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Abstract— Policy space response oracles (PSRO) is a promising
tool to find an approximate Nash equilibrium (NE) in a two-
player zero-sum game. It solves the equilibrium by iteratively
expanding a small-scale meta-game formed by a restricted strat-
egy population consisting of historical approximate best responses
of the meta-games. However, since these best responses have a
strong correlation with each other, existing PSRO and its variants
often have the slow diversity growth of the strategy population,
and thus suffer from poor exploration efficiency and slow
convergence rate. To address this problem, this article proposes
Purified PSRO, which deliberately maintains a pure strategy
population formed by pure strategy bases of approximate best
responses. A novel module namely non-best response suppression
(NBRS) is introduced to calculate a pure strategy base with better
orthogonality to expand the strategy population at each epoch.
In this way, Purified PSRO can quickly increase the diversity
of the strategy population, thus greatly enhance the efficiency of
exploration. Theoretically, we prove the convergence of Purified
PSRO. Moreover, we introduce an early stop module to reduce
computation cost, and give the upper bound of the exploitabil-
ity when the algorithm stops early. Extensive experiments on
random games of skill (RGoS) and real-world meta-games show
that Purified PSRO can consistently outperform existing SOTA
methods, sometimes with a large margin.

Index Terms— Best response, Nash equilibrium (NE), policy
space response oracle (PSRO), symmetric zero-sum game.

NOMENCLATURE

symbol meaning
P Population of strategies.
S Strategic space for a player.
s Strategy in strategic space.
sBR(π) Strategy which is the BR to π .
πNE

t NE in a restricted game in iteration t .
φBR

t BR in a meta-game in iteration t .
G Game or a meta-game.
Pi Mixed strategy vector for player i .
M Meta-matrix between population strategies.
Ui Payoff matrix for player i .
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U(s1, s2) Payoff value when strategy s1 against s2.
G = U(∗, π) Meta-game where the opponent’s strategy

is π .

I. INTRODUCTION

F INDING the Nash equilibrium (NE) in a two-player zero-
sum game represents a central and enduring objective

within the realms of artificial intelligence and algorithmic
game theory, and is recognized as a computationally chal-
lenging task classified as PPAD-complete [1]. As the most
used notion of equilibrium in game theory, NE helps players
determine the optimal payoff in a situation based not only on
their decisions but also on the decisions of other participants
involved. Unfortunately, real-world games with massive strate-
gies bring many challenges to classic NE solvers [2], and some
recent works use multiagent training techniques that are not
guaranteed to improve/converge [3]. To help researchers better
understand the characteristics of the game system and avoid
being distracted by too many details, symmetric zero-sum
game is included. In a symmetric zero-sum game, both players
have identical strategy sets and payoff matrices, which simpli-
fies the game structure and introduces symmetry. Despite being
an idealized model, efficient solutions to symmetric zero-sum
games are still an open question [4]. In fact, even simple yet
challenging cyclic games remain unsolved [5], [6], particularly
in the context of symmetric zero-sum games.

Based on the tabular method double oracle (DO) [7],
policy space response oracles (PSRO) [8] is a promising
tool to find an approximate NE in zero-sum games. Opposed
to typical game-theoretic solutions which directly seek the
equilibrium in the original game space [9], [10], PSRO itera-
tively solves the equilibrium in a restricted meta-game formed
by a restricted strategy population, which is ideally much
smaller than the original game space. With the growth of the
strategy population size, the equilibrium of the meta-game
gradually approaches that of the original game. Due to the
theoretical convergence guarantee, PSRO has achieved state-
of-the-art performance on complex real-world games such as
StarCraft [11], Dota 2 [12], and Stratego [13]. After the initial
deployment, various PSRO variants are developed, including
PSROr N [3], Pipeline PSRO [6], DPP-PSRO [14], BD-RD-
PSRO [15], PSD-PSRO [16], etc.

Though having impressive performance, existing PSRO and
its variants suffer from poor exploration efficiency and slow
convergence rate. In general, zero-sum games often involve
non-transitivity in the policy space, where strategic cycles
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exist, and there is no consistent winner [3]. Diversity of the
strategy population matters especially for the non-transitive
part simply because there is no consistent winner in such part
of a game. Essentially, diversity is a new geometric perspective
to treat the response diversity by considering the distance
to the gamescapes [14]. Prompting diversity prevents agents
from checking the same policies repeatedly. More importantly,
it helps them discover new skills, avoid being exploited, and
maintain robust performance. To increase the diversity, PSRO
expands the strategy population by adding an approximate
best response (often represented as a mixed strategy) at each
epoch. However, since the approximate best response usu-
ally has a strong correlation with current strategy population
(especially in massive real-world games), the diversity and the
gamescapes of population grow slowly, which makes existing
PSRO and its variants suffer from inefficient exploration.
Although some algorithms try to assess and maximize the
diversity of strategies at each epoch, the computation of
diversity measurement is even more computationally expensive
than other parts of PSRO, which leads to lower computational
efficiency instead.

This article proposes Purified PSRO, a new PSRO variant,
to improve the efficiency of exploration. The key idea is to
maintain a pure strategy population deliberately to increase
population diversity, by adding the pure strategy base instead
of the approximate best response at each epoch. When viewing
the empirical gamescapes from a geometric perspective, pure
strategy bases are comparable to a collection of bases that
may be used to provide different mixed strategies. Then,
some excellent properties of basis vectors in Euclidean space
can be transferred to the pure strategy bases in empirical
gamescapes. For example, pure strategy bases can rapidly
expand gamescapes, increasing exploration efficiency. With
the assistance of the pure strategy bases, Purified PSRO can
effectively generate equilibrium with low exploitability in few
iterations. Additionally, we prove the convergence of Purified
PSRO, and show that it converges to the approximate NE.
To reduce computation cost, this article introduces an early
stop module for Purified PSRO and gives the upper bound of
the exploitability when the algorithm stops early.

