Conservative In-Distribution Q-Learning for Offline
Reinforcement Learning

Zhengdao Shao
University of Science and
Technology of China
Anhui, China
zhengdaoshao @mail.ustc.edu.cn

Anhui, China

Abstract—Offline Reinforcement Learning (RL) aims to learn
policies from pre-collected datasets without any additional inter-
action. In order to perform well and robustly in dynamic envi-
ronments with noise or disturbances, the learned value function
and derived policy should generalize well within and near the
dataset distribution, rather than ‘over-fitting’ to training samples.
To meet this requirement, we propose a new approach called Con-
servative In-Distribution Q-learning (CIDQL) that takes a step
towards in-distribution offline RL. CIDQL is designed to learn
in-distribution with respect to the dataset, using a perturbation-
based interpolation technique and a quantile method for value
regularization. It prohibits bootstrapping during value itera-
tion, ensuring stable Q-value learning that is separated from
policy improvement. The approach has theoretical guarantees
for both Q-value underestimation and non-underestimation, and
outperforms most SOTA algorithms on D4RL gym-MuJoCo
benchmarks.

Keywords—Offline Reinforcement Learning, Conservative Q-
Learning, In-Distribution Learning, In-sample Learning, Out-of-
distribution Generalization

I. INTRODUCTION

Offline deep reinforcement learning (RL) is a prospective
approach for learning a reasonable policy solely from the
static dataset of historical experiences [1], [2]. Meanwhile we
face an evident but not well-addressed fact that fo perform
well and robust in online dynamic environments with noise
or disturbance, the learnt value function and derived policy
should generalize reasonably well in and near the dataset
distribution, rather than ‘over-fit’ to training samples. Unlike
supervised learning where learning from samples naturally
leads to learning from the underlying training distribution, in
offline deep RL the generalization of value function cannot be
learnt via only training samples because the value of a point
depends on other points via Bellman backups.

In-sample offline RL optimizes both value and policy
functions through the use of previously collected samples,
without requiring active exploration near those samples [3]-
[5]. To meet the generalization requirement mentioned above,
the value function and policy extraction must be learned in-
distribution, meaning that they should be learned from novel
data points that are out-of-sample, but still drawn from the
same distribution as the training dataset. Unfortunately, it is
not well realized in existing offline RL algorithms, largely due
to contradictions to their methods (i.e., policy constraints [6],

Liansheng Zhuang™
University of Science and
Technology of China

Jie Yan
Step.ai
Beijing, China
yanjie @step.ai

Liting Chen
McGill University
Canada
98chenliting @ gmail.com

Iszhuang @ustc.edu.cn

value regularization [7] or in-sample learning [3], [8]) of
handling out-of-distribution (OOD) actions (and states) to
avoid value overestimation. Value regularization method in
CQL learn the Q-value function only on states in the dataset
and penalize out-of-dataset actions given the states, resulting
in sharp differences between samples and out-of-sample areas
even if the later is close to the sample, and thus cannot
generalize in the distribution and is too conservative on points
near but not in the dataset. COMBO [9], which extends
CQL via learning on both the offline dataset and model-
based synthetic roll-outs that are mixed in f-interpolation, goes
towards learning in the distribution which however heavily
depends on assumptions of an extra dynamic model rather than
training samples themselves. In-sample learning in IQL (Im-
plicit Q-Learning [3]) avoids to query out-of-sample actions
via expectile regression in value function learning and AWR
(Advantage Weighted Regression [8]) in policy extraction.
However, IQL does not learn on state-action tuples that are
out-of-sample, which limits its performance as stated in prior
work [10], [11].

In this paper, as one forward step towards in-distribution
offline RL, we propose a new approach, namely Conservative
In-Distribution Q-learning (CIDQL). Our analysis shows that
the Q-values of the out-of-sample state-action tuples under the
same or similar distribution as the dataset should neither be
ignored as in IQL nor overly underestimated as in CQL; In-
stead, their values should be smoothly estimated in terms of the
distance to training samples. CIDQL applies a perturbation-
based interpolation technique to obtain similar values for state-
action tuples close to the training samples. Unlike existing
conservative algorithms, CIDQL does not allow the agent to
bootstrap when iterating over values. This ensures a more
stable Q-value learning process that is completely separated
from the policy improvement process. Besides, CIDQL also
uses the quantile regression method as in in-sample g-learning
to regularize the value.

Our main contributions are as follows. First, we identify
the necessity of in-distribution learning in offline RL, and
propose the new approach CIDQL which features perturbation-
based interpolation to achieve conservative in-distribution Q-
learning and corresponding in-distribution policy extraction.
Second, we present the comprehensive theoretical analysis for

CIDQL, showing guarantees for Q-value underestimation and
non-underestimation for points outside and inside the distri-
bution, respectively. Finally, we implement two perturbation
methods and experimentally demonstrate the effectiveness of
our algorithm, which outperforms other comparable algorithms
on gym-MuJoCo D4RL benchmarks [12].

