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A Robust Framework for One-Shot Key Information
Extraction via Deep Partial Graph Matching
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Liangwei Wang, and Houqiang Li , Fellow, IEEE

Abstract— Text field labelling plays a key role in Key Infor-
mation Extraction (KIE) from structured document images.
However, existing methods ignore the field drift and outlier
problems, which limit their performance and make them less
robust. This paper casts the text field labelling problem into
a partial graph matching problem and proposes an end-to-
end trainable framework called Deep Partial Graph Matching
(dPGM) for the one-shot KIE task. It represents each document
as a graph and estimates the correspondence between text fields
from different documents by maximizing the graph similarity
of different documents. Our framework obtains a strict one-to-
one correspondence by adopting a combinatorial solver module
with an extra one-to-(at most)-one mapping constraint to do the
exact graph matching, which leads to the robustness of the field
drift problem and the outlier problem. Finally, a large one-shot
KIE dataset named DKIE is collected and annotated to promote
research of the KIE task. This dataset will be released to the
research and industry communities. Extensive experiments on
both the public and our new DKIE datasets show that our method
can achieve state-of-the-art performance and is more robust than
existing methods.

Index Terms— Document understanding, key information
extraction, visual information extraction, graph matching.

I. INTRODUCTION

INFORMATION extraction from structured documents has
been an active topic in the research of Information Retrieval

techniques. The traditional information retrieval task is usually
based on pure text in documents. This task becomes more
challenging when the system reads images of documents
as input. Key Information Extraction (KIE) from structured
document images aims to extract texts of a number of key
fields from given document images and save texts to structured
documents. In general, a typical KIE method consists of two
key steps, including text detection and recognition and text
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Fig. 1. The pipeline of extracting key information. (a) Text detection and
recognition, (b) Text field labelling. Fields of a document consist of static
and dynamic fields. Only dynamic fields have labels. Later, key information
in dynamic fields can be extracted according to their predicted labels.

field labelling, as shown in Fig. 1. A document image is
firstly split into regions of interest by text detection modules.
Then, texts in each region are obtained via text recognition
modules. Finally, each text region is assigned a label by
text field labelling modules so that people can extract texts
of key information in structured formats according to their
labels. Benefiting from the rapid advance of deep learning
for document image understanding, both text detection and
text recognition are well studied and have achieved great
progress [1], [2], [3]. Text fields labelling modules are less
explored. This paper focuses on solving the text field labelling
problem where only one example image for each style is
provided with labels that need to be extracted. Our settings
are more challenging and practical than those in existing
works [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19] that feed on a large number of
samples for each document style.

The past few decades have witnessed significant progress in
key information extraction from document images, and many
methods for the text field labelling problem have shown to
have a good performance [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21]. However, it is still far from over.
One main challenge faced by researchers is the diversity of the
layouts of documents. Different types of documents have dif-
ferent layout styles. The number of styles of different layouts is
overwhelming as shown in Fig. 2 (a). Other challenges of text
field labelling include field drift and outlier problems as shown
in Fig. 2 (b) and (c). Field drift problem often occurs when the
printing paper of invoices slips during printing. In this case,
some text fields drift into unexpected positions, which easily
causes wrong labelling. The outlier problem may happen when
documents are post-processed such as taking notes on them.
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Fig. 2. Challenges of text field labelling. In (a)-(b), red boxes are static text fields, and their text stays the same for all documents of the same type. Blue
boxes are dynamic text fields and their text is the key information to be extracted. (a) shows the diversity of layouts. (b) shows the field drift problem. The
slop yellow lines indicate that the dynamic fields drift upwards. (c) shows the outlier problem. Purple boxes are outliers. As green lines show, graph matching
can be used to solve the one-shot text field labelling task by transferring the labels from the support document to the query document.

In this case, some unseen text fields may appear in the query
document, as shown in Fig. 2 (c), and disturb the labelling.
These challenges may significantly degrade the performance
of KIE methods. However, most existing methods focus on
the layout diversity problem while ignoring the field drift and
outlier problems, which limit their performance and make
them less robust. Moreover, most existing methods require
a large number of training data, which makes them difficult
to use in practice because collecting and annotating enough
training data are difficult and even impossible due to privacy
issues. In many cases, users can only provide a few example
document images labelled with the information that needs to
be extracted.