Compared with existing PSRO and its variants, Purified
PSRO has a series of advantages both theoretically and exper-
imentally. Theoretically in Section IV, outstanding properties
of the generated pure strategy base φBR

t are proved. Proposi-
tion 1 shows that φBR

t is the best response of the meta-game at
each epoch. Proposition 2 proves that φBR

t will not be a dom-
inated strategy, thus ensures validity. Proposition 3 introduces
φBR

t has diversity without the measurement of the diversity.
Purified PSRO also performed well in a variety of complex
environments. In Section V, Purified PSRO achieves the state-
of-the-art performance in the experiments of exploitability,
efficiency, and diversity.

To summarize, our contributions are as follows.

1) This article proposes a novel algorithmic framework
namely Purified PSRO to learn approximate NE in
two-player zero-sum games. Theoretically grounded,
our method demonstrates efficacy in expanding the

gamescape, ensuring both efficient and high-quality
exploration.

2) Two modules—non-best response suppression (NBRS)
and early stopping—are introduced. NBRS enriches
strategy diversity through non-parametric methods,
while early stopping accelerates convergence, with each
having accompanying theoretical analysis.

3) Extensive experimental evaluations are done in the
context of symmetric zero-sum games, encompass-
ing random games of skill (RGoS) and real-world
meta-games. The results indicate that Purified PSRO
consistently surpasses existing PSRO baselines across
multiple performance metrics, including exploitability,
strategy diversity, and win rates.

II. RELATED WORK

Symmetric zero-sum games are one of the simplest types
of games and provide a basis for understanding more complex
games. By studying such games, theoretical frameworks and
solution methods can be established, which can be generalized
to asymmetric and multiplayer games. The relevant methods
are introduced as follows.

A. Classic Methods

There are many classic game-theory methods to solve NE,
such as decision trees and linear programming [17], [18].
Counterfactual regret (CFR) minimization is also a popular
method to deal with decision-making problems. It converges
to an equilibrium by iteratively traversing the game tree
and minimizing regrets [19], [20], [21]. Methods based on
evolution and population are also popular, but they have no
theoretical guarantee of convergence and suffer great variance
and uncertainty [22], [23], [24], [25]. Fictitious Play is another
traditional method in game theory, in which each player best
responds to the empirical frequency of play of their oppo-
nent [10]. There are a series of self-play-based NE solvers,
such as fictitious self-play (FSP), δ-FSP, smooth self-play,
neural FSP, etc. [20], [26], [27], [28], [29], [30]. Fictitious self-
play finds an optimal targeting strategy based on its historical
average strategy set at the beginning of each epoch, while
best-win self-play only plays against the strongest historical
strategy. These algorithms train each agent individually while
considering other agents as a part of the environment using
the single-agent approach. It is under the assumption that
local improvements automatically translate to global, and it
makes sense in a transitive game such as ELO-game. However,
the assumption is not valid in most non-transitive games.
Therefore, most self-play algorithms will overfit with other
agents as a result of the assumption, and does not perform
well in complex non-transitive games [2], [3].

Without treating other agents as a part of environment,
DO [7] provides an iterative method to solve large-scale
games. It provides an algorithm that allows agents to pro-
gressively expand their policy population by adding the best
response to the opponent’s NE in each iteration. At each epoch,
DO builds a meta-game with a fixed strategy found by the
meta-solver, and finds a response in such a meta-game by

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 16,2024 at 02:40:41 UTC from IEEE Xplore.  Restrictions apply. 



SHAO et al.: PURIFIED POLICY SPACE RESPONSE ORACLES FOR SYMMETRIC ZERO-SUM GAMES 3

Fig. 1. Workflow of Purified PSRO. The Purified PSRO includes three components, FSP as meta-solver, NBRS as response solver, and an early stop module.
The meta-game matrix is the payoff matrix between each two strategies in the strategy population P. The size of the meta-game matrix increases in each
iteration, but it is much smaller than the original game. At each epoch, the FSP computes a restricted NE πNE

t in the strategy population P. Then, the NBRS
module generates a pure strategy base φBR

t . After that, the early stop module checks whether the early stop condition is met. At the end of each epoch,
Purified PSRO adds the pure strategy base φBR

t to the strategy population P and expand the meta-game matrix.

the response solver. Concretely, a restricted NE is computed
for the restricted game for each player while they suppose
that the opponent will only use the strategies that are in the
population. In other words, the algorithm stores all historical
BR policies in the population, then try to find a new restricted
NE policy in the empirical gamescapes. After getting the
restricted NE policy, the best response to the meta-NE for
each player is computed and added to the population. This
loop runs until the algorithm converges.

B. DRL-Based Algorithms

With the popularization and application of deep reinforce-
ment learning (DRL) [31], [32], the NE solution of modern
algorithms has changed a lot, such as AlphaGo mastering
the game of Go [29], Suphx over the top of Mahjong [28],
AlphaStar for StarCraft II [11], OpenAI Five for DOTA 2 [12],
and Pluribus for no-limit Texas hold’em poker [33]. These
algorithms apply DRL and achieve impressive results.

PSRO is a generalization of DO methods on meta-games,
with the best response solver implemented through DRL algo-
rithms [8]. The same to DO, it maintains a strategy population
and then continually responding to the strategy population
and expanding the population. Relevant theories prove that
it can constantly approach the NE even if the response is
not optimal. The meta-solver and the response solver are two
necessary parts of the PSRO framework. Some research focus
on the meta-solver. In other words, they improve PSRO by
choosing a better opponent, such as α-rank PSRO [34], Neural
Auto-Curricula [35], and Anytime PSRO [36]. And others are
on response solver. They are in pursuit of better strategies
to expand the strategy population, such as PSROr N [3] and
Pipeline PSRO [6].