II. PRELIMINARIES AND MOTIVATION
A. Offline Reinforcement Learning

Suppose a Markov Decision Process (MDP) M :=
(S, A, T,r,v), which is defined by a tuple consisting of a
set of states S and a set of actions A, a transition function
T that specifies the probability of transitioning from one state
to another given a specific action, a reward function r that
determines the reward received by the agent for taking a
specific action in a particular state, and a discount factor
v that determines the relative importance of immediate and
future rewards. The objective of RL is to learn a policy
that maximizes the expected cumulative discounted rewards.
Unlike traditional RL that learns online from trial and error,
offline RL learns the value function and policy solely through
the trajectory dataset and without any online interactions. The
Bellman operator is a function projection:

BQ(&CL) = 7"(87CL) +7E‘9/~P('\s,a)[v(s/)]' (D
B. Motivation of CIDQL

In statistical and deep learning, the golden rule is that
the learnt model should generalize well on unseen samples
of the same distribution as training samples. In offline RL,
such a generalization is equally important for consistent and
robust performance, because during online tests the agent will
inevitably reach points that are not in but near the offline
dataset. However, to the best of our knowledge, mainstream
offline RL algorithms fail to generalize their learnt value and
policy functions reasonably with respect to the distribution of
the dataset. Conservative value learning algorithms, including
CQL [7] and its variants, avoid value overestimation and
visitation of the out-of-distribution points via adding explicit
value penalization on points out of the dataset, which is overly
conservative when it comes to points outside the dataset and
results in non-smooth learned Q-values. In-sample offline RL
algorithms, e.g. IQL [3]], train the value and policy functions
only on samples in the dataset, without any exploration or even
access to out-of-sample points even if they are close to or in
the same distribution as the dataset.

Obviously, the optimal approach is to learn the correct Q
value within the distribution and conservatively estimate the Q
value outside the distribution. This motivates us to develop a
new method in this paper, namely Conservative In-Distribution
Q-Learning or CIDQL.

C. Preliminaries for CIDQL

To develop the CIDQL in the next section, we define in-
distribution learning in the context of offline RL, necessary
smoothness assumptions on value and policy functions, and
perturbation tools.

In-distribution Offline RL. For in-distribution learning
through this paper, we refer to the distribution of the training
dataset. A dataset of transitions generated from a distribution
P(s,a) is used to train a learning-based control system. To
estimate this distribution, P(s, a) is used instead. Formally, a
state-action tuple (s¢, a;) is considered to be in-distribution if

P(sy,a) > c, (2)
where c is the density level threshold (¢ > 0). The set
of in-distribution states and actions is denoted as D :=
{(s¢,a¢)|P(s¢,ar) > c¢}. With ¢ decreasing towards 0, the
number of (s,a) tuples satisfying the in-distribution condition
increases monotonically.

Smoothness Assumptions. The theoretical properties of our
approach in section III are built upon assumptions about the
continuity of the value and policy functions is built upon
assumptions about continuity of value and policy functions.
For simplicity, we assume that the distribution density function
P(s,a) satisfies the Lipschitz continuity on its domain: similar
state-action tuples should have similar probability density, and
the difference is bounded by the point distance with a Lipschitz
constant multiplier. We use a slightly strong definition of Lip-
schitz continuity as prior work on deep neural network [13]-
[15]. The formal definition and its relationship with gradient
norm is shown as follows.

Definition 2.1: (Lipschitz continuity and its relationship with
gradient norm) Let S C R? be a convex bounded closed set and
let h(x) : S — R be a continuously differentiable function on
an open set containing S . Then, h(x) is a Lipschitz continuous
function if the following inequality holds for any x,y € S:

[h(@) = h(y)| < Lq |z =yl , 3)

where L, = max{||Vh(z)||, : = € S} is the Lipschitz
constant, Vh(z) is the gradient of h(x), and % + % =1,1<
p,q < oo.

Note that for most real-world control problems the true
value function under optimal policy is continuous and
smooth [16], which means imposing constraints of Lipschitz
continuity for value and policy function on domains around
training samples helps generalization.

Implicit dataset distribution. Suppose 7s(als) be the
behavior policy, and d™(s) the discounted marginal state-
distribution of mg(als). The dataset D is sampled from
75(s,a) = d™(s)ms(als). To generate D,, we sample 3, a
from D and add random noise whose distribution is defined
by r. This way, we do not sample any new data besides
the original dataset. D, can be equivalently sampled from an
implicit distribution p,(s,a) given by the following equation:

wr(8,a) = / d™e (s)mg(als)pr((s,a), (8,a))dsda, (4)
s,a

where p,. is the perturbation transition probability density from
(sa) to (5,a), and [pr((5,@),(s,a))dsda = 1 for any
(5,@). For the usual perturbation like Gaussian perturbation,
p, decreases strictly monotonically as the distance between
(s,a) and (§,a) increases.

Perturbation. We use perturbation technique to sample in-
distribution and out-of-distribution points with respect to the
dataset. The perturbation is a symmetric distribution with scale
r. For the two perturbations of 7,;45, and 764, Thigh > Tiow>
considering points farther away from the dataset, we require
Thigh has a greater probability density than 7. Formally,
for any (s,a) tuples ‘far from’ the given tuple (8, a), it
satisfies p,, . ((s,a), (3,a)) > pr,, ((s,a), (5,a)). Here, “far
from’ means that there is a large Euclidean distance between
(s,a) and (3, a). Common perturbations, such as Gaussian
perturbation and uniform perturbation, satisfy this assumption.

In-sample Q-learning vs in-distribution Q-learning. As
supervised learning, the training dataset in the offline RL prob-
lems can be viewed as samples from the actual distribution. In-
sample Offline RL optimizes value and policy functions using
previously collected samples without active exploration near
samples [3]-[5]. In-distribution Q-learning involves learning
from those novel data tuples that are out-of-sample but drawn
from the same distribution as the training dataset. Since the
distribution of state-action tuples is continuous, tuples that are
close to the dataset (e.g., with a low Lo distance) should
have similar sampling probabilities to those in the training
sets. Thus, points in proximity to the dataset can also be
considered in-distribution. As illustrated in Figure 1, the scope
of in-sample is a subset of in-distribution. During training,
agents should explore and learn within the in-distribution
area while avoiding out-of-distribution (OOD) areas to prevent
overestimation.