Motivated by the above insights, this paper proposes a novel
end-to-end trainable framework called deep Partial Graph
Matching (denoted as dPGM) for the one-shot KIE task.
The key idea is to represent each document as a graph and
to cast the one-shot text field labelling task as a Partial
Graph Matching (PGM) problem. The nodes of the graph
represent text fields, and the edges represent some visibility
relations between text fields. Since static text fields (whose
contents are pre-defined and fixed) are easily located by
keyword matching, our framework only estimates the corre-
spondence between dynamic text fields in a test document
and those in a support document. After obtaining the text
field correspondence as shown in Fig. 2 (c), the labels in
a support document will transfer to the dynamic text fields
in a test document to accomplish the mission of text field
labelling.

Compared with most existing learning-based methods [10],
[13], [14], [15] which require a separate model for each
type of document to gain promising performance, our dPGM
framework allows to train on multiple datasets and inference
on different types of documents with solely one model and
thus is particularly suitable for the one-shot KIE task. Note
here that, since the correspondence quality has a great impact
on the final performance, this paper introduces a combinatorial
solver module with an extra one-to-(at most)-one mapping
constraint to get a strict one-to-one correspondence of dynamic

text fields. Different from the existing method [21] which
independently predicts the correspondence for each text field
in a test document and often gets a sub-optimal solution,
the solver module jointly estimates the correspondence for
all dynamic text fields and thus obtains a globally optimal
solution. Moreover, benefiting from the strict one-to-(at most)-
one mapping constraint, the many-to-many correspondence
cases caused by the drift fields and outlier fields are excluded.
Therefore, our proposed method is robust to the field drift
problem and the outlier problem.

Finally, to accelerate the research of the KIE problem,
we collected and annotated a one-shot document KIE dataset
named DKIE dataset, which consists of 2,500 document
images captured by mobile phones in natural scenes. The
dataset covers diverse types of document images, and many
of them are highly difficult with spatial drift. We will
release the data set to the research and industry com-
munities. Extensive experiments on a public dataset [22]
and our DKIE dataset show that our proposed frame-
work is more robust and outperforms existing state-of-the-art
methods.

In summary, the contributions of this paper are as follows:

• An end-to-end trainable framework based on partial graph
matching is proposed for the one-shot KIE task. Different
from existing dominant methods [10], [13], [14], [15]
which require a separate model for each type of docu-
ment, our framework allows training on multiple datasets
and inference on different types of documents with solely
one model.

• A combinatorial solver module with an extra one-to-(at
most)-one mapping constraint is introduced to do exact
graph matching. Benefiting from the strict one-to-one
correspondence, our framework is robust to the field drift
problem and the outlier problem.

• A large dataset named DKIE is collected and annotated
to promote the research on the KIE problem. To our
knowledge, the DKIE dataset is the largest available
one-shot KIE dataset up to now.
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II. RELATED WORK

A. Key Information Extraction

There are many methods proposed to solve the text field
labelling problem [4], [5], [6], [7], [8], [9], [10], [11], [21],
[23], [24], [25], [26], [27], [28]. Early attempts are usually
based on hand-crafted features for each layout style, such
as regex and template matching [23], [24], [28], [29], [30],
[31]. However, as these methods require much task-specific
knowledge and human-designed rules, they are only limited
to specific layouts. Additionally, they can not scale to other
types of documents. To improve the generalization, many
learning-based methods are proposed to automatically adapt
to any type of layout by turning the KIE task into a Named
Entity Recognition (NER) problem [11], [12], [32], [33], [34],
[35]. They serialize all text in a document image into a
sequence, then apply a sequential prediction model (such as
the BiLSTM-CRF model [36]) to predict the label of each
word using additional visual features such as position, font
size and color. The main difference of these methods lies in
their encoders.