Diversity is a geometric perspective to treat the response
diversity by considering the distance to the gamescapes.
According to previous research [14], diversity should be
defined in terms of orthogonality, and policy diversity can be
assessed using the payoff vectors of those policies. As a result,
it designed a diversity metric calculated by the meta-matrix as
the expected cardinality. Based on diversity metric, it designed
diversity-aware fictitious play and PSRO with Diversity(S) =

Tr(I − (Ls + I))−1, where Ls is defined by the meta-game
matrix M and the I represents an identity matrix of the same
order as Ls . DPP-PSRO [14] believes that diversity should

encompass both response diversity (in terms of reward) and
behavioral diversity (in terms of policy occupancy measure).
The process incorporates diversity terms as auxiliary incen-
tives. While these algorithms offer theoretical assurances of
broadening the strategic landscape, they grapple with two
prominent issues. First, they demand a substantial amount of
additional computational resources to quantify the diversity
of strategies. Second, they necessitate a delicate balancing
act between optimizing for the original game’s payoffs and
uncovering a variety of counter strategies, achieved by tuning
hyperparameters. In this article, we aim to enhance the overall
strategy diversity via a parameter-free algorithm, circumvent-
ing these challenges.

At present, the PSRO-based algorithms have reached the
state-of-the-art in NE solving. But these approaches still have
exploration efficiency and computational efficiency concerns.
How to converge more efficiently is still a problem to be
solved.

III. NOTATIONS AND PRELIMINARY PREPARATIONS

In the standard formulation of a two-player game, the
strategic space of the players is S1 and S2, and the payoff
function is U1 and U2. Then, the game can be written as
G = {S1, S2;U1, U2}. U(s1, s2) is the payoff from strategy
s1 versus strategy s2. Here, U(s1, s2) > 0, U(s1, s2) < 0,
and U(s1, s2) = 0 as s1 wins, losses, and ties to s2. Many
real-world games (RPS, Go, Poker, StarCraft, etc.) can be
described in a two-player game. If the payoffs of the game
only depend on the strategy chosen by the players and do not
depend on the players who are playing the game, this kind
of game is called symmetric game. Then, the games can be
formally abbreviated as G = {S;U} and U = −UT . A game is
transitive if there is a monotonic rating function f such that
U(s1, s2) = f (s1) − f (s2),∀s1, s2 ∈ S1, S2; this shows that
there is absolute strength between strategies.

A game is non-transitive if 6s2∈S2U(s1, s2) = 0,∀s1 ∈

S1, meaning that winning against some strategies will be
counterbalanced by losses against others; the game has no
consistent winner. A mixed strategy is a probability distri-
bution that assigns to each available action a likelihood of
being selected. If only one action has a positive probability of
being selected, the player is said to use a pure strategy. From
the perspective of policy space, the pure strategies as bases
namely pure strategy bases. A mixed strategy for player i is
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the probability distribution pi = (pi1, . . . , pi K ), where for all
k = 1, . . . , K , 0 ≤ pik ≤ 1, and pi1 + · · · + pi K = 1. The
payoff of a mixed strategy can be calculated by the following
equation:

U(P1, P2) = P1 · U · PT
2 . (1)

If for each possible strategic combination of other participants,
the payoff of player selection s ′ is less than s ′′ (i.e., U(s ′, π) ≤

U(s ′′, π), s ′, s ′′ ∼ S,∀π ), then s ′ is a dominated strategy to
s ′′. When the equal sign cannot be established, s ′ is a strictly
dominated strategy to s ′′. A dominated strategy will not be
selected by a rational participant and does not expand the
gamescapes of the game.

Reinforcement learning is used for strategy generation dur-
ing training to model the problem as Markov decision process
(MDP) [37], [38]. It is convenient to solve complex problems
by using MDP to construct models [39], [40]. Consider an
MDP defined as M := (S,A, P, r, ρ, γ ), comprising a state
space S, an action space A, a transition model P : S ×
A→ 1(S), a reward function r : S × A→ R, an initial state
distribution ρ, and a discount factor γ ∈ (0, 1]. A stochastic
strategy π : S → A probabilistically selects actions based on
the current state.

In the functional form games (FFGs), a strategy popula-
tion S and a meta-matrix M between them is given. Here,
M = {U(s ′, s ′′) : (s ′, s ′′) ∼ S1

× S2
}. Then, game can be

abbreviated as G = {S;M}. So formally, the game at the
policy level where a generated policy (through reinforcement
learning, etc.) can be regarded as a higher-level strategy. Thus,
this article will not distinguish between the action level and
the policy level in the following discussion.

The gamescapes of a population of strategies in a
meta-game is defined as the convex hull of the payoff vectors
of all policies in S, written as

Gamescape(S) :=

{∑
i

αi · ui : α ≥ 0, αT 1 = 1, ui = U[i,:]

}
.

(2)

Previous work has shown that gamescapes are useful geo-
metric representations of the latent objectives in games,
and provide tools to analyze them [3], [14]. Note that the
gamescapes can be explored effectively only when the set ui

is less correlated (or more orthogonal).

IV. METHODS

In this section, we delve into the meticulous procedures
and theoretical foundations underpinning Purified PSRO.
Section IV-A commences with an overview of the operational
workflow of Purified PSRO, which stands as a sophisticated
variation on the PSRO paradigm. Proceeding to Section IV-B,
we unveil the NBRS module. This module computes pure
strategy bases, thereby propelling the diversification and
expansion of the strategy population in each iteration. Theoret-
ical propositions are then forwarded to assert the advantageous
attributes. Subsequently, in Section IV-C, an innovative early
stop module is posited for Purified PSRO. This criterion allows
the algorithm to stop operations early if the performance of

Algorithm 1 Purified Policy Space Response Oracles
Input: Game payoff matrix U.
Output: π N E

t
1: Initialized the strategy population P with a pure strategy.

2: Calculation meta matrix M by the strategies in the popu-
lation P.

3: while True do
4: t ← t + 1
5: π N E

t ← FSP(M, P).
6: φBR

t ← NBRS(φB R
t ).

7: If U(φBR
t , π N E

t ) < ε : break.
8: P← P ∪ {φBR

t }.
9: Expand M.

10: Calculate the exploitability of π N E
t .