SxA
\ e data sample
in-distribution area
. . . -
. L d
. ¢
. . O 6 8 L ¢
. ¢
. . L] L]
In-sample In-distribution

Fig. 1. Learning generalization from in-sample to in-distribution and beyond.
The samples are considered to be drawn from a discounted distribution
over S x A, determined by the environment transition model, initial state
distribution and behavior policy. The boundary between in-distribution and
out-of-distribution areas is approximated by Eq. 2.

III. METHODOLOGY

We present the method of CIDQL that extends in-sample
Q-learning to in-distribution Q-learning. The key idea is to
use the perturbation technique to sample out-of-sample but in-
distribution state-action tuples and estimate their conservative
values with continuity assumptions as regularization. In partic-
ular, our approach consists of perturbation-based interpolation
for in-distribution Q value estimation, and random perturbation
in-distribution exploration during policy extraction.

A. Perturbation-based In-dist. Value Estimation

Our goal is thus to retain the comparatively robust (and
accurate when possible) value estimation on samples and
generalize with reasonable conservatism to out-of-sample but

in-distribution areas. Our key idea is to do the TD error
backups in samples only as IQL, but adopt the perturbation-
based method to sample and ensure that the Q-valued function
satisfies: able to conservatively estimate the Q value of out-of-
distribution areas, but accurately estimate the Q value of in-
distribution areas. As described in section II , ‘in-distribution’
and ‘out-of-distribution’ are implicitly given by the distance
to samples in the dataset — it is more likely that the small
perturbation added to a sample leads to out-of-sample but in-
distribution regions, while the large perturbation leads to out-
of-distribution regions.

We first give the basic form of perturbation-based in-
distribution conservative Q-learning method which estimates
the Q-values of in-sample state-action tuples via usual TD
errors while minimizes the expected Q-value of points out of
the dataset. The resulting iterative update is thus as follows.

Q! argminB e |5(QUsa) =B+ o

aEs anp, [Q(5,0)]

where r is a perturbed distribution over the dataset and B
is the empirical Bellman operator. The trade-off factor « is
used to balance the usual in-sample learning and out-of-sample
conservatism. Its form is similar to CQL [7], but the Q-values
learned by our algorithm are estimate of 7g, so there is no need
to access the current policy during training. As shown later
(Theorem 3.2), the resulting Q-function, Q = limg_, o0 QF,
lower-bounds @ at all (s, a) tuples.

Note that our goal is to learn the value function that
generalizes in-distribution with respect to the dataset, with
conservatism guarantees. Thus, the in-distribution areas in
D,. should be less affected. We achieve this by introducing
an additional term of maximizing Q-values near the dataset
samples, resulting in the following equation.

~ 1 A A
QF+t <—argngn E ap 5(@(5,@) — BQF)?| +

(6)
aE‘ah'ighydhighND 7§ZO'LU1&ZO'LUND

Thigh Tlow

[Q(éhigha &high) - Q(§l0w7 dlow”

where 7, represents small perturbations over the dataset. As
stated later in Theorem 3.1, (810w, Giow) ~ Dy,,,, can be con-
sidered an in-distribution tuple. We can prove (Theorem 3.3)
that, even if the (s,a) tuples far away from the sample may still
be a conservative estimate, the Q values of the in-distribution
tuples near the samples are not underestimated. Compared to
the Eq. 5, it has a better bound.

Practical implementation. We use a target value to stabi-
lize the Bellman backups, as in the common deep RL practice.
Following IQL [3], the target Q values are updated with a
soft interpolation factor w € (0, 1), and the state values are
updated with a expectile 7 € (0, 1), as shown in Equation 7, 8,
respectively. This makes the algorithm performance more
stable.

QF 1« (1 — w)QF + wQM! (7)

VL arg m‘}n E(s,a)~D L;(ag(s,a) — Vk'(s)) 8)

In Equation 8, L7 (u) = |7 — 1(u < 0)|u?.

Theoretic Analysis. Now we present the theoretic analysis
on perturbation-based in-distribution sampling (Theorem 3.1),
Eq. 5 lower-bound analysis (Theorem 3.2), and Eq. 6 lower-
bound analysis (Theorem 3.3) in order.

We first determine when the perturbed samples should still
be considered to be in the distribution of the dataset, under the
definition of in-distribution in Eq. 2. As described in Section II,
we assume that the system dynamics satisfies the Lipschitz
continuity with a Lipschitz constant L.

Theorem 3.1: The continuous control problem assumes that
the probability distribution P(s,a), from which the training
set is sampled, is globally Lipschitz over S x A, and the
Lipschitz constant is L,. It is also assumed that for each (s,a)
tuple in the training set, P(s,a) > c¢o > 0. To ensure that the
tuple of near-samples also falls within this distribution and
P(5,a) > ¢, where ¢ = ¢g —d - L; > 0, small perturbations r
are selected. These perturbations should satisfy V(§,a) in D,.,
Loo((s,a),(8,a)) < dand d < ¢/ L,.

As Theorem 3.1 suggests, the resulting (S, @) tuple remains
in-distribution as long as a sufficiently small L..-norm is
selected for the perturbation. In other words, if the pertur-
bation r;,, in Equation 6 is small enough, the resulting
(810w, Giow) tuple from the maximized perturbation will still
be in-distribution. This prevents overestimation of out-of-
distribution (s,a) tuples.