To model the non-sequential relationship between text
fields, graph neural network modules are introduced to refine
both text fields’ text and visual features before they are fed
into a BiLSTM-CRF based module [6], [7], [8], [9], [10],
[20]. Inspired by the progress of large pre-trained language
models [37], [38], many general-purpose multimodal pre-
training methods are proposed [13], [14], [15], [16], [17], [18],
[19] and achieved promising results. They jointly models the
text and layout information within a single framework using
the transformer module.

Though learning-based methods have achieved promising
results, they require a large amount of training or fine-tuning
data to train separate models for each document type. How-
ever, collecting and annotating sufficient training data is
time-consuming, and even impossible due to privacy. In prac-
tice, users can provide a few example document images
labelled with the information that needs to be extracted.

B. Few-Shot KIE Learning

Few-shot KIE methods attract great attention of researchers
due to their practicalities. Some few-shot learning KIE meth-
ods have been proposed in the past few years [21], [25],
[27], [28], [30]. To generalize to unseen types of documents
in the region of few-shot learning, one line of work [25],
[27] is to employ the prior knowledge from a knowledge
graph. By calling a cloud API of Google’s knowledge graph,
Tata et al. [27] used entity detectors to identify the possible
labels of each text field. Instead of reusing prior knowledge
about entities, Sunder et al. [25] proposed to build a small
knowledge graph for each document, where the nodes in
this knowledge graph are text fields and the relationships
between nodes are predefined spatial relationships between
them such as “Above-below”. Later, a deductive learning
module was adopted to synthesize reusable logic programs that
can extract key information from unseen types of documents.
The knowledge graph is either too expensive to construct
or has privacy issues in scenarios where the contents of

documents are confidential and entity detectors relying on
cloud API are not acceptable. This limits the application of
their methods.

Another line of work [21], [28], [30] focuses on the one-shot
learning scenario. In this scenario, the users are asked to manu-
ally label all the fields to extract from a single document image
(support document). Then all the unlabeled documents (query
documents) of the same type can be processed automatically.
Features that describe the spatial relationships between static
and dynamic fields can be reused to help models generalize to
unseen types of documents with the help of various handcraft
features and heuristics [28], [30].

Instead of using handcraft features and heuristics [28], [30],
Cheng et at. [21] proposed to use a multi-layer perceptron
(MLP) to learn the similarity score between dynamic text fields
in a support document and the ones in a query document.
Experiments show that the MLP can take advantage of static
text fields more efficiently. However, when the spatial rela-
tionships between static and dynamic text fields in support
documents is different from the ones in query documents
because of the field drift problem as shown in Fig. 2 (b),
their method is not robust. Different from [21] who believed
that the one-shot KIE cannot be solved by graph matching
because of the multi-region fields, this paper uses a mapping
constraint in the solver of PGM to relieve the field drift and
outlier problems.

III. OUR MODEL

This section presents a robust framework for one-shot
KIE that can relieve the challenge of field drift and outlier
problems. Sec III-A presents a brief overview of the proposed
framework. Sec III-B describes how to construct graphs for
documents. Sec III-C introduces how to calculate graph simi-
larity. Sec III-D shows the estimation of graph correspondence.

A. Architecture Overview

Fig. 3 illustrates the overall framework, consisting of three
stages: graph construction, similarity calculation, and corre-
spondence estimation. Graph construction module constructs
graphs for support and query document, Gs and Gq . The
graph similarity calculation module uses several MLPs to
calculate the nodes’ and edges’ similarity. The correspondence
estimation module uses a combinatorial solver that solves a
PGM problem to estimate the correspondence between Gs and
Gq based on the nodes and edges similarity. At last, labels
in a support document are transferred into a query document
according to the correspondence between them.

B. Graph Construction Module

Take the graph of a support document Gs as an example,
all nodes are the dynamic text fields, and the edges reflect
the visibility between nodes. In this paper, {Fs} represents
the set of nodes in Gs and |Fs | represents the number of
nodes. Similarly, {F Fs} represents the set of edges and |F Fs |

represents the number of edges. The meaning of |Fq | and
|F Fq | are similar. The following paragraphs introduce precise
definitions or important details of nodes and edges.
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Fig. 3. Overview of the proposed model. In step (a), we build the graphs. In step (b), we feed different features into separate Multi-layer Perceptrons (MLP),
and their outputs are nodes and edges similarity matrices. In step (c), the nodes and edges similarity matrices are fed into a combinatorial solver to estimate
the correspondence between two graphs.