11: end while

Algorithm 2 Non-Best Response Suppression in Gradient
Input: Game payoff matrix U, opponent’s strategy π N E

t
Output: Pure strategy base φBR

t
1: Initialized the Meta-game G = {S;U(∗, π N E

t )}.
2: Learn π RL

t by reinforcement learning in the G.
3: A family of pure strategies S← purify(π RL

t ).
4: φBR

t ← arg maxs∼S(U(s, π N E
t )).

the emergent best responses is not good. In this way, it can
improve the efficiency.

A. Workflow of Purified PSRO

Purified PSRO works by keeping a strategy population P
at each epoch, and computes an NE πNE

t for the meta-game
restricted to strategies in the population P. Arbitrary classic
methods mentioned above can be used as the meta-solver in
Purified PSRO.

πNE
t = meta-solver(M, P). (3)

Then, a new response is calculated and added to the population
P. The cyclic interplay of these two solvers iteratively expands
the population, and finally generates an approximate NE of the
original game.

The workflow of Purified PSRO is summarized in
Algorithm 1 and Fig. 1. As shown in Fig. 1, the Purified
PSRO includes three components: fiction self-play (FSP) as
meta-solver, NBRS as response solver, and an early stop
module. The meta-game matrix is the payoff matrix between
each two strategies in the strategy population P. The size
of the meta-game matrix increases in each iteration, but it is
much smaller than the original game. At each epoch, the FSP
computes a restricted NE πNE

t in the strategy population P.
Then, the NBRS module generates a pure strategy base φBR

t .
After that, the early stop module checks whether the early stop
condition is met. At the end of each epoch, Purified PSRO adds
the pure strategy base φBR

t to the strategy population P and
expands the meta-game matrix.
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Fig. 2. Generation process of a pure strategy base in RPS game. This article introduces NBRS as an integral component within the framework of Purified
PSRO, serving as a strategic response solver designed to enhance the efficiency of exploration. NBRS accomplishes this enhancement by systematically
generating pure strategy bases and meticulously sustaining a population of pure strategies, denoted as P. At each epoch, Purified PSRO generates a pure
strategy base φBR

t in the meta-game, thus making the meta-solver maintain a pure strategy population of φBR
t .

B. Non-Best Response Suppression

This article proposes NBRS to improve the efficiency of
exploration in PSRO, as shown in Fig. 2. Recent advance-
ments in reinforcement learning have witnessed remarkable
achievements by intelligent agents ranging from game-playing
to industrial applications [31], [41], [42], [43]. Reinforcement
learning is used as the best response solver in each iteration;
NBRS extracts the positive part of the strategy sBR to generate
a family of pure strategy bases St , and then adds one of them
to the strategy population. Formally, the BR is as follows:

φBR
t = arg max

s∼St

(
U

(
s, πNE

t

))
(4)

St = purify
(
sBR)

. (5)

Particularly, if the game’s payoff matrix is given, NBRS can
generate pure strategy bases more quickly by extracting the
maximum part of the meta-game’s gradient. Here, the strategic
space can be written as follows:

St = purify(∇G)

G =
{
S;U

(
∗, πNE

t

)}
. (6)

In many works, measures of strategy diversity are explicitly
proposed and the diversity of strategy population is optimized
by introducing additional computational complexity based on
the weights of these indicators during the training process.
The NBRS presented in this article is a non-parametric module
that naturally increases the diversity of the strategy population
without specific calculations of diversity.

The pseudocode of NBRS is shown in Algorithms 1 and 2.
By generating pure strategy bases and maintaining a pure
strategy population P deliberately, Purified PSRO achieves
the better performance than simple PSRO. This module is
a non-parametric module and does not involve the selection
of hyperparameters. It can effectively reduce the correlation
between the approximate best response and the gamescapes
of strategy population, and then can effectively increase the
diversity of strategy population. Interestingly, individual pure
strategies tend to be more susceptible to exploitation than
mixed strategies in isolation; however, when examining the
strategic landscape at the population level, the narrative takes
an unexpected turn, presenting a contrasting conclusion. This
paradox arises due to the geometric interpretation of empirical
games, where pure strategies can metaphorically be seen as

a set of foundational vectors that collectively give rise to
a multitude of mixed strategies, thus offering a richer and
potentially less exploitable strategic repertoire.

Then we illustrate some excellent properties of NBRS in
propositional form, and prove them in Appendix B.

Proposition 1 (Proposition of Optimality): In the meta-
game, the pure strategy base corresponding to the maximum
component of gradient is the best response.

Proposition 2 (Proposition of Validity): The generated pure
strategy base in NBRS is not the dominated strategy in the
original game.

Proposition 3 (Proposition of Diversity): The generated
pure strategy base can expand the empirical gamescapes of
the strategy population.

Because of Proposition 1, when the payoff matrix and the
gradient matrix are given, the best response obtained does not
require reinforcement learning, and the PSRO algorithm will
degenerate into the DO algorithm. Proposition 2 guarantees
that the dominated strategy will not be added to the population
P. Therefore, in some games with redundant actions (such
as 20-clone RPS), Purified PSRO will terminate in advance
before learning all different actions. Actually, it terminates
after adding all three different actions (R/P/S) to the population
P. Proposition 3 permits us to diversify the strategies in the
population P without consideration of the diversity. Due to
the pure strategy bases can be understood as the basis vectors
of the policy space, diversity from the historical strategies
will lead to the dimension improvement of the empirical
gamescapes. By combining Propositions 2 and 3, Purified
PSRO can effectively increase the diversity and expand the
gamescapes, thus ensure the efficiency and the quality of
exploration.

