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 对算法运行时间的分析，一般都是通过每条指令指定的代价 * 指

令执行次数来计算的。比如，插入算法的运行时间分析。
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INSERTION-SORT(A)                                                                cost times

1 for( j = 2; j <=length[A]; j++) c1 n

2 { key = A[j] c2 n-1

3 // Insert A[j] into the sorted sequence A[1 .. j-1] 0 n-1

4 i = j-1 c4 n-1

5 while( i > 0 && A[i] > key) c5

6 { A[i+1] = A[i] c6

7 i = i-1 c7

8 } 

9 A[i+1] = key c8 n-1

10 }
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 当一个算法包含对其自身的递归调用时，其运行时间通常可以用

递归式来表示。

 递归式是一组等式或不等式，它所描述的函数是用在更小的输入

下该函数的值来定义的。如，归并排序：
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1                      , if 1   
( )        (4.1)

2 ( / 2)     , if 1   

n
T n

T n n n


 

 

cost

MERGE-SORT(A, p, r) T(n)

1 if p < r

2 Then q ←

3 MERGE-SORT(A, p, q) T(n/2)

4 MERGE-SORT(A, q+1, r) T(n/2)

5 MERGE(A, p, q, r) n
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 在表达和求解递归式时一般都会忽略一些技术性细节：

1）假设函数自变量为整数，忽略上取整和下取整。

2）忽略递归式的边界条件，并假设对于小的n值，T(n)是常量。
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初始值只会影响常数因子，并不会影响函数增长的阶。
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 递归表达式求解方法：

1）代换法：先猜有某个解存在，用数学归纳法证明猜测的正确性；

2）迭代法：把递归式转化为求和表达式，然后求和式的界；

3）递归树法：直观地表达了迭代法

4）主方法：给出了求解T(n) = aT(n/b)+f(n)这种形式递归式的简单方法。
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代换法

 代换法求解递归式要点：

1）猜测解的形式

2）用数学归纳法找出使解真正有效的常数
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1                  ,  if 1,
Example:  ( )

2 ( / 2) ,  if 1.

n
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 

 

(1) Guess: ( ) lg

(2) Induction

      : 1 lg 1 ( )

      : Inductive hypothesis is that ( ) lg  for all .

      Use the inductive hypothesis of ( / 2) to prove ( )

  

T n n n n

n n n n T n

T k k k k k n

T n T n

 

    

  

Basic

Inductive step

    ( ) = 2 ( / 2)

              = 2(( / 2) lg( / 2) ( / 2))     (by inductive hypothesis)

              = lg( / 2)   (lg lg 2) 2  = lg .

T n T n n

n n n n

n n n n n n n n n n



 

     
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代换法

 代换法求解递归式要点：

1）猜测解的形式

2）用数学归纳法找出使解真正有效的常数
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1                  ,  if 1,
Example:  ( )

2 ( / 2) ,  if 1.

n
T n

T n n n


 

 

(1) Guess: ( ) lg

(2) Induction

      : 1 lg 1 ( )

      : Inductive hypothesis is that ( ) lg  for all .

      Use the inductive hypothesis of ( / 2) to prove ( ).

T n n n n

n n n n T n

T k k k k k n

T n T n

 

    

  

Basic

Inductive step

这个方法非常有效，但是只适合于求解一些比较容易猜测的情形！
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 The substitution method can be used to establish either upper ( O )

or lower bounds (Ω) on a recurrence.

 example, determining an upper bound on the recurrence 

(4.4)

(1) Guessing that the solution is T(n) = O(n lg n).

(2) Proving T(n)≤cn lg n for a some constant c > 0.

 Assume that this bound holds for  n/2 , that is, that 

.   Substituting into the recurrence yields 

where the last step holds as long as c ≥ 1.

( ) 2 ( / 2  ) ,T n T n n   

( / 2 ) / 2 lg( / 2 )T n c n n          

( ) =2 ( / 2 ) 2( / 2 lg( / 2  ))  

       lg( / 2)  = lg lg 2   lg   lg ,

T n T n n c n n n

cn n n cn n cn n cn n cn n cn n

            

       

代换法
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 Mathematical induction now requires us to show that our 

solution holds for the boundary conditions. 

 Typically, the boundary conditions are suitable as base cases for 

the inductive proof.

 This requirement can sometimes lead to problems.

