74.9%, 87.7%, and 90.8% for Office-
Home, VisDa-2017, and Office-31, respectively.

II. RELATED WORK

Recently, a lot of domain adaptation methods [18], [19], [20],
[21], [22], [23], [24] have been proposed to reduce the domain
gap, which can be divided into three categories: statistical-based
methods, adversarial learning methods and pseudo-labeling
methods. Note that the proposed method belongs to pseudo-
labeling methods.

A. Statistical-Based Methods

Since the data distributions between the source and target
domains are different, various distance metrics of domain dis-
crepancy are adopted for feature alignment. For example, some
methods utilize Maximum Mean Discrepancy (MMD) [3], [25]
as a measure of domain gap to align the means of the source and
target features. JAN [1] proposes Joint Maximum Mean Discrep-
ancy (JMMD) to align the joint distributions of multiple domain-
specific layers between source and target domains. CORAL [26]
aligns the second-order statistics of the source and target distri-
butions, and CMD [27] matches the higher-order central mo-
ments of probability distributions by means of order-wise mo-
ment differences. CAN [28] proposes a new Contrastive Domain
Discrepancy (CDD) to model the intra-class domain discrepancy
and the inter-class domain discrepancy considering the class in-
formation. Apart from MMD, Wasserstein distance [29], [30],
[31], [32], [33] is also widely used for feature alignment. Wasser-
stein distance is originally from optimal transport [34] problem
which seeks an optimal way to transport material from mines
to factories, but it is also utilized to measure the discrepancy
between source and target domains. OPDA [29] firstly proposes
to align the data distribution in the source and target domains
with a regularized unsupervised optimal transportation model.
JDOT [33] estimates the joint feature/label space distribution of
the source and target domains with optimal transport. SWD [32]
captures the dissimilarity between the outputs of task-specific
classifiers with Sliced Wasserstein Discrepancy. Although these
methods are helpful to reduce domain discrepancy, they fail to
exploit the label information of outputs for representation learn-
ing and obtain inferior results. GPDA [35] executes graph dual
regularization in the matrix factorization framework to learn the
discriminative and domain-invariant features, while preserving
both the statistical properties and geometrical structures of theAuthorized licensed use limited to: University of Science & Technology of China. Downloaded on February 20,2024 at 09:08:59 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. The framework of Dual Structural Knowledge Interaction(DSKI). DSKI infers the weak-augmented target samples D1 and strong-augmented target
samples D2 in independent networks to form the weak and strong embedding spaces, respectively. Given the source samples Ds, weak-augmented target samples
D1 and strong-augmented target samples D2, each space aggregates the knowledge via constructing memory bank to obtain structural knowledge, and propagates
its structural label information to its peer space. Furthermore, the mutual information between two embedding space is maximized for discriminative representation
learning.

original data. Specifically, graph dual regularization constrains
similar examples or features should have similar embeddings,
focusing on the consistency of manifold structures. Different
from GPDA, the manifold assumption in the proposed DSKI
refers that neighboring samples are likely to have the same la-
bels, concentrating on the label consistency in manifold space of
the source and target domains. Moreover, GPDA utilizes class
centers for domain alignment, while the proposed DSKI consid-
ers class centers for obtaining reliable pseudo-labels.

B. Adversarial Learning Methods

As Generative Adversarial Network (GAN) [36] has achieved
great success in image generation, many adversarial learning
methods [37], [38], [39], [40] have been proposed for feature
alignment in domain adaptation recently. DANN [5] adopts the
domain classifier to distinguish the source and target features,
and utilizes the feature extractor to confuse the domain classi-
fier for learning indistinguishable features. CDAN [41] presents
conditional adversarial domain adaptation utilizing the discrimi-
native information of the classifier predictions. MSTN [6] aligns
the class centroids in the source and target domains to learn se-
mantic representations for unlabeled target samples. GVB [42]
proposes a gradually vanishing bridge mechanism on both gen-
erator and discriminator to model domain-invariant and domain-
specific parts in the representations. Another type of adver-
sarial methods [43], [44], [45], [46] utilizes multiple different
task-specific classifiers as a domain classifier. MCD [43] maxi-
mizes the discrepancy between the outputs of two classifiers to
detect target samples that are far from the support of the source,
and makes the feature extractor generate target features near the

support to minimize the discrepancy. STAR [45] models classi-
fier as a Gaussian distribution with its variance representing the
inter-classifier discrepancy rather than a weight vector, thus an
arbitrary number of classifiers can be used. BCDM [46] designs
a novel classifier determinacy disparity formulating classifier
discrepancy as the class relevance of distinct target predictions
to generate discriminative representations. However, the train-
ing of adversarial learning is unstable and adversarial learning
methods ignore the connections between samples, which results
in degraded performance for domain adaptation.

C. Pseudo-Labeling Methods

Due to the marvelous performance of pseudo-labeling meth-
ods [10], [11], [12] in semi-supervised learning, pseudo-labeling
methods [13], [15], [47], [48], [49], [50] in domain adapta-
tion have attracted considerable attention recently. JAD [47]
gains the pseudo-labels via the classifier trained on the source
samples, and infers an improved classification model with the
pseudo-labeled target samples together with source samples.
MADA [51] obtains the conditional probability of each class
for target samples, resulting in soft pseudo-labels. However,
the classifier inferred with the labeled source samples cannot
produce robust pseudo-labels for target samples because of the
domain gap between the source and target domains. NRC [52]
exploits local structure of target data, i.e., the local neighbors,
reciprocal neighbors, and the expanded neighborhood, to en-
courage label consistency among data. SND [53] computes the
entropy of the similarity distribution between target samples
to measure the density of soft neighborhoods, which serves as
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9060 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