C. Early Stop

The Purified PSRO algorithm progressively brings the strat-
egy population closer to an NE by continuously adding the
best response to the strategy population and updating the
policy distribution. The strategy population in the algorithm
is gradually expanded, with each iteration adding a new best
response strategy. The convergence of the algorithm depends
on several factors, including the nature of the game, the size of
the strategy space, and the choice of the meta-solver. In theory,
if the game is finite and there are enough iterations, the
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algorithm can find an approximate NE; yet it seldom fore-
casts the precise iterations required for practical convergence.
Frequently, the iteration count for PSRO methodologies is
arbitrarily determined. Consequently, algorithms lacking an
early stop mechanism squander computational power. On the
other hand, prematurely halting PSRO iterations may render
strategies vulnerable to exploitation. To strike a balance in
this quandary, prevailing algorithms typically escalate the
iteration count to guarantee minimal algorithm exploitability.
This approach, however, necessitates a substantial number of
additional iterations post-convergence, constituting a severe
inefficiency in resource utilization. While there is no con-
clusive criterion for ending PSRO iterations, they should
ideally cease once exploitability stabilizes, thus minimizing
unnecessary computation.

When exploitability is plotted on a logarithmic scale,
a prominent feature emerges: an initial steep, nearly linear
decline that tapers off to negligible reductions later on. This
phenomenon suggests the presence of an apparent ceiling
that impedes further algorithmic refinement. This observation
hints at a strategic opportunity: terminating the algorithm
once exploitability reaches a discernible value could curtail
unnecessary computational expenditure, thereby optimizing
resource utilization.

According to the above view, this article proposes the ε-
soft early stop module for Purified PSRO exclusively. When
the selected strategy’s performance is not good enough, it will
terminate early. Formalized, the judgment condition can be
written as follows:

U
(
φBR

t , πNE
t

)
< ε. (7)

Under this module, the exploitability will have an upper bound
in principle:

Proposition 4 (Proposition of Convergence): Purified
PSRO can converge to approximate NE, and when
Purified PSRO terminates, the generated strategy πNE

t is
an approximate NE strategy and its exploitability is lower
than ε.

Proposition 4 is proved in the Appendix, and it ensures
that when Purified PSRO terminates early, the exploitability
of the equilibrium has an upper bound ε. By adjusting the
value of ε, the early stop module can control the time when
the algorithm terminates without affecting the performance of
Purified PSRO, to prevent the waste of computing resources.
Here, ε is a hyperparameter related to the meta-solver and the
payoff matrix.

D. Discussion

In this section, we perform an analysis of the hyperparam-
eters and convergence of our method.

1) Hyperparameter: Purified PSRO proposes the idea of
purification to improve the computational efficiency of PSRO
algorithm. This method introduces two modules, which are
NBRS module and early stop module. NBRS is a non-
parametric module, which does not involve the selection and
adjustment of hyperparameters. For the early stopping module,
a phase parameter ε that assists the algorithm to terminate is

introduced. The selection of this parameter is directly related
to the effect of the early stop module. If a suitable ε is chosen,
the early stop module can achieve the greatest efficiency of
exploitability convergence without affecting the exploitability
convergence performance. The selection of this parameter is
related to the nature of the game problem and the convergence
of the benchmark algorithm. In this article, the selection of this
parameter is mainly based on experience and is usually chosen
between 1e-2 and 1e-3.

2) Convergence Property: Purified PSRO has similar prop-
erties as PSRO in convergence: it can ensure whether the
algorithm can converge, but it cannot ensure the number
of iteration rounds required for the algorithm to converge.
In the worst case, when all the alternative pure strategies
of the algorithm are added to the strategy population, the
algorithm solving the meta-game NE of the strategy population
is equivalent to solving the NE of the original game, and the
final NE solution can be guaranteed. However, solving the NE
of the original game is actually a PPAD-complete problem,
so it is common to stop the algorithm before it has fully
converged to the true NE and use the approximate NE as the
final output. This is also the significance of the introduction
of the early stop module in this article.

V. EXPERIMENT

A. Experiment Setting
1) Experiment Environment: RGoS and real-world meta-

games are two main experimental environments in our study.
Both real-world games of skill and real-world meta-games are
widely used to evaluate the performance in the AI communi-
ties [5], [15]. To be in a fair comparison, we also choose them
as our benchmarks.

1) RGoS is a symmetric zero-sum matrix game. Every pay-
off is produced randomly. Each row or column is given a
tiny amount of fixed payment to approximate transitivity.
After normalization, each payoff in the matrix ranges in
[−1, 1]. As a result, the game will have both transitive
and non-transitive elements. One of the experiment’s
100-D matrices is represented in Fig. 3 (left).

2) Real-world meta-games are generated during the pro-
cess of solving real-world games, including AlphaStar,
AlphaGo, Blotto, etc. Fig. 3 (center) shows the
888 strategies in AlphaStar while Fig. 3 (right) shows the
1001 strategies in Blotto. The heatmap makes it simple
to see both transitive and non-transitive components in
the game.

2) Baseline: Purified PSRO is compared with advanced
response solvers including PSRO [8], Pipeline PSRO [6],
PSROr N [3], DPP-PSRO [14], BD-RD-PSRO [15], and PSD-
PSRO [16] in common symmetric zero-sum games over
10 seeds. We followed the principle of minimum change
in the experiment and tried our best to ensure the fairness
of the algorithm comparison. Different algorithms share the
same servers, third-party libraries, PSRO framework, meta-
solver, and neural network parameters. During the experiment,
it was found that there was little difference between various
meta-solvers, because the extracted sub-games were rela-
tively simple. Thus, we choose FSP with 5000 iterations as
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Fig. 3. Heatmap and the convergence of three games. The heatmap of payoff matrices of the population of agents in three games. Colors vary from yellow
to blue as the payoff ranges in [−1, 1]. The heatmap shows that the games contain both transitivity and non-transitivity.

meta-solver. When solving the response in a meta-game, all
algorithms forget the historical optimal game with the step
size of LR = 0.5.

3) Implement: Our experiments are GPU-free and the CPU
model is “Intel1 Xeon1 Platinum 8268 CPU at 2.90 GHz” with
192 cores. The benchmark algorithm that involves parallelism
uses five threads in parallel. In other words, the process
number of PSROr N , Pipeline PSRO, and DPP-PSRO is 5, and
the process number of the rest of the algorithms (including
Purified PSRO) is 1. In the computational resource consump-
tion experiment, parallel algorithms use three processes.