Fig. 4. Multi-region fields. Red boxes are static text fields and blue boxes
are multi-region dynamic fields. When a piece of text is too long to fit into
one line, multi-region fields appear.

Nodes: The i-th node in Gs is the i-th dynamic text field,
and it is denoted as f i

s . A node f i
s has a set of node features

and a label yi
s . The set of node features consists of three types

of features: a node aspect feature, a text feature, and a set of
spatial features. The node aspect feature is the concatenation
of the height and width of the bounding box of f i

s . i.e., it is a
two-dimensional feature. The text feature is the average word
embedding of the words in f i

s . The set of spatial features
consists of all line segments that connect f i

s and all static text
fields. Specifically, let the k-th static text field be denoted as
lk , then the coordinates difference between lk and f i

s is taken
as one of the spatial features and is denoted as lk f i

s . Assume
that the number of static text fields in a support document is
K , then the set of spatial features is denoted as {lk f i

s }
k=1,··· ,K .

To cast the one-shot text field labelling task into a PGM
problem, the labels annotated in a support document should
be different from each other, i.e., yi

s ̸= y j
s if i ̸= j . When

the support document has multi-region fields, which usually
share the same label, number suffixes are appended to the
original labels, as shown in Fig. 4. After labeling the query
documents, the number suffixes can be removed to restore the
original labels. A good support document should contain as
many dynamic text fields as possible to cover the possible
multi-region fields in the query documents.

Edges: For a pair of nodes, say f i
s and f j

s , if the line
segment connecting them is not blocked by another dynamic
text field, then there will be an edge between them. Each edge
has two features: an edge direction feature and an edge aspect
feature. The direction feature is the coordinates difference
between f i

s and f j
s and is denoted as f i

s f j
s . The edge aspect

feature is the concatenation of two node aspect features, i.e.,
the node aspect feature of f i

s and f j
s is concatenated to form

a four-dimensional feature.

Fig. 5. Spatial similarity calculation.

C. Graph Similarity Calculation Module

The graph similarity between support and query documents
includes node similarity and edge similarity.

Nodes Similarity: The node similarity between f i
s and f a

q is
calculated based on their node features. Since each node has
three types of node features, as stated in the subsection III-B,
three different MLPs are adopted to calculate the spatial,
aspect, and text similarity separately. Fig. 5 shows the calcu-
lation of spatial similarity. If a static text field lk exists in both
support and query documents, then lk serves as a “landmark”
so that an MLP can determine whether f i

s and f a
q are spatially

similar by directly comparing the spatial relationship between
lk and f i

s and the one between lk and f a
q . Put this idea

in a formal way, two line segments lk f i
s and lk f a

q will be
concatenated and then be fed into an MLP to calculate the
spatial similarity between f i

s and f a
q w.r.t. lk :

Simspatial( f i
s , f a

q , lk) = M L Pspatial(lk f i
s ⊕ lk f a

q ), (1)

where “⊕” denotes the concatenation operation and lk f i
s ⊕

lk f a
q is a four-dimensional vector. By averaging across all

static text fields, the spatial similarity between f i
s and f a

q is
calculated as:

Simia
spatial =

1
|K |

|K |∑
k=1

Simspatial( f i
s , f a

q , lk), (2)

where Simia
spatial denotes the spatial similarity.

The aspect and text similarities between f i
s and f a

q are sim-
ilar to the equation (1) but with separate MLPs. Let Simia

aspect
and Simia

text to represent the aspect and text similarities
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between f i
s and f a

q :

Aa
i =

1
3
(Simia

spatial + Simia
aspect + Simia

text ), (3)

where Aa
i represents the final node similarity between f i

s and
f a
q . The nodes similarity matrix consists of Aa

i and its shape
is |Fs | × |Fq |.