an unsupervised validation criterion. However, these two meth-
ods do not explicitly utilize the information of neighbors to ob-
tain pseudo-labels for supervised learning. Different from the
above methods, the proposed DSKI explicitly adopts the pre-
dicted probabilities of target neighbors for obtaining pseudo-
labels. Furthermore, NRC and SND ignore the valuable neigh-
borhood structure in the source domain. Nevertheless, the pro-
posed DSKI jointly considers the locality-based knowledge in
the source domain and target domain for reliable pseudo-labels.
SFDA-DE [54] obtains target centers with spherical k-means,
and gains pseudo-labels via the label of the nearest target center.
Similar to SFDA-DE, CDS [55] first utilizes k-means to ob-
tain target centers, and acquires pseudo-labels with the nearest
target center for cross-domain person re-identification. Differ-
ent from SFDA-DE and CDS, the proposed DSKI considers
the distances of each target sample with all the target centers
to obtain cluster-based knowledge. CCAN [56] adopts Graph
Convolutional Network to encode data structure information for
obtaining GCN feature, then GCN features and CNN features
are concatenated for domain alignment as well as class centroid
alignment. AdaGraph [57] focuses on predictive domain adapta-
tion scenario, which learns to generalize from annotated source
images plus unlabeled samples with associated metadata from
auxiliary domains to unlabeled target domain. It builds a graph
to describe the dependencies among different domains, and ex-
ploits the connection between the target domain and auxiliary
domains with constructed graph to regress the target model at test
time. Although GCAN and AdaGraph build graph to solve do-
main adaptation problem, they ignore the locality-based knowl-
edge, i.e., each target sample and its neighbors are likely to have
similar labels. Different from GCAN and AdaGraph, the pro-
posed DSKI constructs graphs to exploit the underlying source
and target locality-based knowledge for reliable pseudo-labels
of unlabeled target samples.

The methods most similar to ours are SRDC [49] and AT-
DOC [50]. SRDC [49] uncovers the intrinsic target discrim-
ination via discriminative clustering of target data, and im-
plements structure source regularization to implicitly achieve
feature alignment. However, SRDC only considers the cluster-
based knowledge and ignores the locality-based knowledge in
the source and target domains. Moreover, ATDOC develops two
types of non-parametric classifiers, i.e., the nearest centroid clas-
sifier, and neighborhood aggregation classifier, to improve the
quality of pseudo-labels. However, ATDOC treats these two
classifiers separately, and ignores the knowledge interaction be-
tween two domains. Unlike SRDC and ATDOC, the proposed
method jointly considers the cluster-based knowledge contained
in target cluster centers and the locality-based knowledge con-
tained in nearby source and target samples. Furthermore, it in-
teracts the knowledge between two different feature spaces for
representation learning.

III. STRUCTURAL KNOWLEDGE

A. Problem Formulation

Domain adaptation focuses on transferring knowledge from a
labeled source dataset to an unlabeled target one. Formally, the
source and target datasets are defined as Ds = {(xsi , ysi )}Ns

i=1

and Dt = {(xti)}Nt
i=1, where Ns and Nt represent the number

of source and target samples, respectively. Furthermore, there
are the same Nc categories in the source and target domains.
The goal of deep domain adaptation is to infer an unbiased fea-
ture extractor F and classifier C. Given the target sample x, the
pseudo-labeling methods firstly apply the feature extractor F to
extract its description f = F(x). Then they utilize the classifier
C to predict its probability p and select the category with the
maximum predicted probability as pseudo-label. After that, the
supervised classification loss L is used to optimize the F and
classifier C on target dataset Dt with (2),

p = C(F(x)), ŷ = argmaxp, (1)

L = − 1

Nt

∑
x∈Dt

ŷlogp, (2)

wherep and ŷ denote the predicted probability and pseudo-label
for target sample x.

However, the above-mentioned pseudo-labeling methods
have two disadvantages for domain adaptation: 1) the classi-
fier C inferred with the labeled source samples is biased to
the source samples because of the existence of domain gap;
2) only the target sample x itself is considered to generate
pseudo-label, leading to that the target sample x and its neigh-
bors might do not satisfy the manifold assumption. To address
these problems, we formulate a novel structural knowledge to ag-
gregate the cluster-based knowledge and locality-based knowl-
edge of each target sample for pseudo-labeling. Specifically, the
cluster-based knowledge Pc(F(x),C) represents the similarity
between the target feature F(x) and the target cluster sets C.
The locality-based knowledge P l(F(x),N(x)) constrains the
target feature F(x) and its neighbors N(x) to satisfy the mani-
fold assumption. By considering these two kinds of knowledge,
the pseudo-label of the target sample x can be obtained by (3),

P(x) = βPc(F(x),C) + (1− β)P l(F(x),N(x)), (3)

where P(x) denotes the final class probability of the target
sample x, and β ∈ [0, 1] is a trade-off parameter. In the fol-
lowing, we give detailed descriptions about Pc(F(x),C) and
P l(F(x),N(x)).