 Assume that T(1) = 1 is the sole boundary condition of the 

recurrence. Then, we can‘t choose c large enough, since       

T(1)≤c 1 lg 1 = 0, which is at odds with T(1)=1. The case of our

inductive proof fails to hold.（递归结果与初始情况矛盾，即递
归证明失败？）

( ) 2 ( / 2  ) ,                (4.4)T n T n n   

( ) ( lg )    ,  ( )  lgT n O n n T n c n n 

代换法
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 An inductive hypothesis inconsistent with specific boundary 

condition,  How to overcome the difficulty?

（如何克服递归结果与边界条件不一致的问题？）

 asymptotic notation only requires us to prove T(n)≤cnlg n

for n≥ n0, where n0 is a constant.

 to remove the difficult boundary condition T(1) = 1

 Impose T(2) and T(3) as boundary conditions for the 

inductive proof.

 From the recurrence, we derive T(2) = 4 and T(3) = 5.

 The inductive proof that T(n)≤cn lgn can now be completed 

by choosing any c≥2 so that T(2)≤c2 lg 2 and T(3)≤c 3 lg 3.

( ) 2 ( / 2  )  ;    ( ) ( lg )    ,  ( )  lgT n T n n T n O n n T n c n n     

代换法
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做一个好的猜测：

 Unfortunately, there is no general way to guess the correct 

solutions to recurrences.  (猜想不是一种方法)

 Guessing a solution takes experience and, occasionally, creativity.

( why we study the course? It’s a training for us to get experience, 

to catch occasion, to have creativity. )

 Fortunately, though, there are some heuristics (recusion tress) 

that can help you become a good guesser. 

代换法
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 If a recurrence is similar to one you have seen before, then 

guessing a similar solution is reasonable. For example, 

 which looks difficult because of the added “17”.

 Intuitively, this additional term cannot substantially affect 

the solution to the recurrence.（该附加项不会从本质上影
响递归解）

 When n is large, the difference between T( n/2 ) and T( n/2  

+ 17) is not that large. Consequently, we make the guess that 

T(n) = O(n lg n), which you can verify as correct by using 

the substitution method.

( ) 2 ( / 2 17) ,T n T n n    

代换法
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 Sometimes, guess correctly, but somehow the math doesn't seem 

to work out in the induction.

For example

 Guess the solution is O(n) , then try to show that T(n)≤cn for an 

appropriate constant c. Substituting .. , then

which does not imply T(n)≤ cn for any choice of c.

( ) ( / 2 ) ( / 2 ) 1.T n T n T n        

( ) / 2 / 2 1 1,T n c n c n cn          

一些细微的问题:

代换法
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 Sometimes, guess correctly, but somehow the math doesn't seem to 

work out in the induction.

For example

 Usually, it is that the inductive assumption isn't strong enough to 

prove the detailed bound. How to overcome?

(递归假设条件不强)

 Revising the guess by subtracting a lower-order term often

permits the math to go through. （减去低阶项）

( ) ( / 2 ) ( / 2 ) 1.T n T n T n        

guess ( ) ,  thne ( ) / 2 / 2 1 1,

contradiction.

T n cn T n c n c n cn           

代换法

一些细微的问题:
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 try a larger guess T(n) = O(n2), which can work.

 But  the guess that the solution is T(n) = O(n) is correct. 

 Intuitively, our guess is nearly right: we're only off by the 

constant 1, a lower-order term.

 Nevertheless, mathematical induction doesn't work!

 Subtracting a lower-order term from our previous guess. New 

guess is T(n) ≤ cn - b, where b≥0 is constant, then

as long as b≥1. As before, the constant c must be chosen large 

enough to handle the boundary conditions.

( ) ( / 2 ) ( / 2 ) 1 2 1  ,T n c n b c n b cn b cn b               

( ) ( / 2 ) ( / 2 ) 1         Solution: ( ) ( )T n T n T n T n O n         

代换法

一些细微的问题:
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 Most people find the idea of subtracting a lower-order term 

counterintuitive. （违反直觉）

 After all, if the math doesn't work out, shouldn't we be 

increasing our guess?

 The key to understand this step is to remember that we are using 

mathematical induction: we can prove something stronger for a 

given value by assuming something stronger for smaller values. 