We then examine the impact of our perturbation technique
on the Q-value function. Note that Equations 5 and Equations 6
use the Bellman operator, B instead of the actual Bellman
operator, 3. In contrast to out-of-sample learning, where the
policy 7 changes at each iteration step, in-sample Q-learning
employs the same policy at each iteration, which is the implicit
policy in the dataset, denoted as mg. Formally, for all s,a € D,

with probability > 1—4, \BQ—BQKS,CL) < _OrTs where

VIP(s,a)l”

Cr 1, is a constant dependent on the variance of r(s, a) and
T(s'|s,a), and 6 € (0,1). Here, |D(s,a)| is |S x A| counts
for each state-action tuple in the dataset.

Theorem 3.2 shows that Equation 5 results in point-wise
underestimation of Q-values across the entire state-action
space.

Theorem 3.2: For s € D and 7ig(als) > 0, supp pr(als) C
supp 7, with probability > 1—6, Q (the Q-function obtained
by iterating Equation 5) satisfies:

Qo) Qv a (1= 7P 22| (5.0

T3
OT,T,(SRm,am

1-VID|

Thus, if « is sufficiently large, then Q(s, a) < Q(s,a),Vs €
S, a. When B = B, any a >0 guarantees Q(s,a) <
Qs,a),¥(s,a) € S x A.

Theorem 3.3 shows that Equation 6 guarantees Q-values for
points far from the dataset will be underestimated, whereas

9)

%IVPUI (s,a).

in-distribution points in the vicinity of the dataset will not be
underestimated.

Theorem 3.3: As Equation 6, if we introduce an additional
Q-value maximization term under the small scale perturbation,
Tow, then Q (the Q-function obtained by iterating Equation 6)
satisfies:

Q(s,a) < Q(s,a) — {(I — fyP’T)”M”} (s,a)+

T3

-1 C’r T, §Rmaa:
[—~ypr)—t ZnloTtmar | ooy
b yP™) (1*7)75|()

10)
For (s,a) tuple away from samples, p,,.,, — fr,, = 0, and
Q(s,a) < Q(s,a) if a is large enough, with probability >
1 — 0. For (s,a) tuple near samples, ji,; ., — fr;,,, <0, Q will
not be underestimated.

Intuitively, it is inefficient to conservatively estimate over
the full space. To improve the efficiency, we only need to
underestimate the Q value of the point at a medium distance
from the sample. This can prevent the policy from deviating
too far from the sample when exploring. We illustrate this by
showing that the upper bound of the Q value is the tightest
when at a medium distance from the sample, as shown in
Proposition 3.4.

Proposition 3.4: It can be demonstrated through the appli-
cation of a suitable perturbation technique, such as Gaussian
perturbation, that the boundary of a exhibits maximal loose-
ness at a medium distance from the sample. In other words,
when « is fixed, it can be shown that the tightest upper bound
of Q is achieved at a medium distance from the sample.

Thus, if a suitable « is chosen, the basic evaluation in
Equation 5 learns a Q-function that lower-bounds the true
Q-function ™4, and the evaluation in Equation 6 provides
accurate Q value estimation for in-distribution points close
to the sample. As more data becomes available and |D(s, a)]
increases, the theoretical value of « that is needed to guarantee
a lower bound decreases, which indicates that in the limit of
infinite data, a lower bound can be obtained by using extremely
small values of «.

B. Perturbation-based In-dist. Policy Extraction

Given the learnt conservative in-distribution Q-value func-
tion, we can then extract the policy for in-distribution states.
In particular, we start from in-sample policy learning with
constrained exploration, and extend it to the in-distribution
situation.

For in-sample states, it is natural to derive a constrained
policy learning algorithm with the following loss function.

L(’]T) :LSAC(W) +)\DKL(TF[;,’/T)
=FE D anr(s) |—Q(3,a) + o/ log w(als)] —
AE; o~pllog m(als)].
The underlying ideas are straightforward. On one hand, the

SAC-like (Soft Actor-Critic) term Lgac learns the policy for
in-sample states while encourages the entropy-based action

Y

exploration. One the other hand, the KL divergence constraint
ensures such exploration be close to the behavior policy mg
of the dataset. Note that RIQL [10] also used Equation 11 for
policy extraction, and demonstrated the effectiveness of these
ideas.

Now we extend our approach to policy learning on in-
distribution states, resulting in the following loss function.

L(7) =Esnp,, a~n(s) [=Q(3,a) + o' logm(al3)] -

s (12)
AEs a~p,, [logm(als)]

where D, is defined as before and considered to be in-
distribution with respect to the dataset. Note that in the second
term, both state and action are sampled from the perturbed
distribution D,,, . The perturbation trick used here is also
called Random Perturbation Training in the general context of
deep learning. It is wildly applied to increase robustness [17],
which isotropically smooths the function around each state.
This approach is effective because it instructs the actor on
how states may appear differently yet remain likely to be
observed. In practice, allowing the policy to explore the in-
distribution states following s € D, leads to better test
performance. Concurrently, this can also be interpreted as a
form of exploration around the sample, further capitalizing on
the beneficial properties conferred from the critic.

C. Algorithm in Summary

Putting all above together, we propose the algorithm of
Conservative In-Distribution Q-Learning in the actor-critic
framework, as shown in Alg. 1. As discussed before, our
algorithm implements perturbation-based conservative Q value
estimation, while enabling the actor to explore in-distribution.
The perturbation-based method of CIDQL is primarily used
to implement in-distribution learning based on CQL and IQL.
This approach leads to improved and more stable experimental
results with similar computational complexity.