Edges Similarity: The edge similarity between f i
s f j

s and
f a
q f b

q is calculated based on their edge features and is denoted
as Aab

i j . Similar to the calculation of Aa
i , Aab

i j is calculated as:

Aab
i j =

1
2
(M L P( f i

s f j
sdir ⊕ f a

q f b
qdir

)

+ M L P( f i
s f j

sasp ⊕ f a
q f b

qasp
)) (4)

The shape of the edges similarity matrix is |F Fs | × |F Fq |.

D. Correspondence Estimation Module

The correspondence between Gs and Gq is obtained by
solving a constrained discrete optimization problem introduced
by the PGM problem [39]. The objective of this discrete opti-
mization problem is to find the best correspondence between
Gs and Gq so that their graph similarity is maximized:

max
P

F(P) =

|Fs |∑
i=1

|Fq |∑
a=1

Pia Aa
i Pia +

|F Fs |∑
i j∈F Fs

|F Fq |∑
ab∈F Fq

Pia Aab
i j Pjb,

(5)

s.t. P ∈

{
P1 ≤ 1, P⊤1 ≤ 1, P ∈ {0, 1}

|Fs |×|Fq |

}
. (6)

In equation (5) and (6), P represents the correspondence
matrix between Gs and Gq , i.e., Pia is 1 if a support field
f i
s is matched with a query field f a

q , 0 otherwise. F(P)

denotes the graph similarity given P . 1 is a column-wise vector
whose elements are all one. The first inequality in equation (6)
forbids a feasible correspondence matrix P to match multiple
support fields with one query field and vice versa by the
second inequality. Both inequalities allow part of support and
query fields to match with no fields if the outliers appeared in
the documents. The equation (6) is also called the one-to-(at
most)-one mapping constraints.

Solving Partial Graph Matching Problem: To solve the
equation (5) and (6), the solver will relax all binary elements
of P into decimals between 0 and 1 so that the feasible
domain becomes continuous and convex. Let P represent the
new feasible domain. Within the new feasible domain P ,
a gradient-based method, called the Frank-Wolfe method [40],
was adopted to maximize the graph similarity F(P) by per-
forming the following iterations:

P̃(t+1)
∈ arg max

P∈P

〈
∇F

(
P̂(t)), P

〉
, (7)

P̂(t+1)
= P̂(t)

+ α(t)(P̃(t+1)
− P̂(t)), (8)

where P̂(t) is the approximate solution to (5) at the (t)-th
iteration and its elements are decimals between 0 and 1.
∇F

(
P̂(t)) is the gradient of F(P̂(t)) at P̂(t) and α(t) is the

step size obtained by exact or inexact line search [41]. The
sub-problem described in the equation (7) can be solved by the

Fig. 6. Drift field and outliers lead to many-to-one mappings. In both (a) and
(b), a support field is mapped to two query fields as indicated by the red and
green lines. Red lines indicate wrong mappings. Yellow lines in (a) indicate
that query fields drift downwards. In the query of (b), the purple boxes contain
an outlier that reads 4⃝. Please zoom in to see the text in static fields.

Hungarian algorithm [42] because the optimal solution P̃(t+1)

is always an extreme point of P . The elements in P̂(t) can be
interpreted as the possibilities of two fields that are matched
with each other. Therefore, if one column (row) of P̂ is close
to a zero vector, then the corresponding query (support) field
is not likely to match with any support (query) fields and this
query field should be identified to be an outlier. After removing
all columns (rows) of possible outliers from P̂(t), the solver
will pick out the true correspondence between the rest fields
so that the total possibilities of picked pairs are maximized
without violating the constraints in the equation (6). This
picking process is a linear programming problem that can
be solved efficiently by the Hungarian algorithm again. After
picking, the continuous P̂(t) becomes binary again and was
output as the predicted graph correspondence. More details
on solving the PGM problem can be found in the literature
in [43]. Inspired by [44], we used a third-party library called
DD-ILP [45], to solve the graph matching problem without
considering the outliers. The ZAC-GM solver in [43] is
implemented to handle the outliers.