（假设更强的条件，可证明更强的结论）

一些细微的问题:

代换法
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 It is easy to err in the use of asymptotic notation.

For example, in the recurrence (4.4) 

we can falsely prove T(n) = O(n) by guessing T(n)≤cn and then 

arguing

since c is a constant. The error is that we haven't proved the 

exact form of the inductive hypothesis, that is, that T(n)≤cn.

( ) 2 ( / 2 ) 2( / 2 )

       

        = ( ) ,         !!!

T n T n n c n n

cn n

O n wrong

         

 



( ) 2 ( / 2 )                 (4.4)T n T n n   

避免陷阱：

代换法



University of Science and Technology of China20

 algebraic manipulation（代数变换）: sometimes solute an 

unknown recurrence similar to one you have seen before.

Example, 

which looks difficult. Simplify the recurrence with a change of 

variables. For convenience, we shall not worry about rounding 

off values, such as       , to be integers. 

Let m = 1g n , then T(2m) = 2T(2m/2)+m. 

Thus rename S(m)=T(2m) => S(m)=2S(m/2)+m, 

which is very much like recurrence (4.4) and has the same 

solution: S(m)=O(m lgm) . Changing back from S(m) to T(n), we 

obtain T(n)=T(2m)=S(m)=O(m lgm)=O(lgn lglgn) .

n

( ) 2 ( ) lg ,T n T n n  
 

改变变量：

代换法
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代换法

 代换法求解步骤小结：

(1) 做一个好的猜测

(2) 证明一般情况成立

(3) 处理边界条件，可以进行边界扩展

 注意事项：

(1) 对更小的值做更强的假设

(2) 避免陷阱

(3) 适当时进行变量替换
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 Substitution: It is difficult to come up with a good guess 

 The iteration method

 doesn't require us to guess the answer

 may require more algebra (迭代法对代数能力的要求较高)

 to expand (iterate) the recurrence and express it as a 

summation of terms, and the initial conditions

 to evaluate summations. (不断迭代展开为级数，并求和)

For example, 

( ) 3 ( / 4 )

3 ( / 4 3 ( /16 ))

3( / 4 3( /16 3 ( / 64 )))

3 / 4 9 /16 27 ( / 64 ),

T n n T n

n n T n

n n n T n

n n n T n

    

        

             

             

( ) 3 ( / 4 )T n T n n   

迭代法
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 How far must we iterate the recurrence?

 The ith term in the series is               . 

 The iteration halts when                . By continuing the iteration 

until this point and using the bound                       , we get a 

decreasing geometric series:

( ) 3 ( / 4 ) 3 ( / 4 3 ( /16 ))

3( / 4 3( /16 3 ( / 64 )))

3 / 4 9 /16 27 ( / 64 ),

T n n T n n n T n

n n n T n

n n n T n

              

             

             

3 / 4i in  

/ 4 1in   
/ 4 / 4i in n   

4

4 4

log 3

0

log log 3

4

( ) 3 / 4 9 /16 27 / 64 3 ( / 4 )

(3 / 4) ( ) 4 ( ) ( ).

( / 4 1 log 3 3 )

i i

i

i

ni i

T n n n n n T n

n n n o n O n

n i n n





     

     

     



迭代法
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 The iteration method usually leads to lots of algebra. It can be a 

challenge. The key points:

 the number of times the recurrence needs to be iterated to 

reach the boundary condition,（递归次数）

 and the sum of the terms arising from each level of the 

iteration process.（级数求和）

 Sometimes, in the process of iterating a recurrence, you can guess 

the solution without working out all the math. Then, the iteration 

can be abandoned in favor of the substitution method, which 

usually requires less algebra.

（在展开递归式为迭代求和的过程中，有时只需要部分展开，然后根据其规律
来猜想递归式的解，接着用代换法进行证明。）

迭代法



University of Science and Technology of China26

 When a recurrence contains floor and ceiling functions, the math 

can become especially complicated.

 Often, it helps to assume that the recurrence is defined only on 

exact powers of a number. 

Example, 

if we had assumed that n = 4k for some integer k, the floor 

functions could have been conveniently omitted. 

( ) 3 ( / 4 )T n T n n   

迭代法
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 Drawing out a recursion tree, is a straightforward way to 

devise a good guess, and to show the iteration method 

intuitively.（画递归树可以从直观上表示迭代法，也有助于

猜想递归式的解）

 Recursion trees are particularly useful when the recurrence 

describes the running time of a divide-and-conquer algorithm.