Algorithm 1 Perturbation-based Impl. of CIDQL
Input: Initialized parameters ¢ for Value net, 6 for Q net, ¢
for policy net
Qutput: policy 7
1: while not stop do
2: update Qg via loss in Equation 6
3: update target Qy via Equation 7
4: update expectiles value V;(s) via loss in Equation 8.
5: update policy my, via loss in Equation 12
6: end while

Note that the policy 7 does not affect the update of the
value function. Therefore, policy extraction can be performed
either concurrently with or after TD learning.

IV. EXPERIMENTAL EVALUATION

The main goal of this section is to evaluate the effective-
ness of our proposed CIDQL algorithm. In particular, we
compare the performance of CIDQL with other recent SOTA
algorithms, and assess the effect of in-distribution learning
components and hyper-parameter choices via ablation study.

A. Experiment Settings

CIDQL Implementation. We implemented two differ-
ent interpolation-based perturbation methods: Gaussian noise
(CIDQL—0?) and uniform perturbation with a given upper
limit (CIDQL—L,). In this paper, we did not distinguish
between the scales of different dimensions of states and
actions, the magnitudes of the two kinds of perturbation
additions are isotropic. CIDQL code is developed in the JAX
library [18]. Like prior work, our models of Q-value, V-value
and policy use the same architecture — the neural network
with two hidden layers, each having a size of 256x256. The
training batch size is set to 256. We employed the double Q-
value critic technique to estimate the Q-value. Additionally, we
linearly normalized the reward using the smallest and largest
trajectory scores within each dataset. To calculate the scores,
we uniformly iterated all algorithms for 10 million steps
training, then averaged the scores from the last 10 iterations.
Each score represents the average of the 10 track scores. This
approach effectively reduces the variance caused by different
initial states and provides a better reflection of the algorithm’s
true performance.

Default Hyper-parameters. We chose values for « in
Equation 6 from the set {1, 0.1}, and values for \ in
Equation 12 from the set {1, 0}. For a fair comparison across
all tasks, we employs a consistent perturbation level, although
the optimal perturbation amplitude should be chosen according
to the dataset distribution. For gym-MuJoCo D4RL tasks, we
average mean returns over 10 evaluation trajectories and 5
random seeds. Rewards are standardized by dividing them
by the difference between the returns of the best and worst
trajectories. We use the Adam optimizer with a learning rate
of 3x10~* and a 2-layer MLP with ReLU activations and 256
hidden units for all networks [19]. The policy is parameterized
as a Gaussian distribution with a state-independent standard
deviation. We chose 0.7 for the expectile 7 and 256 for the
batch size. In addition, the temperature operator parameter of
SAC is 3.0. These hyperparameter settings are consistent with
IQL [3] and CQL [7].

This paper introduces three main hyper-parameters: «,
which controls the degree of reshaping the Q function, A,
which controls the magnitude of KL divergence constraints,
and the method of perturbation interpolation. We found that
when both « and A take a fixed value of 1, the experiment can
already achieve good results. Regarding perturbation addition
for state-action tuples, we employ two different methods:
Gaussian noise with fixed variance and isotropy, and uniform
perturbation with a fixed upper limit. The former has a fixed
variance, while the latter has a fixed upper limit. Note that
the perturbing amplitude should vary with the experimental
environment. For the fairness of the comparison, we use
the same perturbation amplitude in different experimental
environments. We uniformly use 74, as 0.001 and 7,4, as
0.01.

Baselines. Our compared baseline algorithms include: (1)
TD3+BC [20], a simple TD3 algorithm whose policy update

is regularized with Behaviour Cloning; (2) CQL [7] and its
model-based variant COMBO [9]; (3) IQL [3]; (4) RIQL [10]
which relaxes IQL by enabling regularized action exploration
in policy extraction.

We implemented our experiments using the JAX Ili-
brary [18]. In all comparative experiments, we used the orig-
inal parameters provided in the corresponding papers. In our
experiments, we employed the double Q-value critic technique
to estimate the Q-value. Additionally, we linearly normalized
the reward using the smallest and largest trajectory scores
within each dataset. To calculate the scores, we uniformly
iterated all algorithms for 10 million steps training, then
averaged the scores from the last 10 iterations. Each score
represents the average of the 10 track scores. This approach
effectively reduces the variance caused by different initial
states and provides a better reflection of the algorithm’s true
performance.

B. Overall Performance

Table I provides a comprehensive performance evaluation of
CIDQL and baseline algorithms on gym-mujoco tasks within
the D4RL framework. Our algorithm(the 37% 4" column
from the right of the table) outperforms these state-of-the-
art baseline methods on average in these environments.The
274 column on the right corresponds to the experiment in
subsection ‘CQL on perturbation dataset’, and the 1°¢ on
the right corresponds to the experiment in subsection ‘Ex-
periments on hyper-parameters’.The results are the average
score over 5 seeds and the standard deviation is reported in
parentheses. For CIDQL, we present the outcomes of two
distinct implementations, which employ different perturbation
techniques, specifically CIDQL—0? and CIDQL— L ,.The re-
sults for TD3+BC, COMBO, and IQL are derived from their
respective original publications. In the case of CQL, we utilize
the findings replicated in [21], as the original paper did
not include results pertaining to D4RL v2 datasets. RIQL, a
recent model-free approach closely related to our method, is
incorporated into a table within the main body of the text for
comparative purposes. As shown, our method performs better
than other advanced methods on the D4RL dataset. Across
15 environments, our method consistently outperforms other
in-sample learning algorithms and surpasses all benchmark
algorithms on average. Out of 15 tasks, for the top three
scores in seven algorithms (two of which belonged to us),
CIDQL-0? obtained 10 and CIDQL- L, obtained 11. Besides,
compared to IQL and CQL, our method has even less vari-
ability, even their implementation workload and computation
cost are similar. In particular, our algorithm’s benefits are
particularly pronounced on medium-level datasets, which we
attribute to the distribution and characteristics of the data.
Thus, it is especially worthwhile to explore in-distribution
states and actions on a medium-level dataset.