B. Cluster-Based Knowledge

The cluster-based knowledge aims to model the correlation
between the target feature and the target cluster center, i.e., the
higher the similarity, the higher the consistency of the cate-
gory probability. Formally, the probability of the target sam-
ple x is a combination of the center category probabilities, e.g.,
Pc(f ,C) ∈ R

Nc×1 denotes the cluster-based probability, where
f = F(x) is the target feature and C = {(ci,pc

i )}Nc
i=1 denotes

the set of target centers. Specifically,ci andpc
i are the feature and

probability of the i-th center, respectively. To transfer the prob-
ability information from the target center (ci,pc

i ) to the target
feature f , we construct a graph G = (V,E) to exploit the un-
derlying cluster-based knowledge. The node set V = {vi}Nc

i=0

consists of the given target feature f and Nc centers, where
vi = (ci,p

c
i ) contains the node feature ci and its probability

pc
i . The set of edges E = {ei}Nc

i=1 represents the connections
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between the target feature f and all Nc centers, where ei is the
similarity function to measure the target feature f and the center
feature ci computed with (4),

ei =
exp(f�ci)∑Nc

j=1 exp(f
�cj)

. (4)

Based on the graph G, the probability of the target feature is
the aggregation of all nodes with (5),

Pc(F(x),C) =

Nc∑
i=1

eip
c
i =

Nc∑
i=1

exp(f�ci)∑Nc

j=1 exp(f
�cj)

pc
i , (5)

where f = F(x) and C = {(ci,pc
i )}Nc

i=1.
To optimize (5), the rest problem is how to obtain the center

sets C = {(ci,pc
i )}Nc

i=1. The center feature is obtained by fusing
the current centers ci and the new center ĉi with (7),

ci = (1− τ)ci + τ ĉi, (6)

where τ is a smoothing coefficient hyperparameter set to 0.1 by
default. The new center ĉi is generated by applying the average
of the target features predicted to the i-th class.

ĉi =

∑Nt

k=1 pk,ifk∑Nt

k=1 pk,i

, (7)

where fk represents the feature of the k-th target sample, pk,i

denotes the probability of the k-th target samples predicted to
the i-th class.

For the center probability pc
i , there are two situations: soft

probability and hard probability. The hard probability is a
one-hot vector for describing the center belonging to each class,
and the soft probability is obtained by feeding the target center
feature ci into the classifier C. Here we adopt hard probability
as default.

C. Locality-Based Knowledge

Different from cluster-based knowledge, locality-based
knowledge aims to model the relationship between the tar-
get sample and its neighbors for satisfying the manifold as-
sumption, i.e., the higher similarity between the target sample
and its neighbors, the higher confidence with the same labels.
For convenience, we define the feature of a given target sam-
ple x as f = F(x). Therefore, the locality-based knowledge
P l(F(x),N(x)) can also be denoted as P l(f ,N(x)). As the
neighbors contain the source and target samples simultaneously,
the locality-based knowledge P l(f ,N(x)) is a combination of
the target locality-based knowledgePt(f ,Nt(x)) and the source
locality-based knowledge Ps(f ,Ns(x)),

P l(f ,N(x)) = γPt(f ,Nt(x)) + (1− γ)Ps(f ,Ns(x)), (8)

where γ ∈ [0, 1] is a trade-off parameter.
As the way to obtain the source locality-based knowledge

Ps(f ,Ns(x)) is similar to that of the target locality-based knowl-
edge Pt(f ,Nt(x)), we thus introduce the Pt(f ,Nt(x)) for sim-
plicity. For the target locality-based knowledge Pt(f ,Nt(x)),

N
t(x) = {(f ti ,pt

i)}Ki=1 denotes the features and predicted prob-
abilities of the neighbors, where the probabilities are gener-
ated by the classifiers. Given the target sample x, its neigh-
bors are generated by selecting the K-nearest neighbors based
on feature similarity. Similar to the cluster-based knowledge,
we construct a graph Gt = (V t, Et) to exploit the underlying
target locality-based knowledge, where V t = {vti}Ki=0 includes
the given target sample and K neighboring target samples, and
Et = {eti}Ki=1 comprises the connections between the target fea-
ture andK neighboring target features. Each node vti = (f ti ,p

t
i)

contains the node feature f ti and its probability pt
i, and the edge

eti is the distance between the target feature f and the neighboring
target feature f ti ,

eti =
exp(f�f ti )∑K
j=1 exp(f

�f tj )
. (9)

According to the graph Gt, the target locality-based proba-
bility is aggregated with (10),

Pt(f ,Nt(x)) =

K∑
i=1

etip
t
i =

K∑
i=1

exp(f�f ti )∑K
j=1 exp(f

�f tj )
pt
i. (10)

Similar to the target locality-based knowledge, the source
locality-based knowledge Ps(f ,Ns(x)) is generated with (11),

Ps(f ,Ns(x)) =

K∑
i=1

esip
s
i =

K∑
i=1

exp(f�fsi )∑K
j=1 exp(f

�fsj )
ps
i , (11)

where fsi represents the source node feature, and ps
i depicts the

source predicted probability. Since the source labels are avail-
able, the source predicted probabilities {ps

i}Ns
i=1 are obtained by

label smoothing strategy [58] with (12),

ps
i,j =

{
ε
Nc

if j �= ysi ,

1− ε+ ε
Nc

if j = ysi ,
(12)

whereps
i,j indicates the j-th class probability ofps

i , ε denotes the
hyperparameter for smoothing, ysi represents the corresponding
ground-truth label, and Nc is the number of the classes.