Importance of the Mapping Constraints: The constraints
described in the equation (6) can relieve the field drift and
outlier problems. In Fig. 6 (a), the support field “¥0.00”
is very spatially similar to the query field “¥51.00”. Please
observe their spatial relationships to the static field “Fuel oil
surcharge” to check this claim. Therefore, the spatial MLP
will assign a high similarity score to them which will lead to
a correspondence between them later. However, if the mapping
constraint is applied, the wrong mapping (the red line) between
“¥0.00” and “¥51.00” will be replaced by the correct mapping
between “¥0.00” and “¥0.00” (the green line).

Training objective: To improve the performance of our
framework, this paper integrates the graph similarity calcu-
lation module and the correspondence estimation module into
an end-to-end trainable framework. Denote the ground truth
correspondence matrix as P∗, whose elements are binary. The
hamming loss between the predicted correspondence matrix P̂
and P∗ is:

ℓH =
1

|Fs | ∗ |Fq |

|Fs |∑
i=1

|Fq |∑
a=1

X O R
(
P̂ia, P∗

ia
)
, (9)

where X O R(·, ·) represents the “exclusive or” operation.
What’s more, inspired by [43], another auxiliary loss, called
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TABLE I
LABELS, TYPES, AND THE NUMBER OF IMAGES FOR EACH DATASET

ranking loss, was designed to enlarge the similarity score dif-
ference between correct and wrong node pairs during training:

ℓR =

∑
i,a

∑
j ̸=i,b=a

∑
j=i,b ̸=a

P∗

ia ∗ min{ϵ+, β ∗ (Aa
i − Ab

j )}

|Fs | ∗ |Fq |
,

(10)

where Aa
i represents the node similarity score of the correct

field pair. β is 1 when Aa
i > Ab

j , −1 otherwise.
Let ρ denotes the weight of ℓR . We minimize the this loss:

ℓ = ℓH + ρ ∗ ℓR . (11)

IV. EXPERIMENTS

A. Datasets

Table I lists three KIE benchmark datasets: CORD [46],
SROIE [22] and DKIE. The other public datasets, such as
FUNSD [47] and EPHOIE [48] are not suitable for the
one-shot KIE task because many testing samples do not
have corresponding support documents. Moreover, we create
a new dataset, DKIE, to promote the research looking into the
one-shot KIE task, especially with regard to the problems of
drifted fields and outliers.

B. Implementation Details

Training Details: We compared our model with 8 differ-
ent KIE models. Five of them are supervised-learning-based
models [10], [13], [14], [15], [37] and three of them are one-
shot-learning based models [21], [49], [50]. The backbones of
all one-shot-learning-based models are multilayer perceptrons,
and the number of parameters is 2k for all backbones to
ensure a fair comparison between the proposed method and
the other methods. We reimplemented these models because
their original codes were not available. The backbones of all
supervised-learning-based models are transformers. We cite
their performance on the public datasets and the number of
parameters from the literature.

Testing Details: In the literature on supervised-learning-
based methods, precision, recall, and F1 score were adopted
while the labeling accuracy was reported in the literature on
the one-shot-learning-based method. Therefore, all of them are
reported on public datasets. Labeling accuracy is reported on
the DKIE dataset.

C. Performance on the Public Dataset

Table II summarizes the results of the CORD dataset.
Our proposed method (referred to as “Ours (ZAC-GM)”)
performed well, with a precision of 93.89, recall of 94.07,

TABLE II
COMPARISON WITH SUPERVISED-LEARNING-BASED METHODS ON THE

CORD DATASETS. PRECISION, RECALL, AND F1 SCORES ARE
REPORTED

TABLE III
COMPARISON WITH SUPERVISED-LEARNING-BASED METHODS ON THE

SROIE DATASETS. PRECISION, RECALL AND F1 SCORE ARE
REPORTED

TABLE IV
COMPARISON WITH ONE-SHOT LEARNING METHODS ON THE SROIE

DATASETS. ENTITY-LEVEL LABELLING ACCURACY IS REPORTED

and an F1-score of 93.98, all comparable to the LayoutLM-
based models. The LayoutLM-Based model outperforms our
method due to the nature of the CORD dataset, where each
image typically contains only 1 to 3 static text fields. As a
result, one-shot learning-based methods struggle to effectively
distinguish the relative positions of different dynamic text
fields with respect to static text fields. This limitation leads
to significant errors in our method’s performance. In ablation
experiments, we observed a considerable decline in model
performance when the number of static text fields was low.