One question is whether the performance advantage of
CIDQL is simply due to the data augmentation by perturba-
tion, rather than the in-distribution learning during training?
We generate the perturbed dataset with r;,,, on datasets, and

empirically investigate with one representative baseline CQL
on 5 random seeds. The results are shown in the ‘CQL on
perturbed dataset’ column of Table I. As shown, CQL does
benefit from the perturbed datasets, which is reasonable since
the perturbation-augmented samples help CQL to estimate
values better on tuples near the original samples in the
dataset; and, to some degree, it supports the positive effect
of ‘in-distribution” compared to ‘in-sample’. However, as a
comparison, CIDQL (—0? and —L,) still have significant
and almost consistent advantage.

C. Ablation study

We conducted ablation studies on the medium and medium-
replay environments. We implemented two independent sets
of ablation experiments. The first group verifies the effect of
our algorithm on critic and actor changes. The second group
verifies the effect of perturbation on state and action. The
experimental results of the first group are shown in Table II.
The results are the average score over 5 seeds and the standard
deviation is reported in parentheses. Only perturb action means
o = 0 for critic in Equation 6. And only reshape critic means
add no perturbation for actor in Equation 11.

The average scores across six environments demonstrate the
individual contributions of each module. Our results indicate
that both changes have a complementary effect and their
combined implementation results in a greater performance
boost than either change alone. Concurrently, our empirical
findings provide robust corroboration for our assertion that
a critic procured through IQL training demonstrates consid-
erable promise when paired with suitable exploration and
stability assurance.

In the field of offline RL, OOD actions are usually con-
sidered more problematic than OOD states. Our method adds
perturbations to both states and actions to alleviate the OOD
problem. To demonstrate that interpolation perturbation is
effective, we tested two algorithms: one that perturbs only
the state, and another that perturbs only the action. The
experimental results, shown in Table III, present the average
scores across six environments and illustrate the individual
contributions of each module. The results are the average
score over 5 seeds and the standard deviation is reported in
parentheses. Our findings suggest that perturbing only the state
leads to actions that lack theoretical guarantees and result in
poor performance. Only perturbing the action cannot cooperate
well with the perturbation on the critic, and performance
improvement is also limited. Therefore, it is necessary to
cooperate with perturbations on both the action and the critic
in order to achieve the best performance of the algorithm.

D. Direct exploration in IQL

IQL is a popular in-sample learning algorithm that employs
expetile for iterative training of the critic’s value and AWR [8]
for improvement of the actor’s strategy. However, the in-
sample strategy improvement method of AWR has become
a bottleneck for the continuous enhancement of IQL’s perfor-
mance.

TABLE I
PERFORMANCE COMPARISON ON GYM-MUJOCO D4RL CONTROL TASKS V2.