B. Performance Comparison

In this section, the experimental findings are detailed,
encompassing both exploitability and strategy diversity mea-
sures. For clarity in depicting the convergence patterns of
the exploitability curves, the current section refrains from
employing the early stopping module in the context of Purified
PSRO, unless explicitly stated otherwise. This decision is
substantiated by ablation studies that indicate that the early
stopping algorithm does not alter the ultimate performance
outcome of Purified PSRO. Consequently, all the experimental
trajectories presented herein were executed through the entire
iteration cycles.

1) Comparison of Exploitability: As a robust metric,
exploitability gauges the resilience of a strategy against
adversarial behavior in the most disadvantageous scenarios,
concurrently serving as a quantifiable proxy for proximity
to the NE. In general, a strategy with a lower exploitabil-
ity is closer to NE, hence the “NashConv” [4], [8]. It is
widely used in the research of zero-sum game problems [36],
[44], [45]. We employ (8) to ascertain the exploitability.
This equation represents the maximum potential loss if the
opponent responds optimally. Notably, when each agent’s
exploitability diminishes to its minimum attainable level
(commonly zero in symmetric games), their strategies con-
verge to the NE. Given that approximating the NE poses a
PPAD-complete computational challenge [1], the efficacy of an
algorithm is conventionally assessed by its convergence rate in
terms of reducing exploitability. Typically, under identical iter-
ation counts, a lower exploitability signifies a more efficacious

1Registered trademark.

convergence. Thus, exploitability incentivizes the algorithm to
pursue minimal exploitability, tantamount to minimizing the
regret in anticipation of the opponent’s best response

σ(π) = −U
(
π, sBR(π)

)
. (8)

Fig. 4 reports the results of the other four real-world meta-
games and two RGoS. In the graph, the horizontal axis
represents the number of iterations of the algorithm, and
the vertical axis represents the exploitability of the algorithm
strategy. In the process of iteration, the exploitability of the
algorithm gradually decreases. Shaded regions represent stan-
dard deviation over 10 seeds. Due to the limited space of the
article, the experimental results of the remaining experimental
environments are presented in Table I; where the numerical
values represent the mean exploitability, and the standard
deviation of the exploitability of 10 random seed results is
indicated in parentheses (mean ± SEM).

The benchmark algorithms that do not consider diversity
will converge quickly but exploitable. And algorithms that
conclude diversity (DPP-PSRO, BD-RD-PSRO, and PSD-
PSRO) can achieve lower exploitability at the cost of
convergence efficiency. Purified PSRO is superior in both con-
vergence efficiency and convergence quality. The experimental
results are consistent with the previous theoretical analysis,
which strongly demonstrates the effectiveness of the algorithm.

2) Comparison of DPP Diversity: DPP diversity metric of
the population P is defined as (9) and (10), which is a goal
that DPP-PSRO [14] is trying to maximize while training
and widely used as a diversity measure for a variety of
strategies [15], [16]. Diversity(S) is also an effective indication
to measure whether the algorithm can efficiently expand
gamescapes and generate NE

Diversity(S) = Tr
(
I − (Ls + I)−1)

(9)

Ls = M · MT . (10)

The I in (9) represents an identity matrix of the same
order as Ls . M is a payoff matrix for strategies in the
population P.

Proposition 3 indicates that Purified PSRO is naturally
diversified in principle. Experimentally, Fig. 5 (left) shows the
performance of diversity in RGoS (dim = 300) and Purified
PSRO beats most of the benchmark algorithms. The compar-
ison of this index will give DPP-PSRO an undue advantage,
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Fig. 4. Experimental results of different games. Shaded regions represent standard deviation over 10 seeds. PSRO and PSROr N have roughly the same
convergence performance. Pipeline PSRO, DPP-PSRO, BD-RD-PSRO, and PSD-PSRO perform better because of diversity of their strategies. Purified PSRO
is superior both in convergence efficiency and convergence quality.

TABLE I
EXPERIMENTAL RESULTS OF EXPLOITABILITY IN REAL-WORLD GAMES
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Fig. 5. (left) Diversity in RGoS (dim = 300). Shaded regions represent standard deviation over 10 seeds. The diversity curve of NBRS is competitive with
DPP-PSRO, and is ahead of other benchmark algorithms. (right) Ablation study in RGoS (dim = 300). Shaded regions represent standard deviation over
10 seeds. The curve converges well only when pure strategies are added to the population P.

because DPP-PSRO greedily maximizes this index in training,
while other algorithms have not seen this index before. But
the results still report that the performance of Purified PSRO
is competitive with DPP-PSRO. This strongly indicates that
the strategies generated by the NBRS can genuinely boost the
diversity of the strategy population.

Note that the Purified PSRO curve clearly resembles a saw
tooth and does so in many game dimensions. The indication
Ls is closely related to the eigenvalue of the meta-matrix
M. Due to the antisymmetric nature of the meta-matrix, the
odd-order antisymmetric matrix has an eigenvalue with 0,
whereas the even-order antisymmetric matrix does not. Odd-
order and even-order matrices operate differently as a result
of various matrix eigenvalue properties.

3) Comparison of Win Rate: Win rate constitutes a crucial
performance metric for assessing the efficacy of strategic
decisions, typically manifesting as the probability of vic-
tory or expected payoffs in zero-sum games. Notably, it is
imperative to acknowledge that reliance solely on win rate
is insufficient to guarantee the identification of the globally
optimal NE, given the complexities of multiple equilibrium in
some environments and the potential influence of asymmetric
information, incomplete information, or dynamic conditions.
This empirical setup allows us to scrutinize and contrast the
prevailing win–loss dynamics among the different algorithms
employed.