D. Aggregation

For the unlabeled target samples x, the structural knowledge
P(x) is the combination of Pc, Pt and Ps for optimization,

min
P(x)∈RNc

L(P(x)) = β‖P(x)− Pc(x)‖22

+ (1− β)
[
γ‖P(x)− Pt(x)‖22 + (1− γ)‖P(x)− Ps(x)‖22

]
,

(13)

where ‖P(x)− Pc(x)‖22 constrains P(x) to be close to the
cluster-based knowledge Pc(x), ||P(x)− Pt(x)‖22 constrains
that P(x) should not change too much with the target locality-
based probability Pt(x), ‖P(x)− Ps(x)‖22 means that P(x)
has a similar value with the source locality-based probability
Ps(x). Note that Pc(x), Pt(x), and Ps(x) are the abbrevia-
tion of Pc(f ,C), Pt(f ,Nt(x)), and Ps(f ,Ns(x)), respectively.
β ∈ [0, 1] and γ ∈ [0, 1] are two hyperparameters.
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To optimize the (13), we observe the objective function is
(convex) quadratic. Since any locally optimal point of a convex
optimization problem is also global optimal [59], we conduct
∇L(P∗(x)) = 0 to obtain the minimizer P∗(x) of L(P(x)):

∇L(P∗(x))

= 2β(P∗(x)− Pc(x)) + 2(1− β)[γ(P∗(x)− Pt(x))

+ (1− γ)(P∗(x)− Ps(x))]

= 2P∗(x)− 2βPc(x)− 2(1− β)[γPt(x) + (1− γ)Ps(x)]

= 0 (14)

Therefore, the minimizer P∗(x) is represented as:

P∗(x) = βPc(x) + (1− β)
[
γPt(x) + (1− γ)Ps(x)

]
.
(15)

IV. DUAL STRUCTURAL KNOWLEDGE INTERACTION

With the structural knowledge, we propose a novel Dual
Structural Knowledge Interaction (DSKI) model for domain
adaptation, as shown in Fig. 2. For increasing the diversity of
structural knowledge of unlabeled target samples, DSKI uti-
lizes two types of structural knowledge to aggregate and in-
teract in weak and strong feature spaces. Specifically, given
the target samples Dt = {(xti)}Nt

i=1, DSKI applies the weak
augmentation and strong augmentation strategies to augment
the target samples for forming weak and strong feature space,
e.g., Dt

1 = {(xti,1)}Nt
i=1 and Dt

2 = {(xti,2)}Nt
i=1 denote the corre-

sponding weak and strong augmented samples, respectively. The
detailed illustrations about the weak augmentation and strong
augmentation strategies are shown in the experimental section.

In this work, two independent networks are optimized withDt
1

and Dt
2 for generating the weak and strong augmented feature

spaces. Based on the augmented samplesDt
j(j ∈ {1, 2}), DSKI

applies the corresponding feature extractor Fj to extract the tar-
get featuresFt

j = {f ti,j}Nt
i=1(j ∈ {1, 2}). After that, we apply the

classifier Cj to predict the class probabilities Pt
j = {pt

i,j}Nt
i=1.

For domain adaptation, we also generate the source features
Fs

j = {fsi,j}Ns
i=1 and the corresponding class probabilities Ps

j =

{ps
i,j}Ns

i=1 for the source samplesDs = {(xsi )}Ns
i=1. With the tar-

get features Ft
j and class probabilities Pt

j(j ∈ {1, 2}), we can
generate and update the target cluster centers cwith (7). Specifi-
cally, during training with mini-batch strategy, we employ mem-
ory banks to store the source features, target features, and target
centers, e.g., as shown in Fig. 2, the memory bank is utilized for
each space. After that, we can generate the final structural prob-
abilities P1(x) and P2(x) of the target sample x for two spaces.
Since the structural probabilities P1(x) and P2(x) describe the
same target sample x, we apply a structural knowledge interac-
tion between two feature spaces for knowledge consistency. For
example, each space is optimized by the structural knowledge
probability of its peer space. Specifically, the structural proba-
bilities P1(x) and P2(x) are used to optimize strong and weak
feature embeddings, respectively. Therefore, the objective of the

weak augmented feature space is:

Lt1 = −
∑

xt
i,1∈Dt

1

s̃ti,2ỹ
t
i,2 log C1(F1(x

t
i,1)), (16)

where s̃ti,2 and ỹti,2 denote the maximum probability and its index
of the structural probability P2(xti,2). Similarly, the objective of
the strong augmented feature space is:

Lt2 = −
∑

xt
i,2∈Dt

2

s̃ti,1ỹ
t
i,1 log C2(F2(x

t
i,2)). (17)

Except for the structural knowledge alignment, we also max-
imize the mutual information [60], [61] between two types of
instance descriptions to conduct instance mutual alignment for
promoting the discrimination of target representations. Note that
the propose of utilizing mutual information is different from
self-supervised methods, e.g., InfoMin [62] resorts to mutual
information to minimize information shared between views and
maximize task-relevant information for contrastive learning. In
order to calculate the mutual constraint, we firstly convert the
target probability sets Pt

1 and Pt
2 into the corresponding prob-

ability matrices P t
1 and P t

2 . After that, we can obtain the joint
probability distribution matrix P with (18),

P = P t
1
�
P t
2 . (18)

As for each (xti,1, x
t
i,2) we also have (xti,2, x

t
i,1) by consider-

ing symmetric problems. Specifically, we convert P into sym-
metric matrices P̂ = (P + P�)/2. Then, the mutual informa-
tion loss is defined as (19),

Lm = −I(P t
1 , P

t
2) = −

Nc∑
i=1

Nc∑
j=1

P̂i,j · ln P̂i,j

P̂i · P̂j

, (19)

where I depicts mutual information, P̂i,j denotes each element
in row i and column j of P̂ , P̂i and P̂j indicate the marginal
distributions which are the summed of the rows and columns of
P̂ , respectively.