 递归树中，每一个节点都代表着递归函数调用集合中一个子

问题的代价。将树中每一层内的代价相加得到一个每层代价

的集合，再将每层的代价相加得到递归式所有层次的总代价。

递归树法
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 使用递归树产生好的猜测时，通常需要容忍小量的“不良量”：

 1）floor, ceiling忽略；

 2）n经常假设为某个整数的幂次方；

 例子见课本P41

 关键：1）树的深度如何确定？

2）每个节点的代价—>每层的代价—>总代价

29

递归树法
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 solving recurrences of the form

T(n) = aT(n/b)+f(n), (4.5)

where a≥1and b>1, and f(n) is asymptotically positive.

 The master method requires memorization of three cases, but 

then the solution of many recurrences can be determined quite 

easily, often without pencil and paper.

 n/b might not be an integer. Replacing each of T(n/b) with  

either                or                doesn’t affect the asymptotic 

behavior .

 Normally, it is convenient to omit the floor and ceiling functions 

when writing divide-and-conquer recurrences of this form.

( / )T n b   ( / )T n b  

主方法
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 Theorem 4.1 （主定理）

Let a≥1 and b>1 be constants, let f(n) be a function, and let T(n) 

be defined on the nonnegative integers by the recurrence 

T(n) = aT(n/b) + f(n), 

where we interpret n/b to mean either         or           . Then T(n) 

can be bounded asymptotically as follows. 
/n b   /n b  

(log )- log

log log

(log )

1. If  ( ) ( ) for some constant 0, then ( ) ( ). 

2. If  ( ) ( ), then ( ) ( lg ). 

3. If  ( ) ( ) for some constant 0, 

        and if ( / ) ( ) for s

b b

b b

b

a a

a a

a

f n O n T n n

f n n T n n n

f n n

af n b cf n









   

   

  

 ome constant 1 

        and all sufficiently large , then ( ) ( ( )). 

c

n T n f n



 

主方法
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 Comparing the function f(n) with         . Intuitively, the solution 

is determined by the larger of the two functions. 

 Case 1,          larger, then the solution is                         .

 Case 3, f(n) larger, then the solution is                          . 

 Case 2, the two functions are the same size, we multiply by 

a logarithmic factor, and the solution is

   

   

   

log (log )

log log

(log )

( ) ( / ) ( ),

,    ( )

0
( ) lg , ( )

, 1

( ) ,    ( )  and ( / ) ( )  for large

b b

b b

b

a a

a a

a

T n aT n b f n

n f n O n

T n n n f n n
c

f n f n n af n b cf n n






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 Polynomially

 Case 1, f(n) must be polynomially smaller than         .

 Case 3, f(n) must be polynomially larger than          .

 Gap

 There is a gap between cases 1 and 2 when f(n) is smaller 

than           but not polynomially smaller.

 Similarly, there is a gap between cases 2 and 3 when f(n) is 

larger than            but not polynomially larger. 
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   

   

log (log )

log log

(log )

( ) ( / ) ( ),

,    ( )

0
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, 1

( ) ,    ( )  and ( / ) ( )  for large
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
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Example: ( ) lg  ,     b a
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主方法特殊情况：
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 T(n)=9T(n/3)+n

 T(n)=T(2n/3)+1
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b b

b b

b

a a

a a

a

T n aT n b f n

n f n O n

T n n n f n n
c

f n f n n af n b cf n n











 

  
   

    
 

     

3

3

log log 9 2 2

log 9 2

9, 3, ( )         ( ) 

    ( ) ( ), where 1        ( ) ( )

b a
a b f n n n n n n

f n O n T n n
 

       

    

3 / 2

3

log log 1 0

log

1, 3/ 2, ( ) 1        1 

    ( ) ( ) (1)        ( ) (lg )

b a

a

a b f n n n n

f n n T n n

      

      

主方法

举例：



University of Science and Technology of China36

举例： T(n)=3T(n/4)+nlgn
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 T(n)=2T(n/2)+nlgn
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but ( ) / lg ,  which is asymptotically less than  for any positive

constant , that is ( ) is not polynomially larger than . Consequently, 

the recurrence f
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alls into the gap between case 2 and case 3.
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