Within the RGoS (dim = 300), we conducted a compre-
hensive win rate comparison among various algorithms. These
algorithms were tasked with training strategies that approxi-
mate the NE, which were then pitted against one another. In the
baseline algorithm, we adopted PSRO, PSROr N , Pipeline
PSRO, and PSD-PSRO. The empirical outcomes are tabulated
in Table II. Throughout the experiment, 10 random seeds
were utilized to ensure statistical robustness, with each seed
spawning 1000 game simulations. The entries in the table
represent the mean winning percentages of the row players
against the column players, accompanied by the corresponding
standard deviations calculated over the 10 random seeds in

parentheses. The last column represents the overall average
win rate of the algorithm against other types of opponents.
The best result in each column is bolded. Our findings demon-
strate that Purified PSRO consistently delivers a commendable
win rate when confronted with diverse baseline algorithms,
achieving an aggregate win rate of approximately 58.6%.
This observation underscores the effectiveness of the proposed
method in enhancing strategic performance across a spectrum
of competitive scenarios.

C. Ablation Study

We ablate how well the Purified PSRO can approximate
the NE through maintaining a pure strategy population. Here,
three ablation experiments are designed as follows:

1) Gradient-Based NBRS Absent: Here, the algorithm
learns an approximate best response, yet purifies it
to a pure strategy prior to incorporating it into the
population P. While the algorithm does not directly
derive the optimal pure strategy from the gradient of the
meta-game, NBRS is nonetheless applied to the learned
approximate best response before it is added to P.

2) Best Response With Impure Strategy: In this setting,
the algorithm uses NBRS to learn pure best responses
and subsequently combines them with historical best
responses. Each resulting best response exhibits a lower
exploitability compared to a standalone pure strategy;
however, the strategy population P remains composed
of mixed strategies.

3) No Early Stop: This configuration mirrors Purified
PSRO but omits the early stopping mechanism during
the learning process. Consequently, the algorithm runs
until manually interrupted, thus providing insight into its
behavior in the absence of an early stopping criterion.

Our ablation experiments were carried out in the RGoS
(dim = 300) over 10 seeds. Comparing with two bench-
mark algorithms (PSRO and Pipeline PSRO), the experimental
results are shown in Fig. 5 (right). Notice that the red
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TABLE II
WIN RATE OF THE ROW AGENTS AGAINST THE COLUMN AGENTS ON RGOS (dim = 300)

TABLE III
TIME CONSUMPTION EXPERIMENTS IN RGoS (dim = 100 AND iter = 20)

TABLE IV
TIME CONSUMPTION EXPERIMENTS IN RANDOM GAME OF SKILL (dim = 300 AND iter = 30)

curve (no NBRS in gradient) terminates at 13 iterations
and the brown curve (no NBRS in strategy) at 10, nei-
ther completing the intended 50 rounds. This evidences
the early stopping module’s efficacy in curtailing iterations
prematurely when algorithm utilization falls beneath the prede-
fined threshold, thereby effectively conserving computational
resources. And the result curves bring three corresponding
conclusions.

1) The curves converge only well when pure strate-
gies are added to the population P. Although the
learned BR deviates from optimal, which lead to
slow convergence rate, it can still maintain a better
level than the baseline algorithm. Notably, performance
surpasses baseline algorithms, illustrating the advanta-
geous impact of integrating pure strategy bases into
population P.

2) Relaxing purity constraints on P’s strategies aligns
algorithm convergence with standard PSRO, negat-
ing the NBRS-enhanced pure strategy advantage and
forfeiting the parallel exploration capacity seen in
Pipeline PSRO. This suggests that mere gradient-based
meta-game responses do not inherently boost PSRO
performance, highlighting the pivotal role of maintaining
a pure strategy population P in Purified PSRO’s superior
outcomes.

3) The congruence between initial segments of Purified
PSRO curves, with and without early stopping, con-
firms that computational efficiency can be enhanced
without compromising convergence quality. This evi-
dences the early stopping mechanism’s capability to
conserve resources without detracting from convergence
effectiveness.

D. Efficiency Discussion

In iteration t of a meta-game G = {S;U} with |S| pure
strategies, the population size is t , where t ≪ S. An iteration
takes O(t S2) to compute the meta-game, O(t3) to compute
meta-nash πNE of meta-game by FSP, O(t S2) to calculate the
meta-game’s gradient, O(S2) to execute NBRS, and O(S2) to
check the early stop conditions. So, an iteration takes O(t S2

+

t3
+ t S2

+ S2
+ S2) = O(t S2) in total.

The consumption of computing resources is a direct indica-
tor to evaluate the computational complexity of an algorithm.
A natural desire is to use as few computing resources as possi-
ble to obtain strategies that are not exploitable, so convergence
efficiency should be considered. To quantitatively measure
the convergence efficiency of the algorithm, we define the
convergence efficiency as follows:

η =
− lg σ

(
πNE

)
C

. (11)

In this equation, η is the convergence efficiency of the
algorithm. σ(πNE) is the exploitability of the πNE. Since
the difficulty of exploitability converging increases exponen-
tially, its negative logarithm (the base number is 2) is used
to represent the convergence performance. C represents the
consumption of computing resources, with CPU ∗ second as
the unit. The convergence performance ratio to time is used
to measure the convergence efficiency of the algorithm.

In the RGoS with 100/300/1000 dim, we use 10 seeds
to evaluate. Pipeline PSRO and DPP-PSRO are running in
parallel with three threads in this experiment. In order to
compare fairly, each algorithm uses the same number of
iterations. The final results are tabulated in Tables III–V.
The information in the table demonstrates that our early stop
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TABLE V
TIME CONSUMPTION EXPERIMENTS IN RANDOM GAME OF SKILL (dim = 1000 AND iter = 50)

strategy can achieve the best efficiency and save roughly 80%
of computational resources without compromising exploitabil-
ity performance. In addition, our approach with the early stop
algorithm achieves the best convergence quality and efficiency
when compared to several benchmark methods (rightmost
column in the table). This table also shows some features of
other benchmark algorithms. For example, self-play is highly
efficient, but the strategies of which can be easy to exploit,
whereas DPP-PSRO consumes much computing resources.