By combining the knowledge consistency constraint and mu-
tual constraint, the final objective is:

L = Ls1 + Ls2 + ζ(Lt1 + Lt2) + ηLm, (20)

where ζ and η are the trade-off parameters, Ls1 = −∑
xs
i∈Ds

ȳsi log C1(F1(x
s
i )) and Ls2 = −∑

xs
i∈Ds

ȳsi log C2
(F2(x

s
i )) denote the standard source classification losses with

label-smoothing regularization [58] for two spaces, respectively,
ȳsi = 0.9 ∗ ysi + 0.1/Nc is the smoothed label as in SHOT [70].

V. EXPERIMENTS

A. Datasets

We evaluate the proposed method on three standard domain
adaptation benchmarks:

1) Office-Home [74] is a challenging medium-sized bench-
mark with 65 object categories, and consists of 4 dif-
ferent domains: Art (Ar), Clipart (Cl), Product (Pr) and
Real-World (Rw). We conduct twelve transfer tasks for
evalutions.
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2) VisDA-2017 [75] is a challenging large-scale banchmark
with 12 object categories, and consists of 2 dissimilar
domains: Synthetic and Real. We evalulate the proposed
method on Synthetic → Real transfer task.

3) Office-31 [76] is a widely used benchmark with 31 object
categoires, and contains 3 distinct domains: Amazon (A),
Webcam (W) and DSLR (D). We evalulate the proposed
method on six transfer tasks.

B. Implementation Details

We implement our approach in PyTorch using Nvidia TESLA
V100 GPU. ResNet-50 [63] is treated as the backbone for
Office-31 and Office-Home, and ResNet-101 [63] is treated as
the backbone for VisDA-2017. The last FC layers of ResNet-50
and ResNet-101 are replaced with task-specific FC layers. We
utilize all labeled source samples and unlabeled target samples
during training. The mixup [77] augmentation is applied to the
target samples on Office-31 and VisDA-2017. During inference,
the outputs of the classifier in each network are treated as the
final predictions.

We set K = 5 to select the neighbors of the target sample.
The mini-batch SGD with momentum of 0.9 and weight decay
of 1e−3 is used for training. The learning rate strategy is set
as same as CDAN [1], i.e., ψp = ψ0(1 + ap)−b, where ψp is
the current learning rate, ψ0 is the initial learning rate, p is the
training progress changing from 0 to 1, a= 10, and b= 0.75. The
initial learning rate and hyperparameters have different settings
among different datasets. For Office-Home, we adopt the initial
learning rate of 1e−3 and 1e−2 for the feature extractors and the
classifiers, respectively. We set β = 0.3, γ = 0.7, ε = 0.7, and
utilize a linear rampup scheduler from 0 to 0.2 and 1 for ζ and
η, respectively. For Office-31, we set β = 0.5, γ = 0.5, and ε
= 0.9. The settings of ζ, η, and initial learning rate are same as
Office-Home. For VisDA-2017, we set β = 0.5, γ = 0.7, ε =
0.7, ζ = 0.2, and η= 0.8. For the weak space, the learning rate is
set as 5e−4 and 5e−3 for the feature extractor and the classifier.
For the strong space, the learning rate is set as 2e−3 and 2e−2

for the feature extractor and the classifier.
DSKI applies the weak augmentation and strong augmenta-

tion strategies for augmenting the target samples to form weak
space and strong space, respectively. The weak augmentation is
the flip-and-shift augmentation strategy. For strong augmenta-
tion, we adopt RandAugment [78] to sequentially apply several
label-preserving image transformations randomly sampled from
a predefined set of transforms, e.g., image rotation and contrast
adjustment. Note that IL2A [79] also proposes dual augmen-
tation framework for class-incremental learning. However, its
dual augmentation consists of class augmentation and semantic
augmentation in sample space and feature space to synthesize
auxiliary classes and mimic the distribution of old classes, re-
spectively, which is different from the proposed method.

C. Comparison With Existing Methods

In this section, we conduct comparisons between the proposed
DSKI and classic pseudo-labeling methods in semi-supervised
learning (SSL) and existing domain adaptation (DA) methods on
Office-Home, VisDA-2017, and Office-31, and summarize the

related results in Tables I–III, respectively. Since two indepen-
dent networks are optimized with weak and strong augmented
target samples for generating the weak and strong augmented
feature spaces, we denote these two networks as weak and strong
networks, respectively. DSKI-W and DSKI-S represent the re-
sults in weak network and strong network, respectively.

Table I illustrates the classification results on twelve tasks
of Office-Home. Specifically, DSKI-W/DSKI-S outperforms
Baseline trained with labeled source domain only with large im-
provements, i.e., 28.7%/28.8% in average accuracy. Moreover,
DSKI-W/DSKI-S also achieves notable improvements com-
pared with semi-supervised methods, e.g., outperforming Fix-
match by 5.2%/5.3% in average accuracy. Furthermore, the pro-
posed method boosts the results upon the state-of-the-art domain
adaptation method, e.g., DSKI-W and DSKI-S achieve 2.6% and
2.7% mean improvement than ATDOC-NA, respectively.

Table II depicts the accuracy on twelve classes of VisDA-
2017. Particularly, compared with Baseline, DSKI-W/DSKI-S
obtains the improvements of 35.3%/35.3% in average accu-
racy. Moreover, compared with classic pseudo-labeling meth-
ods in semi-supervised learning and existing domain adapta-
tion, DSKI-W/DSKI-S achieves the best-performing results,
i.e., 87.7%/87.7% in average accuracy.