Task Name TD3+BC CQL COMBO IQL RIQL CIDQL-02 CIDQL-Loo CQL on CIDQL-02
perturbed dataset | (02,770 = 0)
HalfCheetah-r 10.2(1.1) 175(15) 38.8(3.7) 182(1.7) 284(.1) 28.0(1.6) 30.7(1.9) 13.9(0.9) 20.4(1.3)
Hopper-r 11.0(0.6) 7.9(0.4) 17.9(14) 1638.3) 8.9(1.2) 8.7(0.8) 10.2(2.1) 8.1(0.8) 14.2(15.3)
Walker2D-r 1.4(1.7) 5.1(1.3) 7.0(3.6) 5.5(1.2) 7.9(0.5) 7.2(0.2) 8.4(1.9) 5.6(3.5) 7.5(6.9)
HalfCheetah-m 42.8(0.2) 47.0(0.5) 54.2(1.5) 47.4(0.1) 55.9(0.3) 58.5(1.6) 56.0(5.9) 47.1(0.1) 47.4(0.0)
Hopper-m 99.5(2.0) 53.0(28.5) 94.9(2.2) 66.3(3.3) 88.7(4.2) 92.0(0.2) 91.5(3.0) 62.6(2.8) 46.0(2.1)
Walker2D-m 79.7(0.6) 733(17.7) 75.5(2.8) 78.3(2.0) 81.4(1.0) 80.4(0.5) 81.2(0.5) 80.4(1.5) 75.5(1.9)
HalfCheetah-m-r 433(05) 455(0.7) 55.1(1.0) 44.2(0.7) 48.3(0.5) 54.3(0.6) 53.7(0.6) 452(0.5) 44.1(0.5)
Hopper-m-r 31.4(18.8) 88.7(12.9) 73.1(1.8) 88.7(14.9) 96.2(7.5) 100.5(2.2) 93.0(5.8) 92.8(5.6) 78.3(1.3)
Walker2D-m-r 25.2(5.5) 83.3(2.7) 56.0(8.6) 73.9(7.3) 73.7(4.7) 85.6(4.6) 89.2(8.8) 76.7(2.7) 76.8(1.3)
HalfCheetah-m-e 97.9(2.3) 75.6(25.7) 90.0(5.6) 86.7(1.3) 92.9(1.2) 94.5(0.3) 93.6(0.6) 90.6(2.6) 89.6(6.6)
Hopper-m-e 1122(0.7) 105.6(12.9) 111.12.9) 91.527.0) 95.2(5.5) 105.7(3.7) 105.9(2.3) 105.5(2.4) 99.0(11.1)
Walker2D-m-e 101.1(02) 107.9(1.6) 96.1(5.6) 109.6(53) 108.2(0.6) 109.2(0.2) 107.6(1.2) 106.8(4.0) 109.4(0.3)
HalfCheetah-e 105.7(23) 96.3(1.3) - 946(15) 95.1(1.2) 95.1(0.0) 94.9(0.3) 96.9(0.3) 67.5(22.0)
Hopper-e 112.2(0.3) 96.5(28.0) 109.0(1.8) 110.1(1.7) 108.2(1.6) 110.5(0.6) 107.72.2) 109.2(2.4)
Walker2D-e 105.7(0.2) 108.5(0.5) 109.4(2.3) 108.3(0.5) 107.9(0.3) 108.2(0.0) 108.8(1.6) 108.9(0.6)
Avg. (all) 65.3(2.5) 67.409.1) - 69.7(5.2) 73.3(1.8) 75.7(1.2) 75.6(2.4) H 69.9(2.1) 66.3(5.1)
Avg. (9 medium tasks) | 703(3.7) 75.5(11.4) 784(3.6) 77.0(6.8) 82.2(2.0) 86.7(1.5) 85.7(3.2) 78.6(1.5) 74.02.8)
TABLE II
ABLATION EXPERIMENTS ON ACTOR AND CRITIC PERTURBATIONS.
Task Name relaxed in-sample only pertur actor only reshape critic CIDQL-0?
HalfCheetah-medium 55.9(0.3) 55.7(0.5) 55.9(0.5) 58.5(1.6)
Hopper-medium 88.7(4.2) 82.4(10.1) 88.4(10.6) 92.0(0.2)
Walker2D-medium 81.4(1.0) 81.0(1.0) 81.0(0.5) 80.4(0.5)
HalfCheetah-medium-replay 48.3(0.5) 54.5(0.9) 53.7(0.8) 54.3(0.6)
Hopper-medium-replay 96.2(7.5) 91.9(3.9) 97.8(4.0) 100.5(2.2)
Walker2D-medium-replay 73.3(4.7) 83.5(2.7) 77.4(6.8) 85.6(4.6)
Avg of 6 env 73.9(3.0) 74.8(4.3) 75.7(3.9) 78.5(1.6)
TABLE III
ABLATION EXPERIMENTS ON STATE AND ACTION PERTURBATIONS.
Task Name relaxed in-sample only pertur state only pertur action ~ CIDQL-0?
HalfCheetah-medium 55.9(0.3) 55.5(0.2) 55.7(0.3) 58.5(1.6)
Hopper-medium 88.7(4.2) 69.9(4.9) 75.1(17.8) 92.0(0.2)
Walker2D-medium 81.4(1.0) 80.8(0.6) 81.0(0.5) 80.4(0.5)
HalfCheetah-medium-replay 48.3(0.5) 54.8(1.4) 52.5(0.5) 54.3(0.6)
Hopper-medium-replay 96.2(7.5) 82.2(15.9) 97.14.2) 100.5(2.2)
Walker2D-medium-replay 73.3(4.7) 75.7(9.2) 79.1(5.7) 85.6(4.6)
Avg of 6 env 73.9(3.0) 69.8(5.4) 73.4(4.8) 78.5(1.6)

To address this issue, we propose a new approach that
involves replacing the actor’s iterative algorithm with policy
iteration outside the sample. This is achieved by utilizing the
max-Q operator and the SAC operator for iterations, as shown
in Equation 13 and Equation 14, respectively. Importantly, our
approach does not change the critic training method. Through
experiments, we aim to demonstrate that this new approach
may lead to significant performance improvements for IQL.

Unlike the AWR algorithm in IQL, our algorithm allows
actors to iterate strategies through bootstrapping, enabling a
kind of exploration of meaning. However, as the critic in IQL
has not been estimated at tuples other than the sample, this
method does not have a theoretical guarantee.

Lw(¢) = ESN’D,aNTr(s) [_Q(‘§7 a)] :
Lﬂ'((b) = ESND,aNﬂ'(s) [_Q(§7 a’) + o lOgTF(CL‘S)] :

We replaced the actors in IQL with maxQ and SAC to
achieve out-of-sample exploration, resulting in two algorithms:

(13)

(14)

e MaxQ-IQL: This algorithm uses max-Q actor to directly
maximize the payoff for the critic of IQL.

e SAC-IQL: This algorithm uses SAC actor to directly maxi-
mize the payoff for the critic of IQL.

The experimental results, presented in Table IV, demonstrate
that direct exploration can improve performance in some
environments. However, in other environments, exploration
may invalidate the algorithm’s strategy entirely.

The MaxQ-IQL and SAC-IQL algorithms demonstrate sta-
ble performance on medium-replay tasks. However, their per-
formance becomes unstable on some challenging problems
due to the lack of exploration protection. Our results indicate
that IQL with exploration can sometimes significantly out-
perform IQL, as evidenced by the performance of SAC-IQL
on HalfCheetah-medium-v2. This suggests that the inability
to train out-of-sample hinders the further improvement of in-
sample Q-learning performance. In other words, direct explo-
ration by the in-sample Q-learning algorithm can be beneficial
when the dataset meets certain ideal conditions. However, such

conditions are often difficult to satisfy in practice, and there
is no theoretical guarantee for direct exploration with IQL.
As a result, exploration outcomes can be unpredictable. Once
the effectiveness of exploration has been established, the key
challenge becomes ensuring stable exploration by the actor.
This can be achieved by reshaping the Q function to provide
stability guarantees for the algorithm.