In Table III, our model achieved comparable results against
supervised-learning-based methods. Our model size is signif-
icantly smaller than the supervised-learning-based methods.
Therefore, our model can be deployed to memory-limited
devices, such as mobile phones, more easily. Notice that our
model relies on the existence of support documents so that
the labels can be transferred from support to query documents
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Fig. 7. LF-BP (left) and our model’s (right) predictions of documents
containing drifted fields in the T0 dataset. In both (a) and (b), the support
document is on the left and the query document is on the right. The yellow
line in the query document is slop indicating downwards drifted text fields.
Red arrows are the wrong correspondences while green ones are correct.

while the supervised-learning-based methods do not have such
requirements. This is a trade-off between model size and the
existence of support documents.

In Table IV, our model achieved the best performance
in all types of documents when compared with the other
one-shot learning-based methods. What’s more, our model
converged after 5 iterations of training data while the rest
models converged after 12 iterations. There are two reasons
that explain why our model converged more quickly. First, our
model uses hamming loss to calculate the gradients, while the
rest models use cross-entropy loss. Second, the combinatorial
solvers in our model are not sensitive to the subtle change
of affinity matrices, which are the outputs of MLP mod-
ules. Therefore, when the affinity matrices are approximately
correct, combinatorial solvers can find the correct mapping
between support and query fields.

D. Performance on the DKIE Dataset

In Table V, our model outperformed the other one-shot
learning-based methods on all test types. Despite that the
supervised-learning-based models consumed more features
(spatial+visual+text versus only spatial), our model achieved
the best results on all test types but the T0, T2, and T7 types.
When our model consumes more features, the performance of
our model on T0 and T2 types will increase in the Ablation
Study section IV-E.

To investigate the performance of our model on samples
containing drifted fields and outliers separately, we further
split each type of document into 2 parts. There are “drifted”
documents in which some fields have drifted so badly that even
humans need to check each field very carefully to judge the
labels. There are also documents containing “outliers”. A small
number of documents contain both drifted fields and outliers.
They are included in “drifted” and “outliers” parts at the same
time.

1) Performance on “Drifted” Documents: In Table VI, the
performance of our model dropped moderately while the rest
models failed on the “drifted” data. Our model significantly

1LayoutLMv2-Large model can not handle chinese characters in DKIE.
2StrucTexT-base model performs poorly due to insufficient training data.

Fig. 8. Documents containing horizontally drifted fields and outliers in the d3
dataset. (a1) and (a2) show the prediction of the LF-BP model. (b1) and (b2)
show the prediction of our model with the ZAC-GM solver. Purple boxes are
outliers. Red lines indicate the wrong mapping between fields. Both models
failed in this example.

outperformed the rest models across all types. There are no
“drifted” documents in T1, T4 and T7 types. Take the T0
type for example, we found that the fields in this type are
arranged vertically. If one of the fields in the head part of
a document drifted downwards, all the fields below it would
then also drift downwards. Typical samples of the T0 type can
be found in Figure 2 (b) and Figure 7. Both the online demo3

released by [21] and our reimplemented LF-BP model achieve
low accuracy on the drifted fields. Typical mistakes made by
the LF-BP model are shown in Figure 7.

2) Performance on “Outliers” Documents: Table VII shows
that our model, when using the ZAC-GM solver, is the
only one that succeeds across all datasets. When our model
uses the DD-ILP solver, it cannot handle documents that
contain outliers. We found that DD-ILP aims to solve the
graph matching problem and requires the support and query
documents to have the same number of fields. This is not true
in documents that contain outliers. However, the ZAC-GM
solver [43] is reimplemented and employed to pick out the
outliers, our model can handle the drifted fields and outliers
at the same time to some extent.