Table III lists the results on six tasks of Office-31. We observe
that DSKI-W/DSKI-S outperforms Baseline by 14.7%/14.7%
in average accuracy. Moreover, DSKI-W/DSKI-S gains the
best results in challenging D → A and W → A tasks. Note
that DSKI-W/DSKI-S obtains a slight improvement (e.g.
0.2%/0.2%) compared with the state-of-the-art domain adap-
tation method CAN on Office-31, because each domain in
Office-31 contains fewer images and smaller inter-domain
differences than other dataset.

Although we apply two independent feature spaces for target
feature learning, we also observe that the weak and strong net-
works achieve the similar performance on all three benchmarks,
e.g., 74.8% vs. 74.9%, 87.7% vs. 87.7%, and 90.8% vs. 90.8%
for Office-Home, VisDA-2017, and Office-31, respectively. The
reason is that we apply a knowledge consistency constraint to
conduct structural knowledge interaction between two feature
spaces, leading to two feature embedding producing similar tar-
get descriptions finally.

D. Ablation Study

Knowledge Aggregation: The structural knowledge consists
of cluster-based knowledge (C), target locality-based knowledge
(TL), and source locality-based knowledge (SL). We conduct
several experiments to evaluate the effectiveness of the pro-
posed components. As shown in Table IV, using the cluster-
based knowledge(C) obtains a higher performance than the
pesudo-labeling method using implicitly source cluster centers,
e.g., 89.5%/89.5% vs. 87.3%/87.2% in weak/strong network.
Moreover, utilizing target locality-based knowledge (TL) ob-
tains a higher performance than using implicitly source clus-
ter centers, e.g., TL-W/TL-S improves the mean accuracy of
pseudo-labeling method from 87.3%/87.2% to 90.1%/90.1%.
Furthermore, SL-W and SL-S employing the source locality-
based knowledge obtain 0.7% and 0.8% improvement compared
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TABLE I
CLASSIFICATION ACCURACY (%) ON OFFICE-HOME

TABLE II
CLASSIFICATION ACCURACY (%) ON VISDA-2017

TABLE III
CLASSIFICATION ACCURACY (%) ON OFFICE-31
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TABLE IV
ABLATION STUDY OF KNOWLEDGE AGGREGATION ABOUT ACCURACY ON OFFICE-31

TABLE V
THE ACCURACY OF PSEUDO-LABELS ABOUT VARIOUS PSEUDO-LABELING METHODS ON OFFICE-31

with using implicitly source cluster centers, respectively. Finally,
jointly considering three knowledge terms, the mean accuracies
of DSKI-W and DSKI-S reach 90.8% and 90.8%, respectively.
The above analyses demonstrate the effectiveness of each term
and the necessity of integrating the three terms.

The Accuracy of Pseudo-labels: To compare the accuracy
of pseudo-labels about various pseudo-labeling methods, we
present the accuracy of pseudo-labels among the proposed DSKI
and classic pseudo-labeling methods in semi-supervised learn-
ing (Mean-teacher, Mixmatch, and Fixmatch) as well as in do-
main adaptation (SHOT, ATDOC-NC, and ATDOC-NA) on
Office-31, as shown in Table V. The accuracies of pseudo-labels
about pseudo-labeling methods are obtained by re-implementing
the released codes. For fair comparison, the proposed DSKI
is implemented by only considering knowledge aggregation
and ignoring knowledge consistency constraint and mutual
constraint. We observe the pseudo-labeling methods in semi-
supervised learning achieve inferior performances in domain
adaptation task, i.e., average accuracy 82.7% of Fixmatch,
since these methods designed for singe domain scenario cannot
handle cross domain scenario. Moreover, the pseudo-labeling
methods in domain adaptation obtain higher results than the
pseudo-labeling methods in semi-supervised learning, but their
results are all lower than the proposed DSKI, i.e., average ac-
curacy 88.9% of ATDOC-NA vs. average accuracy 89.7% of
DSKI. This is because these methods only consider cluster-
based knowledge or target locality-based knowledge, and ig-
nore source locality-based knowledge. By jointly considering
cluster-based knowledge, source locality-based knowledge, and
target locality-based knowledge, DSKI achieves the best results
about average accuracy of pseudo-labels, demonstrating the ef-
fectiveness of the proposed DSKI.

We further compare the accuracy of pseudo-labels among
DSKI and the methods using various knowledge in DSKI, and

present the results in Table VI, where Pseudo-labeling represents
obtaining pseudo-labels with implicit source cluster centers, C
depicts utilizing cluster-based knowledge for pseudo-labels, TL
and SL indicate considering target locality-based knowledge
and source locality-based knowledge, respectively. We observe
that the average accuracies (89.1%/88.5%, 89.9%/88.8%, and
87.7%/87.1%) of pseudo-labels obtained by C, TL, and SL are
higher than the average accuracy (86.9%/86.0%) of pseudo-
labels obtained by pseudo-labeling in weak/strong space, illus-
trating the effectiveness of target cluster centers, target locality-
based knowledge, and source locality-based knowledge. Note
that SL acquires lower average accuracy of pseudo-labels than
TL and C, since the distributions of source domain and target do-
main are different. Combining cluster-based knowledge, source
locality-based knowledge, and target locality-based knowl-
edge, DSKI achieves the best results about average accuracy
(90.6%/89.4%) of pseudo-labels in weak/strong space, illustrat-
ing the rationality of knowledge aggregation.