VI. CONCLUSION AND FUTURE WORK

This article proposes Purified PSRO to find approximate NE
of symmetric zero-sum games, by suppressing the non-best
component of the approximate best response. It can generate
pure strategy base in the meta-game, and maintains a pure
strategy population deliberately to efficiently increase diver-
sity and expand the gamescapes, thus improves exploration
efficiency. The generated pure strategy bases have many
theoretical properties, such as optimality, validity, and diver-
sity. Moreover, we prove the convergence of Purified PSRO,
introduce an early stop module to reduce computation cost,
and give the upper bound of the exploitability when Purified
PSRO terminates early. Experiments show that Purified PSRO
can consistently outperform existing PSRO benchmarks in
symmetric zero-sum scenarios.

There are also some possible future research directions in
this article. First among these is the absence of a universally
optimal method for measuring strategy diversity. There is
scope to further substantiate the efficacy of the NBRS module
through the application of additional metrics. Secondly, the
issue of hyperparameter tuning presents a noteworthy topic.
Given that prevailing methods mostly rely on experiential
choices without a standardized, flawless selection protocol,
devising a method to systematically identify optimal param-
eters remains an unresolved challenge. Another direction of
future work is to extend the Purified PSRO to larger scale
games, such as Texas hold‘em [46], Mahjong [28], and
Stratego [47]. Clustering opponent strategies using efficient
methods [48] to reduce the policy size is an intriguing
solution to enhance the exploration efficiency in large policy
space [49].

APPENDIX A
PSRO

Purified PSRO operates within the architectural framework
of PSRO [8]. For clearer comparison, we hereby present the
pseudocode of the original PSRO algorithm as Algorithm 3.
The PSRO is a synergistic integration of DRL and empirical
game-theoretic principles, playing a pivotal role in addressing

Algorithm 3 Policy Space Response Oracle
Input: Game payoff matrix U.
Output: π N E

t
1: Initialized the strategy population P with a pure strategy.

2: Calculation meta matrix M by the strategies in the popu-
lation P.

3: while not stop do
4: t ← t + 1
5: π N E

t ← FSP(M, P).
6: φBR

t ← Approximate best response.
7: P← P ∪ {φBR

t }.
8: Expand M.
9: Calculate the exploitability of π N E

t .
10: end while

the intricate issues surrounding policy learning and coor-
dination in complex multiagent environments, thus making
substantial contributions to the field.

The essence of the PSRO algorithm revolves around the con-
struction and optimization of a “meta-game” that encapsulates
the gradual expansion of smaller sub-games to approximate the
larger, original game structure. Through this iterative progres-
sion, agents are prompted to methodically probe and sample
the strategy landscape, thereby facilitating rapid refinement
and approximation of the meta-game to its source counterpart.
Within this meta-game framework, the conventional action
dimensions are elevated to a broader notion of “strategies,”
aimed at extracting meta-equilibrium strategies. Provided that
the meta-game accurately emulates the intricacies of the
original problem, the ensuing meta-strategies retain their effec-
tiveness and relevance when applied back to the original
problem context. This iterative process ensures a systematic
and comprehensive exploration of the strategy space, ulti-
mately leading to solutions that closely resemble the NE in
the actual game setting.

APPENDIX B
PROOFS

A. Proof of (1)

Proof: If player 1 infers that player 2 will choose the
strategy with the probability of P2 = (p21, . . . , p2k), then
player 1 will choose the expected payoff of pure strategy s1 j

as follows:

K∑
k=1

p2kU
(
s1 j , s2k

)
. (12)
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And the expected return of participants’ choice of mixed
strategy P1 = (p11, . . . , p1k) is as follows:

U(P1, P2) =

J∑
j=1

p1 j

[
K∑

k=1

p2kU
(
s1 j , s2k

)]

=

J∑
j=1

K∑
k=1

p1 j p2kU
(
s1 j , s2k

)
= P1 · U · PT

2 . (13)

B. Proof of Proposition 1

Proof: In a meta-game G = {S1, S2;U1, U2} with K
pure strategy bases, the opponent’s strategy is fixed as P2.
According to (1), the strategy gradient can be calculated as
the following equation:

g =
∂u1

∂ P1
=

∂ P1 · U1 · PT
2

∂ P1

=
(
U1 · PT

2

)T

= P2 · UT
1 (14)

arg max g = arg max P2 · UT
1

= arg max P2 · UT
1 · IK

= arg max IK · U1 · P2. (15)

Considering that IK can be considered as K pure strategy
vectors, arg max IK · U1 · P2 is the best response’s index.
Therefore, arg max g is the best response’s index. In other
words, the pure strategy corresponding to the direction of
maximum policy gradient is the best response to the meta-
game.

C. Proof of Proposition 2

Proof: Because the selected strategy is the best response
to the meta-game (proved by Proposition 1), Ui (s, p) ≥

Ui (s∗, p),∀s∗ ∼ Si while s is the selected pure strategy.

D. Proof of Proposition 3

Proof: Suppose that a meta-game G contains K pure
strategy bases S = {s1, . . . , sK }, and the rectified strategy
πNE

t is mixed with strategies that has been added to the
population P, then, according to the definition of NE, we get
U(si , π

NE
t ) ≤ 0, ∀si ∼ P.

The algorithm only selects the pure strategy s satisfying
U(s, πNE

t ) > 0, so the new strategy s is not included in the
population P.

Additionally, if s is included in the empirical gamescapes of
the population P, then U(s, πNE

t ) = 6αiU(si , π
NE
t ) ≤ 0. This

results in a contradiction. So s is included in the empirical
gamescapes of the population P.

E. Proof of Proposition 4

Proof: When all pure strategy bases are added to the
pure strategy population, the strategy can converge to the
approximate NE. And Purified PSRO terminates early only
when the payoff from the pure strategy selected in step
Algorithm 2 line 4 is less than or equal to 0 in the meta-
game, so each element in IK ·U · P is less than ε. This means
that any pure strategy vector will have a payoff less than ε in
the face of strategy P . that is, U(s, P) ≤ ε,∀s ∼ S. Since the
game is symmetric, we have P ·U · P = 0. That is, strategy P
is an approximate NE strategy and the exploitability is lower
than ε.
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