Some documents in the T0, T3, and T6 datasets contain
drifted fields and outliers at the same time. Not only did the
rest models fail on these documents, but also the performance
of our model dropped by a relatively large margin. Figure 8
shows such samples in the T3 type. When the outliers are close
to the drifted fields, they are hard to distinguish from each
other solely based on their spatial features. For example, the
LF-BP model maps the “type” field in (a1) to the “outliers_2”
field in (a2). Our model also maps the “fee” field in (b1) to
the “outliers_1” field in (b2). The positions of these outliers
are so close to other drifted query fields that the models may
confuse them with the situation of multi-region fields. This
indicates that the similarity between fields should be measured
using more diverse features such as the width and height of
bounding boxes of fields or the text embedding in fields.

3https://ocr.data.aliyun.com/experience#/?first_tab=general
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TABLE V
COMPARISON WITH SUPERVISED-LEARNING-BASED AND ONE-SHOT LEARNING-BASED METHODS ON THE DKIE DATASETS. ENTITY-LEVEL

LABELLING ACCURACY IS REPORTED. FROM T0 TO T8, EACH ONE REPRESENTS A TYPE OF DOCUMENT

TABLE VI
COMPARISON WITH ONE-SHOT LEARNING METHODS ON THE “DRIFTED”

DKIE DATASETS. ENTITY-LEVEL LABELLING ACCURACY IS
REPORTED

TABLE VII
COMPARISON WITH ONE-SHOT LEARNING METHODS ON THE “OUT-

LIERS” DKIE DATASETS. ENTITY-LEVEL LABELLING ACCURACY IS
REPORTED

TABLE VIII
TESTING THE IMPACT OF DIFFERENT FEATURES USING THE T0 TYPE.

EACH COLUMN CORRESPONDS TO ONE TYPE OF TAXI RECEIPT IN
ONE PROVINCE. “AVG” MEANS AVERAGE ACCURACY OF ALL

DOCUMENTS

E. Ablation Study

1) Different Features: Additional MLP modules are
designed to incorporate more diverse features and the benefits

Fig. 9. Labelling accuracy versus the number of static text fields. “S”, “A”,
and “E” represent the spatial, aspect, and edge features.

Fig. 10. The accuracy of our models (ZAC-GM) that are trained with different
ranking loss weights. Better viewed in color.

of this practice are tested across different types of documents
in Table VIII.

The first line of Table VIII shows that our model achieves
good performance solely based on the spatial features on
most types of documents except for the “AH” type. The
last line of Table VIII shows that if all possible features
(“Spatial+Aspect+Text+Edge”) are used, the accuracy of our
model on all types reached 90%. We believe the proposed four
features are complementary to each other.

2) Static Text Fields: The impacts of the number of static
text fields on the accuracy of our model are further evaluated
in Figure 9. The overall accuracy is good when less than three
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static text fields (see −1, −2, −3 in the x-axis) are dropped.
When multiple features are used, the labelling accuracy grows
as the number of static text fields increases. This is not true
when only the spatial features are used. This also proves that
these features are complementary to each other.

3) Ranking Loss: The effectiveness of ranking loss is also
evaluated by changing the weight of ranking loss. Figure 10
shows that our ranking loss can help to accelerate the training
process. When our model does not employ the ranking loss,
it can still outperform the LF-BP model. By increasing the
weight of ranking loss, our model converged much more
quickly and the accuracy also increased. When the weight of
the ranking loss is too large, the performance of our model
drops. When the ranking loss is applied to two solvers, their
accuracy improves 1% across different testing styles in the T0
type of documents.

V. CONCLUSION

This paper proposed a robust deep Partial Graph Matching
(dPGM) framework for the one-shot KIE task. The proposed
framework represents each document as a graph. It solves the
text field labelling problem by estimating the correspondence
between text fields in a test document and those in a support
document. It enables the learning of graph similarity and cor-
respondence estimation in an end-to-end trainable framework.
To get a strict one-to-one correspondence, a combinatorial
solver module with an extra one-to-(at most)-one mapping
constraint is introduced to do exact graph matching, which
results in the robustness of the field drift problem and the
outlier problem. To promote the research of the KIE task,
a large one-shot KIE dataset called DKIE is collected and
annotated, which contains 2,500 document images and diverse
types of document images. Extensive experiments on the
public dataset and the new DKIE dataset demonstrate the
effectiveness and robustness of the proposed method.
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