Effect of Knowledge Consistency Constraint Lt∗: After ob-
taining the structural knowledge in two independent networks,
the knowledge consistency constraint Lt∗ is used for structural
knowledge interaction between two feature spaces. As shown in
Table VII, the baseline model (SKA) represents the model only
considers knowledge aggregation and ignores knowledge con-
sistency constraint Lt∗ and mutual constraint Lm. Specifically,
SKA adopts the obtained pseudo-label to train its own space,
rather than its peer space. Moreover, SKIA represents utilizing
the knowledge consistency constraint Lt1 and Lt2 to optimize
each space embedding in SKA. From Table VII we can see that,
SKA obtains the mean accuracy of 73.3% and 72.2% in weak and
strong networks, respectively. After adding the knowledge con-
sistency constraint to SKA, SKIA obtains the mean accuracies
of 73.6% and 73.9% in weak and strong networks, respectively.
The improvements demonstrate that using the unsupervised
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TABLE VI
THE ACCURACY OF PSEUDO-LABELS ABOUT METHODS USING VARIOUS KNOWLEDGE IN DSKI ON OFFICE-31

TABLE VII
ANALYSIS OF INTERACTION IN OFFICE-HOME

TABLE VIII
ANALYSIS OF AUGMENTATION IN OFFICE-HOME

knowledge consistency constraint can exchange knowledge be-
tween two spaces for inferring robust target representations.

Effect of Instance Mutual Constraint Lm: Besides the knowl-
edge consistency constraint, the instance mutual constraint Lm

is also applied for representation learning. As shown in Ta-
ble VII, SKIM using the mutual constraint Lm obtains the av-
eraged 1.4% and 2.0% improvements upon the baseline model
(SKA) in two networks. Especially, the final model both con-
sidering the knowledge consistency contraint and instance mu-
tual constraint achieves the best mean accuracy of 74.8% and
74.9%, outperforming DSKS which replaces the mutual infor-
mation constraint with consistent constraint [12]. The better per-
formance shows that the instance mutual constraint is comple-
mentary to the knowledge consistency constraint for boosting
the target representation learning.

Effect of Dual Space: To evaluate the effect of space em-
bedding for domain adaptation, we conduct several experiments
with different augmentation strategies to construct two spaces:
both weak (SKBW), both strong (SKBS), and both hybrid aug-
mentations (SKBH), respectively. Note that the hybrid augmen-
tation applies the weak augmentation and strong augmentation to
augment the unlabeled target samples. As shown in Table VIII,
the weak augmentation strategy is more effective than strong
augmentation, e.g., SKBW obtains a higher performance of
74.5% than 73.3% of SKBS. Furthermore, SKBH achieves the
medium performance between SKBS and SKBW, e.g., 74.3%
of SKBH vs. 73.3% of SKBS, and 74.3% of SKBH vs. 74.5%
of SKBW. The above results demonstrate the intensity of data
augmentation during training affects the final performance. We

also observe that the proposed DSKI consisting of weak and
strong augmentations obtains the best performance of 74.8%
and 74.9% in two spaces, proving the necessity and rationality
of the interaction between two different augmented spaces.

Hyperparameter Analysis: We conduct the hyperparameter
analyses, and summarize the related results in Fig. 3. Fig. 3(a)
shows that a proper neighboring sizeK = 5 is important for ex-
ploiting structural knowledge. The reason is that small K leads
to limited locality-based knowledge information, and large K
brings much irrelated label information to structural knowledge.
Fig. 3(b) illustrates that the trade-off parameter β = 0.5 be-
tween cluster-based knowledge and locality-based knowledge
results in the best performance. The results show cluster-based
knowledge and locality-based knowledge contribute to struc-
tural knowledge equally. Fig. 3(c) indicates that the trade-off
parameter γ = 0.5 between the target locality-based knowledge
and source locality-based knowledge achieves the highest ac-
curacy. We find that giving more attention to locality-based
knowledge would harm the performance due to the domain gap
between source and target domains. Fig. 3(d) depicts that the
weight ζ = 0.2 for knowledge alignment loss outperforms other
setting. When ζ increases, the wrong information contained in
probability predictions is amplified. Furthermore, when ζ de-
creases, the useful structural knowledge is not fully utilized.
Fig. 3(e) represents that proper weight η = 1 is important to
balance mutual information losses.

Analysis of Manifold Assumption: We denote the average rate
of selected neighborhood set having same label with samples as
homophily score, and present the homophily score of selected
target neighborhood set and selected source neighborhood set in
Fig. 4. We observe that as the neighboring sizeK decreases, the
homophily score of selected target neighborhood set increases,
demonstrating the manifold assumption that the higher simi-
larity, the higher confidence with same labels. Moreover, the
homophily score of selected source neighborhood set almost
satisfies the manifold assumption as K changes, except K = 3.
This is because there is domain gap between source domain and
target domain, the nearby source samples of target sample may
have inconsistent labels. The above results illustrate the ratio-
nality of the manifold assumption in DSTK.

Model Analysis: We conduct some ablation studies for model
analysis, and show the results in Table IX. Firstly, the structural
knowledge considers the source neighbors and target neighbors
of the target sample to construct locality-based knowledge. Note
that the target neighbors do not contain the target sample itself
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Fig. 3. Plot of various hyperparameter analyses on Office-31. (a) Varying the neighboring size K, the number of selected neighbors about each sample for
calculating locality-based knowledge. (b) Varying the trade-off parameter β between cluster-based knowledge and locality-based knowledge for obtaining structural
knowledge. (c) Varying the trade-off parameter γ between the target locality-based knowledge and source locality-based knowledge for gaining locality-based
knowledge. (d) Varying the weight ζ for structural knowledge alignment loss. (e) Varying the weight η for mutual information loss.