TABLE IV
ABLATION OF OUT-OF-SAMPLE EXPLORATION.

Task Name 1QL maxQ-IQL SAC-IQL
HalfCheetah-m 47.4(0.1) 55.3(1.7) 57.0(2.8)
Hopper-m 66.3(3.3) 2.6(1.5) 3.6(1.7)
Walker2D-m 78.3(2.0) 0.7(2.4) -0.3(0.0)
HalfCheetah-m-r 44.2(0.7) 54.5(0.9) 53.6(0.8)
Hopper-m-r 66.3(14.9) 70.7(30.5) 100.4(1.6)
Walker2D-m-r 78.3(7.3) 74.6(20.4) 90.5(8.9)

E. Performance on Antmaze

These D4RL tasks require merging segments of suboptimal
trajectories to generate policies that are more optimal in
achieving goals on a Mujoco Ant robot. For Antmaze tasks,
we set 7=0.9 and apply the relevant preprocessing to the
dataset [12]. The detailed results can be found in Table V
and the results of CIDQL are the average score over 3 seeds.

TABLE V
PERFORMANCE COMPARISON ON ANTMAZE.
Task Name CQL IQL CIDQL(c?)
umaze 84.4 855 91.0
umaze-diverse 434 66.7 61.9
medium-replay 652 722 66.8
medium-diverse | 54.0 71.0 67.5

As shown, CIDQL can also outperform CQL consistently,
while behaves slightly lower than IQL in 3 out of 4 tasks.
The data of Antmaze tasks are generated via a goal reaching
policy, which makes the strict in-sample learning algorithm
IQL perform better.

V. CONCLUSION

In this paper, we present CIDQL, a new approach for
in-distribution offline reinforcement learning. CIDQL uses
perturbation-based interpolation to accurately estimate Q-
values for state-action pairs that are similar to data samples.
By prohibiting bootstrapping during value iteration, CIDQL
ensures stable Q-value learning that is separate from policy
improvement. Additionally, CIDQL has theoretical guarantees
for both Q-value underestimation and non-underestimation,
offering robust exploration capabilities and leveraging in-
distribution value estimation. Our experimental results on
gym-MuJoCo D4RL benchmarks demonstrate superior per-
formance compared to benchmark algorithms, suggesting that
CIDQL has the potential to advance future research in the field
of offline RL.

ACKNOWLEDGE

This work was supported by National Natural Science
Foundation of China (NSFC) under contract No.U20B2070
and No.61976199.

REFERENCES

[1] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforce-
ment learning. In Reinforcement learning, pages 45-73. Springer, 2012.

[2] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline
reinforcement learning: Tutorial, review, and perspectives on open
problems, 2020.

[3] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement
learning with implicit g-learning. In International Conference on
Learning Representations, 2021.

[4] Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor
Wai Kin Chan, and Xianyuan Zhan. Offline RL with no OOD actions:
In-sample learning via implicit value regularization. In The Eleventh
International Conference on Learning Representations, 2023.

[5] Jiafei Lyu, Aicheng Gong, Le Wan, Zongqing Lu, and Xiu Li. State
advantage weighting for offline rl, 2022.

[6] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey
Levine. Stabilizing off-policy g-learning via bootstrapping error reduc-
tion. Advances in Neural Information Processing Systems, 32, 2019.

[7] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine.
Conservative g-learning for offline reinforcement learning. CoRR,
abs/2006.04779, 2020.

[8] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advan-
tage weighted regression: Simple and scalable off-policy reinforcement
learning, 2020.

[9] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey
Levine, and Chelsea Finn. Combo: Conservative offline model-based
policy optimization. Advances in neural information processing systems,
34:28954-28967, 2021.

[10] Yuwei Fu, Di Wu, and Benoit Boulet. A closer look at offline rl agents.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems, volume 35,
pages 8591-8604. Curran Associates, Inc., 2022.

[11] Philippe Hansen-Estruch, 1Ilya Kostrikov, = Michael Janner,
Jakub Grudzien Kuba, and Sergey Levine. Idgl: Implicit g-learning as
an actor-critic method with diffusion policies. ArXiv, abs/2304.10573,
2023.

[12] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey
Levine. D4rl: Datasets for deep data-driven reinforcement learning.
arXiv preprint arXiv:2004.07219, 2020.

[13] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari,
and George J. Pappas. Efficient and accurate estimation of lipschitz
constants for deep neural networks, 2023.

[14] Fabian Latorre, Paul Rolland, and Volkan Cevher. Lipschitz constant
estimation of neural networks via sparse polynomial optimization, 2020.

[15] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su,
Yupeng Gao, Cho-Jui Hsieh, and Luca Daniel. Evaluating the robustness
of neural networks: An extreme value theory approach, 2018.

[16] Kavosh Asadi, Dipendra Misra, and Michael L. Littman.
continuity in model-based reinforcement learning, 2018.

[17] Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang,
and Lei Han. Rorl: Robust offline reinforcement learning via conserva-
tive smoothing. arXiv preprint arXiv:2206.02829, 2022.

[18] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018.

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2017.

[20] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline
reinforcement learning. Advances in neural information processing
systems, 34:20132-20145, 2021.

[21] Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh
Garg, Peng Liu, and Zhaoran Wang. Pessimistic bootstrapping for
uncertainty-driven offline reinforcement learning. In International Con-
ference on Learning Representations, 2021.

Lipschitz