TABLE IX
ANALYSIS ABOUT WHETHER UTILIZING LABEL INFORMATION FOR EACH SAMPLE ON OFFICE-31

Fig. 4. The homophily scores of selected target neighborhood set and selected
source neighborhood set on Office-31.

due to its label might be incorrect. We thus perform a comparison
between with and without considering the target sample itself
for the locality-based knowledge, where “DSKI w/ T” and DSKI
represent the models with and without considering the target
sample itself, respectively. As shown in Table IX, “DSKI-W
w/T” and “DSKI-S w/T” obtain the mean accuracy of 90.6% and
90.6% in weak and strong networks, which are lower than 90.8%
of DSKI-W and 90.8% of DSKI-S. This poor performance of
“DSKI w/ T” indicates that the pseudo-labels of the target images
contain much wrong label information. Therefore, the locality-
based knowledge considering its own label of the target sample
is not conducive to generate robust pseudo-labels.

Secondly, the cluster-based knowledge constructs a structure
to aggregate all target cluster center information, which is dif-
ferent from the traditional methods by treating the label of the

most similar cluster center as a pseudo label. To evaluate the
effectiveness of the cluster-based knowledge, we thus perform a
comparison between DSKI and “DSKI w/ C” which constructs
the cluster-based knowledge with the most similar target cluster
center. As shown in Table X, DSKI-W and DSKI-S obtain 1.2%
and 1.2% improvements upon the “DSKI-W w/ C” and “DSKI-S
w/ C,” which demonstrates the necessity and effectiveness to ap-
ply the structure to fuse all cluster centers.

Finally, we adopt hard probability as center probability pc
i for

target centers. Note that for the center probability, there are two
situations: soft probability and hard probability. We compare the
results between soft probability and hard probability of center
probability pc

i for target centers, as shown in Table XI, where
DSKI w/Soft denotes utilizing the soft probability obtained by
feeding the target center feature ci into classifier C, and DSKI
adopts hard probability using a one-hot vector for describing the
center belonging to each class. We observe that DSKI outper-
forms DSKI w/Soft by 0.5% and 0.4% in weak space and strong
space, respectively, indicating hard probability is more effective
than soft probability for target centers.

Precision, Recall, and F1-score: For achieving more com-
prehensive insights, we further compare the precision, recall,
and F1-score of the proposed method with several classic
domain adaptation methods (DAN, DANN, MCC, BNM, SHOT,
ATDOC-NC and ATDOC-NA), as shown in Table XII. The pre-
cision, recall, and F1-score of domain adaptation methods are
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TABLE X
ANALYSIS ABOUT THE WAY TO OBTAIN THE CLUSTER-BASED KNOWLEDGE ON OFFICE-31

TABLE XI
ANALYSIS ABOUT PROBABILITY OF TARGET CENTERS ON OFFICE-31

TABLE XII
THE COMPARSION ABOUT PRECISION, RECALL, AND F1-SCORE ON OFFICE-31

obtained by re-implementing the released codes. We observe
that some methods achieve high precision, but obtain relative
low recall, e.g., the precision (0.905) of ATDOC-NC is higher
than the precision (0.898) of BNM, but the recall (0.892) of
ATDOC-NC is lower than the recall (0.899) of BNM. However,
compared with other methods, the proposed DSKI achieves the
best-performing precision and recall, i.e., 0.912/0.913 of pre-
cision and 0.909/0.908 of recall in weak/strong space. More-
over, the F1-score of the proposed DSKI is also highest, i.e.,
0.905/0.905 of F1-score in weak/strong space. The above re-
sults demonstrate the effectiveness of the proposed DSKI.

Visualization: Fig. 5 shows the target feature visualization
with t-SNE [2] of D → A in Office-31. As shown in Fig. 5(a),
merely using the source samples to optimize the feature extrac-
tor leads to that the target features are misaligned with source
features. With the help of pseudo-labels, the target features are
slightly aligned with the source features, but the target features
are not discriminative, as shown in Fig. 5(b). After aggregating
and interacting the knowledge in the source and target domains,
the target features and source features are well aligned, and the
target features are discriminative, shown in Fig. 5(c) and (d).

Time and Space Complexity: Since reducing the time/space
complexity is not our main purpose and DSKI adopts two net-
works for dual structural knowledge interaction, the time/space
complexity is inevitable higher than the methods with single
network, such as SHOT. However, the performance of DSKI
is much higher than SHOT, e.g., improving the accuracy from
74.7% to 77.7% in D → A task on Office-31. Moreover, the
runtime and extra space size of DSKI are acceptable shown in

Fig. 5. Feature visualization of the D → A tasks in Office-31. Blue and Red
dots represent the source features and target features, respectively.

TABLE XIII
TIME AND SPACE COMPLEXITY IN D → A TASK ON OFFICE-31

Table XIII, i.e., the runtime is 79.3 s per epoch, the extra space
sizes for cluster-based knowledge (C), source locality-based
knowledge (SL), and target locality-based knowledge (TL) in
memory bank are 0.03 M, 0.27 M, and 1.54 M, respectively.

VI. CONCLUSION

In this work, we introduce a novel structural knowledge for
pseudo-labeling the target samples, and further propose a novel
Dual Structural Knowledge Interaction (DSKI) framework for
domain adaptation. The structural knowledge is proposed by
aggregating the cluster-based knowledge, source locality-based
knowledge and target locality-based knowledge to obtain struc-
tural knowledge. Moreover, DSKI adopts two different spaces to
interact the structural knowledge for target representation learn-
ing. Furthermore, we also maximize the mutual information be-
tween the weak and strong target descriptions to generate the
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aligned and discriminative features. The evaluations of three
benchmarks verify the effectiveness of the proposed method.
In the future, we will utilize the graph convolutional network
(GCN) to efficiently aggregate the knowledge descriptions.
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